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We analyze the temporal dynamics of an optically-pumped
quantum well vertical external-cavity surface-emitting laser
(VECSEL) with a Semiconductor Saturable Absorber Mir-
ror (SESAM) using the time series obtained when varying
the pump power. We unveil the quasiperiodic route to chaos
in the system by characterizing the Fourier spectra, the
attractors in phase space, and the Lyapunov exponents for
each temporal behavior observed: periodicity, quasiperiod-
icity, and chaos. Thus, we provide a complete description
of this experimental observation of the route to chaos in a
VECSEL-SESAM system. © 2024 Optica Publishing Group
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Nonlinear dynamics in semiconductor lasers has been widely
studied from a fundamental point of view because of their
widespread applications. Semiconductor lasers, such as edge-
emitting lasers, distributed feedback lasers, vertical-cavity
surface-emitting lasers (VCSELs), etc., are class B lasers
because the gain medium polarization can be adiabatically elim-
inated in Maxwell–Bloch laser equations, leaving the electric
optical field and population inversion as dynamical variables
[1,2]. This means that the only dynamics they manifest is
damped relaxation oscillations toward steady-state, and peri-
odic, quasiperiodic, and chaotic dynamics cannot be observed
[2–4]. Such complex dynamics, however, emerges when semi-
conductor lasers are subject to optical feedback [5–9], optical
injection [1,10–14], external modulation [15,16], spin-flip car-
rier dynamics [17,18], incorporating coupled cavities [19,20] or
saturable absorbers [21].

Recently, vertical external-cavity surface-emitting lasers
(VECSELs) have attracted considerable interest as versatile
and scalable high-power emitters [22] (for reviews see [23,24]).
From a dynamical point of view, VECSELs are class A lasers
because the photon lifetime inside the centimeter-long high-
finesse external cavity is larger than the carrier lifetime [25].
Their nonlinear dynamics has been studied in [26,27] for the
case of dual-wavelength operation and CW generation, periodic,
quasiperiodic, and chaotic oscillations have been demonstrated.
The external cavity provides great flexibility and VECSELs
incorporating a saturable absorber mirror (SAM) are capable

of generation ps and fs mode-locked pulses and serve as flexible
frequency combs sources [28] (for reviews, see [29,30]). In [31],
VECSELs with submonolayer quantum dot gain medium and
semiconductor saturable absorber mirror (SESAM) are demon-
strated experimentally to exhibit CW destabilization leading to
chaotic pulsations. In the same year, another group mapped
the different dynamical regimes of a 75-cm-long mode-locked
VECSEL with SESAM, reporting the observation of CW emis-
sion, fundamental mode-locking, mode-locking of a few modes,
double pulsing, and semi-stable 4th harmonic mode-locking
[32]. However, none of the aforementioned investigations has
experimentally reported or characterized the routes to chaos
for VECSELs with SAMs. In a broader context, experimental
investigation of the dynamical route to chaos holds significant
importance, as it allows to explore the underlying mechanisms
of chaos and nonlinear dynamics. This exploration is particu-
larly relevant in cases where controlling or suppressing chaos
becomes an objective. Furthermore, studying chaos from an
experimental perspective contributes to the development of
new techniques and methodologies for controlling and/or using
chaotic behavior in practical applications, including message
encryption and random number generation. In the specific case
of VECSEL-SESAM systems, they serve as ideal platforms for
such studies. The VECSEL-SESAM system’s versatility and
simplicity, together with its tunable parameters and controllable
elements in free space, provide an ideal choice for investigating
the dynamics of chaos in lasers and optical systems.

