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We present a model that considers the non-linear and non-local facilitative and competitive interactions in arid
and semiarid climates. These two botanical processes are interconnected and operate at different spatial scales.
Seed dispersal is modeled as a diffusion process. We consider landscapes populated by a dominant species to
be isotropic.and homogeneous environmental conditions. We included the allometric factor in the modeling,
considering the age classes. We show that allometry tends to move the critical and tipping points towards a
low level of aridity. This alteration of aridity conditions can prevent desertification and thus avoid vegetation

collapse. Unlike other interaction redistribution models, we show that even in the absence of allometry, critical
and tipping points have a finite biomass. Consequently, a branch of low-biomass density is stabilized. Finally,
we show that the allometric factor reduces the range of symmetry-breaking instability and favors the formation
of homogeneous cover rather than vegetation patterns.

1. Introduction

Desertification and the loss of fertile soils are central phenomena
affecting ecology and the economy. By understanding how plants de-
velop, adapt, and survive in arid and semi-arid ecosystems, Scientists
can better contribute to developing future strategies to preserve or
utilize limited soil resources. These ecosystems’ landscapes are charac-
terized by densely populated regions that alternate with sparsely popu-
lated ones. This spatial distribution of vegetation, generally referred to
as a “vegetation pattern”, is an endogenous phenomenon that prevails
in many arid landscapes and is not exclusive to certain plants or soils.
It is now widely recognized in the field of plant ecology that instability
through symmetry-breaking can give rise to large-scale self-organized
periodic vegetation patterns [1-5]. The self-organization phenomenon
is universal and appears in many far-from-equilibrium systems, such as
chemistry, fluids, nonlinear optics, and laser physics [6-8]. Vegetation
patterns could be aperiodic, such as localized patches that can be iso-
lated and randomly distributed in space, creating a well-defined spatial
pattern [9-12] or labyrinth [13]. Spatial periodic and localized patterns
are a well-documented issue in various areas of the natural sciences,
ranging from population dynamics to chemistry and optics [14-16].

Unlike physicochemical systems, for which mathematical models
are derived from conservation laws. Biological and ecological systems
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suffer from the absence of physical first principles, which makes mathe-
matical modeling complex. Two main theoretical approaches have been
proposed in the literature. The first approach is based on non-local
interactions associated with facilitation and competition exerted by the
plants themselves, via their above-ground and below-ground parts, and
by seed dispersion [1,2] (see an overview, [17]). The second approach
is based on reaction—diffusion models that explicitly incorporate water
transport [18-23]. The range of these nonlocal interactions between
plants is generally a few tens of centimeters for grasses and a few
meters for shrubs and trees, whereas the vegetation pattern wavelength
measured can reach several tens of meters. When the degree of aridity
increases, i.e., when conditions for plant development become more
unfavorable, the average density of vegetation decreases, while the
wavelength of the pattern increases. Arid ecosystems show a direct
correlation between pattern wavelength and degree of adversity [1].

Populations of plants are made up of individuals of various sizes that
correspond to various age groups. It is essential to consider allometry in
the mathematical modeling of population vegetation. The relationship
between the elements of a plant, such as leaves, stems and roots, and
the way they develop proportionally to each other as the plant matures,
is called the allometric factor. A simple approach to this problem is to
link the different plant sizes to their individual biomass [24-29].
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The combined influence of facilitative and competitive interactions
on the self-organization of ecological communities is an active area of
research [30-33]. The first modeling approach based on the interaction
redistribution model considers facilitation to be nonlinear and non-
local, while competition affecting carrying capacity is considered to
be non-local but linear [1]. Later, a new strategy was proposed, con-
sidering that facilitation is non-local but linear and that competition
affects the mortality parameter of neighboring plants [26]. Another
difference is that in the [1] model, seed dispersal affects the growth of
the logistic term, whereas in the [26] model, seed dispersal is modeled
as an additive contribution to biomass growth. Both types of interaction
appear to act simultaneously, and the balance between them depends
mainly on the level of adversity of environmental conditions [33-
36]. They are, therefore, interconnected; if facilitation is non-linear,
competition should be too.

The aim of this article is to propose a model based on facilita-
tion and competition, assuming that these two non-local processes
are nonlinear. With these modifications, we show that even in the
absence of the allometric factor, the critical point associated with the
second-order critical transition that marks the onset of a hysteresis
loop occurs for finite biomass and not for zero biomass. Consequently,
a low-density vegetation branch is stabilized even without allome-
try. More importantly, we show that allometry can stabilize the arid
ecosystem by shifting the critical point associated with bistability to a
low level of adversity. Finally, we show that allometry can stabilize
the symmetry-breaking instability responsible for the emergence of
vegetation patterns.

