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Additive Noise Induces Front Propagation
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The effect of additive noise on a static front that connects a stable homogeneous state with an also stable
but spatially periodic state is studied. Numerical simulations show that noise induces front propagation.
The conversion of random fluctuations into direct motion of the front’s core is responsible of the
propagation; noise prefers to create or remove a bump, because the necessary perturbations to nucleate
or destroy a bump are different. From a prototype model with noise, we deduce an adequate equation for
the front’s core. An analytical expression for the front velocity is deduced, which is in good agreement
with numerical simulations.
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FIG. 1 (color online). Spatiotemporal evolution of Eq. (1),
with time running up. The gray scale is proportional to field u.
The inset figure is the initial condition. The parameters have
been chosen " � �0:16, � � 1:0, q � 0:7. (a) � � 0:0,
(b) � � 0:4, and (c) " � �0:175, � � 0:5.
The description of macroscopic matter, i.e., matter com-
posed of a large number of microscopic constituents, is
usually done using a small number of coarse-grained or
macroscopic variables. When spatial inhomogeneities are
considered these variables are spatiotemporal fields whose
evolution is determined by deterministic partial differential
equations (PDE). This reduction is possible due to a sepa-
ration of time scales, which allows a description in terms of
the slowly varying macroscopic variables, which are in fact
fluctuating variables due to the elimination of a large
number of fast variables whose effect can be modeled
including suitable stochastic terms (noise) in the PDE.
The influence of noise in nonlinear systems has been the
subject of intense experimental and theoretical investiga-
tions [1–6]. Far from being merely a perturbation to the
idealized deterministic evolution or an undesirable source
of randomness and disorganization, noise can induce spe-
cific and even counterintuitive dynamical behavior. The
most well-known examples in zero dimensional systems
are noise-induced transition [1] and stochastic resonance
[2]. More recently, examples in a spatial extended system
are noise-induced phase transition [3], noise-induced pat-
terns [4], stochastic spatiotemporal intermittency [5], and
noise-induced traveling waves [6]. Here, we will focus on
the effect of additive noise in front propagation. The con-
cept of front propagation emerged in the field of popula-
tions dynamics [7], and the interest in these types of
problems has been growing steadily in chemistry, physics,
and mathematics. In physics, front propagation plays a
central role in a large variety of situations, ranging from
reaction diffusion models to general pattern forming sys-
tems (see the review in [8] and references therein). The
influence of multiplicative noise in a globally stable state
invading an unstable or metastable state, a front solution,
has been extensively studied, particularly concerning the
issue of velocity selection [9].

The aim of this Letter is to study the effect of noise in a
motionless front that connects a stable homogeneous state
with an also stable but spatially periodic state. Numerical
simulation of this type of front shows that noise induces
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front propagation, that is, one state invades the other one.
From a prototype model that exhibits this type of front, the
subcritical Swift-Hohenberg equation with additive noise,
we deduce an equation for the front’s core, which is
characterized by a periodic asymmetrical potential plus
additive noise. The conversion of random fluctuations
into directed motion of the front’s core is responsible for
front propagation. We obtain an analytical expression for
the velocity of the front, which is proportional to Kramer’s
rate, in the weak noise intensity limit. This expression is in
good agreement with numerical simulations.

A front that connects two stable homogeneous states in a
variational system with a known free energy, permanently
propagates from the state with higher free energy to the
state with lowest free energy [8]. However, the front is
static when both states are energetically equal, i.e., in the
Maxwell point. This picture changes in the case of a front
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that connects a stable homogeneous state with an also
stable but spatially periodic one. This front exhibits a
locking phenomena in a region of parameters known as
the pinning range [10], in which the front does not move.
When additive white noise is taking into account, one may
expect random fluctuations of the interface between the
two states (front’s core). However, numerical simulations
in a one dimensional extended system show that the front
propagates from one state to the other with a stochastic
velocity, as is illustrated in Fig. 1. The numerical method
used in the simulation is the Runge-Kutta algorithm with
time step equal 0.01, and spatial mesh 1=400. Depending
on the region of parameters, the front can propagate to the
periodic spatial state or to the homogeneous one.