In this Letter, we analyze the temporal dynamics of an opti-
cally pumped quantum well VECSEL with SESAM using the
time series obtained while varying the pump power. We unveil
the quasiperiodic route to a chaotic regime in this system,
characterizing the emergence of new frequencies, estimating
its Lyapunov exponents and reconstructing the attractors in the
phase space. To our knowledge, this Letter corresponds to the
first experimental evidence and complete rigorous characteriza-
tion of a quasiperiodic route to chaos in VECSELs with SESAM.
Chaotic pulsations in a laser with a saturable absorber have been
reported in a number of much earlier studies on CO2 lasers with
a saturable absorber [33–36]. However, the underlying dynamics
of these lasers has been identified as Q switching behavior rather
than mode-locking as in our case for VECSELs with a SESAM.
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Fig. 1. Schematic representation of the VECSEL-SESAM setup.
The laser cavity is assembled in V shape, with the gain chip as a fold-
ing mirror. The semiconductor saturable absorber mirror (SESAM)
and Output Coupler (OC) act as ending mirrors. A microscope
objective is focusing the light into a high-speed photodetector and
sending it to an oscilloscope. The path of the output laser light is
displayed in red.

Furthermore, the routes to chaos in CO2 lasers are also of dif-
ferent nature: identified as homoclinic tangency to a periodic
orbit (Shilnikov) route to chaos [34,36] and periodic doubling
cascade [34].

The VECSEL V-shape cavity configuration and the detection
setup are schematically shown in Fig. 1. The VECSEL consists
of a semiconductor gain chip, a SESAM, and a dielectric mirror
with a reflectivity of R=99.5% and curvature of 100 mm radius
used as an output coupler (OC). The gain chip comprises 27
pairs of AlAs/GaAs quarter-wavelength layers forming a dis-
tributed Bragg reflector (DBR) deposited on top of a GaAs
substrate. There are eight In0.18Ga0.82As quantum wells (QWs),
each approximately 8 nm thick. These QWs are separated by
λ/2 GaAs barriers and, thus, positioned in antinode positions.
A window layer made of Al0.34Ga0.66As is grown to protect the
carrier diffusion toward the wafer surface. Finally, a protec-
tive layer consisting of a 15-nm-thick GaAs cap is deposited to
ensure the chip’s longevity and optimal performance. A com-
mercial SESAM, SAM-980-3-1ps from Batop Optoelectronics,
with a high reflection band from 940 to 1000 nm, has been uti-
lized. The laser cavity is assembled in a V-shape with the gain
chip as a folding mirror, and the total cavity length is almost
100 mm, at which the resonator is close to becoming unstable.
The temperature of the gain chip is stabilized at 9.5◦C by using
a Peltier element attached to the submount with the gain chip,
while the excess heat from the Peltier is removed by a water-
cooled aluminum block. The gain chip is optically pumped with
an 808 nm fiber-coupled diode laser at different pump powers.
The maximum average output power achieved by the VECSEL
with SESAM is 15 mW, emitting at 984.3 nm. In the detec-
tion branch, the output light is first directed to a microscope
objective and then coupled into a multimode optical fiber. The
light from the fiber is received by a high-speed photoreceiver
(Newport New Focus 1554-B, 12 GHz bandwidth) connected to
an oscilloscope (WavePro 804HD, 8 GHz of bandwidth and 20
GS/s sample rate), where the time series can be retrieved and
analyzed.

The mode-locking behavior of our VECSEL-SESAM system
has been fully characterized in [37]. For a pump power of 1.8
W the pulse width has been determined from the intensity auto-
correlation traces to be about 2.3 ps and the repetition rate from
the power spectrum to be about 1.45 GHz. By fixing the cav-
ity length very close to the stability threshold of the resonator
and increasing the pump power, Ppump, of the external laser, we
observe a transition from a pulsed periodic behavior (from 225

Fig. 2. Dynamical behavior of the VECSEL with SESAM. (a),
(b), and (c) Time series of the VECSEL with SESAM output when
the gain chip is pumped at different pump powers. There is a transi-
tion from periodic to quasiperiodic and chaos by increasing Ppump.
For clarity, the time series have been rescaled to have values between
0 and 1. (d), (e) and (f) Fourier spectrum analysis of the time series
when the gain chip of the VECSEL with SESAM is pumped at
different pump powers. The frequencies in the Fourier spectra are
normalized by the fundamental repetition rate associated with the
total length of the cavity, f0 = 1.48 GHz. (g), (h) and (i) Lorenz
maps constructed by using consecutive peak amplitudes from the
time series, named zn, zn+1, and zn+2. The maps show the transition
from a fixed point to the emergence of closed curves and from this
to a scattered set of points. This transition occurs when increasing
the pump power for the gain chip of the laser and corresponds to
the quasiperiodic route to chaos from a periodic pulsed output.