2. Interaction redistribution model and crown-root allometry
2.1. Interaction redistribution model

The absence of physical first principles for biological systems in
general and ecological systems in particular makes mathematical mod-
eling difficult. Several continuous models in time and space have been
proposed in the literature. They can be classified into two types: in-
teraction redistribution nonlocal models [1,26] and reaction—diffusion
models [18-23]. In what follows, we adopt the approach based on
interaction redistribution nonlocal models [1,26]. These models con-
sider a landscape populated by a dominant species, neglecting genetic
variation between the plant species present in a landscape and ignoring
phenotypic differences. We modify the non-local model [26], by con-
sidering that the two facilitative and competitive interactions are both
non-linear and non-local functions of the biomass. The kinetic equation
describing the evolution of the biomass density u(r, ) at time ¢ and point
r=(x,y)is

a,u:u(l—u)mf—yumc+dV2u (€D)]

The functions m, and m, represent the facilitation and competition
feedback mechanisms, respectively. The parameter y models the ad-
versity and we call it the aridity parameter, which is mainly attributed
to unfavorable environmental conditions; note that the linear growth
rate of the biomass density in a given plot of land is m, — um,.
The seed dispersion is considered as a diffusive process describing
the large-scale behavior of a general non-local dispersion [26], d is
a diffusion coefficient, and V> = 9, + d,, is the Laplace operator
acting in the plane (x,y). In the absence of non-local interactions
between plants, i.e., m ; = m. = 1, we recover the well-known
paradigmatic model for the study of population dynamics, namely the
Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP) equation [28] as long
as u < 1.
The explicit forms of the non-local functions m . are
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where u = u(r,t) represents the biomass density (units: kg m=2) at
time 7. dr’ = dx'dy’ is the infinitesimal surface element. The m, . are
state functions that describe how the biomass distribution around the
plot at position r affects the growth and death rates of that plot. The
facilitative part m, involves mainly the effects generated by the aerial
part of the plant (crown); several aspects come into play: the accumu-
lation of nutrients in the vicinity of the plants, the provision of shade,
and the water balance in the soil [35-37]. Competitive interactions
m, operate mainly at the level of the root system (rhizosphere) for
the absorption of water and nutrients [34], and more generally, they
encompass all interactions affecting negatively the biomass growth [1].
o . measure the first nonlinear correction to non-local facilitation and
competition effects. For the sake of simplicity, we assume that the
kernels or influence functions ¢, . are Gaussian functions of r = (x, y)
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where n; . are the normalization constants associated with facilitative

and competitive interactions, respectively.

The modeling approach used here is based on two opposite feed-
backs: positive feedback associated with the facilitating interaction,
which operates at the level of plant size /,, tends to increase the total
biomass (activator) of the surrounding plants. On the other hand, the
negative feedback associated with the competitive interaction between
plants operates at the level of the size of the plant’s roots and tends
to inhibit the growth of the biomass (inhibitor) of surrounding plants
up to a distance /.. Field measurements of different plants have val-
idated this modeling approach: Combretum micranthum [27], Festuca
orthophylla [38] and alfa or Stipa tenacissima L. [39,40].

Let us now complete the Eq. (1) model taking into account allom-
etry, which considers age-class effects in monospecific subpopulations.
The allometric factor helps us to understand how the size of one part of
the plant changes in relation to another as the plant grows. In general,
this factor expresses the relationship between the different parts of a
plant, such as leaves, stems, and roots, and how they develop in propor-
tion to each other as the plant grows; for example, it could describe how
the plant crown depends on the mass of the plant. An individual plant
exerts facilitating and competitive influences on neighboring plants. As
they grow, the radius of the plant root and crown increases. Compared
with the size of their crown, plants spread their roots over a consid-
erable surface area to absorb water and nutrients and survive harsh
climatic conditions. A young plant covers a relatively small territory
compared to a mature plant. To account for the distance dependence
of interaction lengths between different growth stages, the effective
interaction ranges associated with facilitation and competition will
depend on biomass density. The most common allometric relationships
for plant growth [24-29] are as follows.

P
Lfiyc(l',l) =Cre <u(:’l)> B @

s

where p is the allometric factor and ¢,, and ¢, respectively, are the
lengths of the competitive and facilitative interactions brought on by
the crown and root sizes of mature plants with a biomass density u,.

2.2. Criticality and tipping points

To determine the critical point above which the system exhibits
a bistable behavior between homogeneous covers, we first determine
the homogeneous steady states, u,, solutions of Eq. (1). By taking
into account nonlocal interactions Egs. (2), the Kernels Egs. (3), and
the allometric relationships for plant growth Eq. (4), we obtain the
homogeneous steady states: the trivial solution u, = 0 presents a
bare state, a state entirely devoid of vegetation, and obviously exists
for all parameter values. The other uniform branches of the solutions
representing uniform plant cover obey the equation

u=(—uy)exp [(wf - wc)ui("“)] 5)
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Fig. 1. Criticality and tipping points. (a) Coordinate the tipping points according to the effective cooperativity o = ®; — w.. (b) Coordinates of the critical point as a function of

the allometric factor corresponding to the plot of u, and 7. expressions given by Egs. (7).