In order to understand the mechanism through which
noise induces propagation, we consider a prototype model
that exhibits this type of front (subcritical Swift-Hohenberg
equation with noise [8])
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where u�x; t� is an order parameter, "� q4 is the bifurca-
tion parameter, q is the wave number of periodic spatial
solutions, � the control parameter of the type of bifurcation
(supercritical or subcritical), ��x; t� is a Gaussian white
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confluence of a stationary and an spatial subcritical bifur-
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is of codimension three. The above model is often em-
ployed in the description of patterns observed in Rayleigh-
Bénard convection [8].
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A front between a homogeneous and a spatial oscillatory
state can be described by the ansatz
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where A�y; �� is the envelope that describes the front
solution, w1�x; y; �� is a small correction function of order
", and fy; �g are slow variables. In this ansatz, we consider
q is order one or larger than the other parameters.
Introducing the above ansatz in Eq. (1) and linearizing in
w1, we find the following solvability condition
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109=4=81�4. The deterministic terms proportional to the
exponential are nonresonant, that is, one can eliminate
these terms by an asymptotic change of variable.
Furthermore, they have rapidly varying oscillations in the
limit �! 0. Hence, one usually neglects these terms.
When one considers only the deterministic resonant terms,
the first line of (3), it is straightforward to show that the
system exhibits a front solution between two homogeneous
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propagates from the stable state (lowest free energy) to the
metastable one, and it is static when the Maxwell point is
reached �M � �3=16, and it has the form
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where y0 is the position of the front‘s core, and � is an
arbitrary phase. In the neighborhood of �M the front prop-
agates by a velocity given approximately by � �
3d=8��� �M� , where d �

R
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2dy. However, as
pointed out by Pomeau [10], static fronts between a homo-
geneous and spatial periodic state may actually persist in a
finite neighborhood of the Maxwell point, the pinning
range, and it was conjectured that this phenomena could
be due to nonadiabatic effects produced by nonresonant
terms. This was shown in a particular case in [11] and has
recently been discussed in a general frame in [12], with the
conclusion that the locking phenomena results from the
interaction (contained in the nonresonant terms) of the
large scale envelope A�y; ��with the small scale underlying
the spatial periodic solution [11].

To describe the dynamics exhibited by (1) and the lock-
ing phenomena, we must then consider the nonresonant
terms in the envelope equation (3). We consider all these
terms as perturbations because they have rapidly varying
oscillations. Close to the Maxwell point, we use the ansatz
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where 
 is a small parameter of order ��� �M�.
Introducing the above ansatz in Eq. (3) and linearizing in
f�;�g we obtain the following solvability condition for the
front’s core
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is the potential which characterizes the dynamics of the
front‘s core and ���� is a Gaussian white noise, that is, with
zero mean value and correlation h�������0�i � 
��� �0�.

The locking phenomena and the pinning range are sim-
ple to understand from Eq. (4); the locking phenomena is
exhibited when the deterministic evolution of y0 has stable
equilibrium points, that is, the front’s core has stable
equilibrium positions (cf., Fig. 2). The pinning range is
the parameter region where the system has equilibrium
points. If �< 0 and j�j> j�j, the model (4) does not
have equilibrium points. The front’s core moves forward
and its acceleration increases and decreases periodically,
hence the spatial periodic state invades the homogeneous
one with an oscillatory velocity. In Fig. 3, the thick and the
dashed curves are the average velocity with and without
noise, respectively. Increasing � (�), the system exhibits a
simultaneous infinite saddle-node bifurcations for j�j �
j��j � j�j. For �>�� and j�j< j�j, the system has an
infinite number of stable equilibria. Each equilibrium point
represents a static front with different bumps (cf., Fig. 2).
Increasing further �, all critical points disappear simulta-
neously by saddle node when �> 0 and � � �� � j�j.
For �>�� the front’s core moves backward, hence the
homogeneous state invades the spatial periodic one with an
oscillatory velocity (cf., Fig. 3). Therefore, for �� <�<
�� (pinning range) the system exhibits the locking
phenomena.