mW to 250 mW of pump power) to a quasiperiodic regime (275
mW to 400 mW of pump power). By increasing Ppump above
425 mW, the quasiperiodic regime leads to chaotic behavior of
the VECSEL with SESAM. The chaotic dynamics persists while
pumping up to 950 mW. However, the lasing power starts to drop
due to thermal rollover when the gain chip is pumped above 800
mW. The three top plots in Fig. 2 show the time series at three
different pump powers, displaying the periodic, quasiperiodic,
and chaotic behaviors mentioned above, respectively.

To confirm the route to chaos, the Fourier spectra have been
analyzed. For Ppump between 225 mW and 250 mW, the spec-
tra show the fundamental repetition rate of the laser (f0 = 1.48
GHz) and its harmonics (2f0, 3f0, 4f0, 5f0, and 6f0), as presented
in Fig. 2(a). For Ppump between 275 mW and 400 mW, the appear-
ance of other peaks can be observed as shown in Fig. 2(b). In
this case, two other frequencies have emerged: f1 = 9.58 GHz
and f2 = 0.78 GHz; or in terms of the fundamental frequency: f1
= 6.44 f0 and f2 = 0.52 f0. Considering the presence of f0, f1, and
f2, we confirm the quasiperiodic behavior of the output power.
For Ppump above 425 mW, multiple other peaks appear (which
are linear combinations of the frequencies mentioned before),
and some regions of the spectrum broaden, as seen in Fig. 2(c),
which are key features of temporal chaos.

To characterize further the periodic, quasiperiodic, and
chaotic behavior, we analyzed the Lorenz maps constructed



Letter Vol. 49, No. 2 / 15 January 2024 / Optics Letters 385

from tracking consecutive peak amplitudes, named zn, at dis-
crete time intervals. As expected for the periodic behavior, the
map in Fig. 2(e) shows one fixed point. Rather than a single
point, the data in Fig. 2(e) are spread in a small cloud, which is a
consequence of noise in the system: at a pump power of Ppump =

225 mW, the output power is approximately 0.6 mW, and at this
scale, noise becomes relevant during time series acquisition. In
the quasiperiodic regime shown in Fig. 2(f), the Lorenz map
exhibits closed curves associated with the intersection of the
tori characterized by the different frequencies observed in the
Fourier spectrum. Four closed curves are related to the highest
peak in the Fourier spectrum, which is 4f0, meaning that the
system is mostly ruled by four times the fundamental repetition
rate. Finally, in the chaotic regime, the points are all scattered in
the Lorenz map as depicted in Fig. 2(g).

While the Lorenz map simplifies the representation of the sys-
tem’s dynamics by reducing its continuous behavior to a discrete
data set of points, a phase space reconstruction provides a tool
to analyze the detailed and continuous dynamics, representing
all the variables and possible states of the system. Reconstruct-
ing the phase space is possible using the time series and the
time delay method [38,39]. The time delay method uses two
important parameters: the delay parameter τ and the embedding
dimension parameter dim. In brief, the embedding of the original
time series x(t) in the phase space means that consecutive values
x(t), x(t + τ), x(t + 2τ), . . . x(t + (dim − 1)τ), are represented as
a point in the phase space. Thus, by plotting the consecutive
values for the complete data set of the time series, we recon-
struct the phase space trajectories over which the system evolves
in time, as shown in Fig. 3. The vertical axis is the original time
series, and the horizontal axes represent the time series shifted
in time by τ, 2τ, and 3τ.

For the periodic case [Fig. 3(a)], the attractor is shown as a
closed orbit or limit cycle as expected, although the orbit is not
completely clean due to noise. In Fig. 3(b), the quasiperiodic
regime exhibits an attractor with well-defined and closed orbits.
This attractor possesses one bigger orbit and three smaller orbits,
related to the emergence of other frequencies in the system. Fig-
ure 3(c) displays the strange attractor for the case of deterministic
chaos, with different shapes for different initial conditions.