For o; = o,, the homogeneous steady states are determined by the
straight line u; = 1 — . When 0 < p < 1, the plant population becomes
monotonous and decreases until u = 0 at the point x = 1. The logistic
term (1 —u,) in Eq. (5) guarantees that the physically accepted biomass
lies within the interval [0, 1].

At the onset of bistability, there is a critical point where biomass
as a function of aridity has an infinite slope. The vicinity of the critical
point is characterized by a critical slowing down. The coordinates of the
critical point must satisfy two conditions: du/du, = 0 and 0%u/0u? = 0.
The first condition leads to

200+ Dy — o)1 —u, ui =1 (6)

This condition determines the coordinates of the switching or tipping
points. There are no simple analytical solutions of Eq. (6) for p > 0.
The equilibrium biomass plot as a function of the allometric factor is
shown in Fig. 1. This figure indicates that for any p > 0, there exist
always two tipping points above the critical point. This is in agreement
with previously published interaction-redistribution models [26-28].
However, for p = 0, the coordinate of the tipping point solutions of
Eq. (6) are 2u,, = 1 + Vo —2, where o = o — @, is referred to as
the effective cooperativity. There exists a wide region of parameters
where two tipping points exist, namely when o > 2, as shown in Fig. 1.
When o < 2, then x,, < 0 becomes unphysical since the density is a
positively defined quantity. In this case, there is no tipping point, and
the ecosystem operates in a monostable regime.

The second condition 0%4/du? = 0 together with Eq. (6) allows
us to determine the coordinates of the critical point associated with
bistability for any p:

2p+1 1
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The allometric factor controls the coordinates of the critical point
associated with the second-order critical transition, which marks the
onset of a hysteresis loop. Plots of the critical expressions associated
with the biomass u, and the corresponding aridity parameter y, as a
function of the allometric factor p are shown in Fig. 1. This figure
indicates that as the allometric factor increases, the critical aridity
decreases while the critical value of biomass increases.

This result is essential for the vegetation model approach Eq. (1).
An important aspect is that the critical point is no longer on the
aridity axis, as the critical point u, = 1/2 for p = 0 is finite u, #
0. This contrasts strongly with previous work based on interaction-
redistribution models [26-28]. In other words, even in the ideal case
of identical plants with no age variation (p = 0), the model Eq. (1)
predicts the appearance of a critical point at finite biomass density, as
shown in Fig. 1(a). If the critical point lies on the x-axis at zero biomass,

then, facilitation and competition interactions become negligible at
that point, and edaphic factors should not influence the space-time
dynamics of ecosystems operating near a critical condition. Fig. 1(b)
shows the critical aridity parameter as a function of the allometric
factor. As the allometric factor p increases, the critical biomass point
increases, and the corresponding critical aridity parameter decreases.

After characterizing the criticality, we examine how the allometry
affects homogeneous covers. The homogeneous steady state solutions
Eq. (5) are plotted in Fig. 2 for different values of the allometric factor.
The aridity parameter u controls the stability between the uniform
trivial solution u, and the spatially homogeneous (non-trivial) states, or
between two uniform homogeneous states, u is unstable for 0 < u < 1,
and stable for 4 > 1. It can be seen that all the curves cross the
bifurcation point (1, = 0, # = 1), which is the point where the solution
uy changes the stability.

Note that even in the absence of the allometry p = 0, a branch of
vegetation at low density is stabilized, as shown by the red curve in
Fig. 2(a). When the allometric factor is increased, the critical point
and the tipping points are shifted towards a regime of low aridity
conditions as shown in Fig. 2(b,c). In this case, the transition from high
density to low becomes less abrupt as the allometric factor increases,
as shown in Fig. 2(c). Taking age classes into account may, therefore,
show that vegetation is more robust than previously thought against
collapse [41-43].