We now consider the effect of noise in (4). Because of
the asymmetry of the potential and the lack of a global
stationary state, the system continuously converts the ran-
dom fluctuations in directed motion of the front, i.e., the
noise induces front propagation. This type of phenomena is
well known as a Brownian motor [13]. One can easily
understand the origin of this phenomena: if initially y0 is
U(y0)
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FIG. 2 (color online). Schematic representation of the poten-
tial U�y0� of Eq. (4). fa0; b0; c0g are fixed points. The inset figures
represent two successive equilibria states of Eq. (1).

14830
inside the basin of attraction � of a fixed point, the front
just fluctuates around the fixed point during a time of the
order of the mean first passage time to @�, the border of �.
After this time the system makes a transition to the basin of
attraction of the nearest stable fixed point separated from
the first one by the lowest energy barrier. This behavior is
repeated in this new basin of attraction and the final result
is a directed motion of the front. Since the energy threshold
for jumping to the right or to the left is different, the
probability of jumping to the side with the highest energy
threshold will be exponentially small with respect to the
probability of jumping to the other side and this determines
the direction of motion of the front. Hence, fluctuations are
privilege to the creation or removal of a bump, simply
because nucleating or destroying a bump is different.

From the above analysis, we can estimate the mean
velocity of the front’s core
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(5)
where a0, b0, and c0 are a minimum and two successive
maximums of the potential U�y0� (see Fig. 2), respectively,
and � � ab=j�j2

������������
�=2d

p
. In the limit of weak noise
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FIG. 3. Mean velocity of the front with and without noise. The
thick and the dashed curves are the average velocity of the front
of Eq. (1) for " � �0:16, � � 1:0, q � 0:7, � � 0:0, and � �
0:01, respectively.
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FIG. 4. Mean velocity of the front. The continuous line is the
analytical formula of mean velocity and the solid dots are the
numerical measuring of the mean velocity of the front of Eq. (1).
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From the above expression one can find that in this limit
the velocity is proportional to Kramer’s rate. Numerically,
we have measured the front velocity for different values of
the noise intensity and we obtain a good agreement with
the theoretical prediction, as it is shown in Fig. 4. It is
important to remark that U�y0� is function of the noise
intensity (�). For finite noise intensity this dependence is
dominant in the terms k1 and k2, in the limit of �! 0.
Hence for finite noise intensity one only needs to consider
the terms coming from the noise to explain the locking
phenomena and the induced front propagation.

To understand the mechanism of noise-induced front
propagation we have considered the subcritical Swift-
Hohenberg equation. This model allows us to obtain ana-
lytical expressions for the mean velocity of the front. For
an arbitrary model it is thorny to obtain explicit formulas
for the front velocity, since in general we do not have
access to explicit expressions of spatial periodic solutions
and front solutions. Given a system that exhibits locking
phenomena, close to a spatial bifurcation, one expects to
find a similar envelope equation to (3) [12]. We can con-
clude then that the noise induces front propagation since
the noise prefers to create or remove a bump, simply
because the necessary perturbations to nucleate or destroy
a bump are different.

The existence, stability properties, and bifurcation dia-
grams of localized patterns in the pinning range in one
dimensional extended systems have recently been studied
[14]. In one spatial dimension, one can understand the
localized pattern as the equilibrium points of the front
interaction [15]. When we consider the effects of noise
on these solutions, we expect, due to our previous discus-
sion, propagation of the interface of these localized pat-
terns. From the above results, one realizes that the
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localized patterns are unstable in nature, that is, in the
presence of noise. The velocity of propagation of the
interfaces and fronts are proportional to Kramer’s rate.
Therefore, experimentally, one can observe these localized
patterns, when noise is weak enough, for long intervals of
time, as metastable states.

The simulation software DIMX developed by P. Coullet
and collaborators at the laboratory INLN in France has
been used for all the numerical simulations. M. G. C. and
E. T. acknowledge the support of FONDECYT
Projects 1051117 and 1020374, FONDAP Grant
No. 11980002, and ECOS-CONICYT collaboration
programs.
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