By tracking the peak amplitude, zn, of the time series as a
function of Ppump, a bifurcation diagram is obtained and shown in
Fig. 4(a). The transitions from periodic to quasiperiodic behav-
ior following the chaotic states are distinguished in this figure.
In contrast to the relatively constant peak amplitude observed in
periodic or quasiperiodic regimes, chaotic states display a broad
range of peak amplitudes due to the existence of a strange finite
attractor in the phase space that the system fully explores over
time. As shown in Fig. 4(a), for pump powers up to approxi-
mately 400mW, the system dynamics is periodic, i.e., the time
traces of the peak amplitude exhibit one or two amplitudes,
each associated with its respective error bar that is accounting
for the system noise. However, for pump powers above 400mW
the system is chaotic, i.e. the peak amplitude time traces form
continuous vertical lines covering certain continuous ranges of
amplitudes. For further confirmation of temporal chaos, the Lya-
punov exponents are rigorously calculated for each pump power.
The method to calculate Lyapunov exponents from a time series
consists of considering two points of similar amplitude at dif-
ferent times that represent two nearby initial conditions in phase
space. Thus, the difference between them is tracked as time
evolves [40]. The estimation of Lyapunov exponents is carried

Fig. 3. Reconstructed phase space, based on the time delay
method. For the three cases, the time delay τ is estimated using the
average mutual information algorithm, and the embedding dimen-
sion dim is estimated using the false nearest neighbor algorithm. (a)
τ = 4, dim = 4. (b) τ = 1, dim = 3 . (c) τ = 6, dim = 4.

Fig. 4. (a) Bifurcation diagram constructed from the amplitude
of the peaks as a function of Ppump. (b) Lyapunov exponents for
different Ppump.

out for different Ppump and the results are shown in Fig. 4(b),
where we observe once more the chaotic region of the system
characterized by positive Lyapunov exponents for Ppump between
400 mW and 950 mW.

In summary, we present experimental evidence and charac-
terization of the route to deterministic chaos in a VECSEL with
SESAM system based on the analysis of time series. We show
the emergence of new frequencies and the consequent broaden-
ing of the spectrum of the system that indicates a quasiperiodic
route to chaos when increasing the pump power of the VEC-
SEL. We construct the Lorenz maps for each of these behaviors,
showing the transition from a fixed point (periodic) to cross
sections of tori (quasiperiodic), followed by a strange attrac-
tor shape that suggests the loss of periodicity and the chaotic
nature of the attractor. By using the time delay method, we
reconstruct the attractors for each dynamical regime, displaying
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the strange attractor for temporal chaos. Furthermore, we obtain
the bifurcation diagram by tracking the peak amplitudes as a
function of pump power. Finally, we calculate the Lyapunov
exponents as a function of the pump power. Both the bifurcation
diagram and the Lyapunov exponents confirm beyond doubt
the deterministic temporal chaos observed in the output light
from VECSELs with SESAM. It is important to notice that the
threshold values for the different transitions shown in the bifur-
cation diagram depend directly on the temperature of the gain
chip. Moreover, the impact of the temperature and the optical
pump power on the laser dynamics are related. As the opti-
cal pump power increases, the temperature of the gain medium
also rises. Higher temperatures change the characteristics of
the gain medium, such as its spectral response and saturation
level. This change in the gain due to temperature can influence
the laser’s transition from periodic behavior to more complex
regimes, such as chaos. Furthermore, by maintaining the gain
medium at lower temperatures, the threshold for transition to
more complex behaviors decreases, making it easier to achieve
these complex states. These studies offer valuable insights into
the intricate temporal dynamics of VECSELs when combined
with SESAM. Beyond enhancing our understanding of these sys-
tems, the simplicity and versatility of such cavities make them
ideal platforms for investigating a wide range of chaos-related
phenomena, including synchronization and chaos control, or for
further exploration of practical applications such as message
encryption and random number generation in a straightforward
manner.
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