2.3. Symmetry-breaking instability and vegetation patterns

We are now investigating the conditions under which spatially uni-
form vegetation distributions become unstable under inhomogeneous
perturbations. For this purpose, we linearized Eq. (1) around the high
and small density homogeneous steady states u,, and we consider small
deviations from these states in the form of exp(447+iq-r) withr = (x,y)
and the wavevector q = (g, q,). The dispersion relation reads

22,20
2p+1 s
Ay = s s () 4 ub (1= u)(1+ 20 puy)e”

2p+1 Pi2P
— pellHectsus 1+ u‘s"“(l +2wu)e” 4 | —dg* (8)
This dispersion relation determines the critical point associated with
symmetry-breaking instability provided that 4,(¢r) = 0 and 9,4,(¢r) =
0. In the Fourier space, unstable modes are characterized by a finite
range of wave numbers excluding the origin. This range must exclude
all long wavelengths (short wavenumbers) corresponding to quasi-
uniform distributions, and very short wavelengths (long wavenumbers)
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Fig. 2. Homogeneous steady states as a function of the aridity parameter for different values of the allometric factor p. The red curve corresponds to the branch of law-biomass
density that exists even in the absence of an allometric factor (p = 0). The bare state u, corresponding to zero biomass density is indicated in blue. Solid lines indicate stable
branches and dotted lines indicate unstable branches. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

corresponding to inhomogeneities smaller than the interaction ranges.
They ensure that fluctuations of arbitrarily small and large wavelengths
are damped. At the threshold of the symmetry breaking instability, the
eigenvalue 1,(¢r) = 0 and its first derivative must vanish for a finite
intrinsic wavelength A, = 27/g;. When neglecting the seed dispersion
(d = 0), and by replacing u by (1 — u,) explwu’”*"], the most unstable
wavenumber g is

Iry2
| log [( L0 +2qu)]

qr ©)
2 2p
(12 = P2y
The corresponding wavelength is
2-2
Ar = L, < (10)

I logl(#)2(1 + 20 )]
This Turing-type symmetry-breaking instability generates vegetation
patterns characterized by the critical intrinsic wavelength A;, which
is determined by the lengths of the facilitative and competitive in-
teractions, the effective cooperativity, and the allometric factor. It
is an intrinsic property of the system that is determined solely by
the dynamical parameters rather than by geometrical factors and/or
boundary conditions. The threshold associated with spatial instability
is a solution of

qz 2 uip q% 3 2p

u’;(l —up)| (1 + 20uy) exp[— T ] —exp[— r ]

Let us first consider the symmetrical case where the cooperativities
associated with facilitation and competition are equal, i.e., o, = @,.
In this case, the effective cooperativity is @ = 0, and the homoge-
neous equilibrium states are u, and y = (1 — u,). Allometry does not
affect homogeneous cover, and biomass decreases monotonically until
u = 1, where the state of uniform cover coincides with the state of
zero biomass u,. For u > 1, only the bare state u, becomes linearly
stable. Taking spatial fluctuations into account, the linear stability
analysis shows that the homogeneous cover becomes unstable in a
finite range of aridity level (u;; < p < ppy), as shown in Fig. 3.

At both thresholds associated with the symmetry-breaking instability,
the most unstable wavelength is the same. In the asymmetrical case
where the nonlinearity associated with facilitation is different from that
of competition, i.e., @, # w,, the wavelength at the two symmetry-
breaking instabilities is not the same Ay, # Ap, as shown in Fig. 4.
The range of symmetry-breaking instability indicated by the red dashed
lines decreases with the allometric factor p, as shown in Fig. 4(b).
The balloons of unstable spatial modes shown in Fig. 4(a) shrink as
the allometric factor increases. We, therefore deduce, that taking into
account the effects of age classes predicts a more robust homogeneous
cover.

3. Conclusions

We have proposed a mathematical model in which facilitation and
competition are non-local and non-linear functions since the two pro-
cesses are interconnected. Seed dispersal is considered like an additive
contribution to biomass growth in the form of a diffusive process
describing the large-scale behavior of non-local dispersion [26]. Unlike
the previous model where competition affects carrying capacity [1],
we have considered that competition affects the aridity parameter
as in [26], but as a non-linear function of the biomass density. We
neglected genetic variation between plant species and considered land-
scapes populated by a dominant species. Isotropic and homogeneous
environmental conditions are assumed. We have included the allomet-
ric factor, which takes age classes into account. With these modifi-
cations, we have shown that the spatiotemporal behavior of vegeta-
tion patterns in arid and semi-arid landscapes is strongly affected by
nonlinear plant-plant interactions. The model Eq. (1) tends to show
that:

+ A non vanishing allometric factor tends to shift the critical point
associated with the second-order critical transition to a low arid-
ity parameter and can prevent vegetation collapse in arid ecosys-
tems.

» The critical point associated with bistability possesses a finite
biomass, even when neglecting the allometry effects. As a result,
the low-density homogeneous cover branch exists. This contrasts
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with previous non-local models of interaction redistribution [26,
271.

+ The allometric factor stabilizes the symmetry-breaking instability
and reduces the instability range.

We have limited our study to a linear regime; in the near future, we
plan to present (i) Non-linear analysis by drawing all branches of the
periodic or localized vegetation patterns solutions of Eq. (1). (ii) Nu-
merical simulations will be carried out using continuation algorithms
to characterize vegetation patterns and compare them with theoreti-
cal results. (iii) Realistic model parameterization based on available
experimental data.
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