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Abstract
Systems of coupled nonlinear oscillators often exhibit states of partial synchrony in which some of
the oscillators oscillate coherently while the rest remain incoherent. If such a state emerges
spontaneously, in other words, if it cannot be associated with any heterogeneity in the system, it is
generally referred to as a chimera state. In planar oscillator arrays, these chimera states can take the
form of rotating spiral waves surrounding an incoherent core, resembling those observed in
oscillatory or excitable media, and may display complex dynamical behavior. To understand this
behavior we study stationary and moving chimera states in planar phase oscillator arrays using a
combination of direct numerical simulations and numerical continuation of solutions of the
corresponding continuum limit, focusing on the existence and properties of traveling spiral wave
chimeras as a function of the system parameters. The oscillators are coupled nonlocally and their
frequencies are drawn from a Lorentzian distribution. Two cases are discussed in detail, that of a
top-hat coupling function and a two-parameter truncated Fourier approximation to this function
in Cartesian coordinates. The latter allows semi-analytical progress, including determination of
stability properties, leading to a classification of possible behaviors of both static and moving
chimera states. The transition from stationary to moving chimeras is shown to be accompanied by
the appearance of complex filamentary structures within the incoherent spiral wave core
representing secondary coherence regions associated with temporal resonances. As the parameters
are varied the number of such filaments may grow, a process reflected in a series of folds in the
corresponding bifurcation diagram showing the drift speed s as a function of the phase-lag
parameter α.

1. Introduction

Coupled oscillator systems have played a fundamental role in our understanding and modeling of physical
systems since the seminal work of Huygens [1, 2]. More recently, coupled oscillator systems have been used
to model certain aspects of neural activity in the brain [3–5], collective dynamics of cilia carpets coupled by
hydrodynamic interaction [6, 7], as well as oscillatory and excitable media such as those modeling chemical
oscillations [8–11]. In all these examples the key question of interest is the extent of synchronization, both in
frequency and in phase, within the oscillator population and its dependence on the oscillator properties and
the nature of their coupling. Systems of two coupled oscillators are well described by the Adler equation [12]
for the phase difference between the oscillators, but substantial progress is possible in the limit of an infinite
number of oscillators, both with all-to-all coupling and with sparse coupling corresponding to different
types of oscillator networks. The theory distinguishes between a phase description, in which the amplitude
dynamics are adiabatically eliminated, and an amplitude-phase description that is required for highly
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nonlinear systems. In either case one tends to find clusters of synchronized oscillators, that is, states of partial
synchrony. The theory has numerous key applications, ranging from coupled laser arrays [13] used to
maximize power output to the working of the electrical power grid [14]. In each case the identification of the
clusters, their number and extent, as well as their stability, represent a major challenge to our understanding
of large arrays of coupled oscillators.

If the oscillators are identical and interact attractively, one may expect that all will ultimately oscillate in
synchrony. That this is not inevitable was pointed out in 2002 by Kuramoto and Battogtokh [15], who
discovered a remarkable state of partial synchrony in a system of coupled identical phase oscillators, in which
a subset of the oscillators synchronizes but the remainder remains incoherent. Subsequently called chimera
states [16], these states of partial synchrony have been studied by numerous authors in recent years [17–22].
In the simplest case, the oscillators are on a ring and coupled nonlocally via a periodic coupling function. In
the presence of a phase lag α in the coupling, the resulting coherent region may drift through the system
[23], with oscillators at the leading edge kicked into synchrony while those at the trailing edge fall out of
synchrony, thereby maintaining, at least approximately, a constant size of the traveling coherent region. The
dynamics of these synchronization and desynchronization fronts thus provide a key to the understanding of
the formation of traveling chimera states and their stability properties.

Chimera states are also found in systems of nonidentical oscillators. While less surprising, the resulting
states of partial synchrony exhibit similar properties, and in particular motion, whenever the parameter α is
nonzero. We distinguish this type of system, in which motion arises spontaneously, from situations in which
the motion is forced, for example, via an asymmetrical coupling function [24].

While studies of one-dimensional coupled oscillator arrays are common, similar studies of two- or even
three-dimensional oscillator arrays are less frequent. In planar arrays of identical oscillators, one tends to find
incoherent cores, surrounded by a rotating coherent spiral wave [25–27] somewhat reminiscent of the
rotating spiral waves familiar from oscillatory or excitable media [28, 29]. One may also find coherent cores
embedded in an incoherent background [30, 31], although stripe and spot patterns are also possible [32]. In
some cases, these may become destabilized via a Hopf bifurcation, leading either to standing oscillating
chimera states or to traveling structures as predicted by abstract theory [33]. Three-dimensional arrays
support a greater variety of states, most of which are only known via direct numerical simulations [34].
Remarkably, in the special case of a sinusoidal coupling function it is possible to establish the existence and
stability properties of such states semi-analytically [31, 35, 36], and in particular to predict the onset of
spontaneous motion and even the stability of the resulting moving structures. This is so even though the
transition from stationary to time-dependent chimeras is accompanied in general by the appearance of
complex filamentary structures within the incoherent core representing secondary coherence regions
associated with temporal resonances between the spiral wave frequency and the spatial translation. These
structures, first observed in [35], are a property of quasiperiodic states as explained in [31], and form
regardless of whether this state is a standing oscillation as in [31, 35] or, as shown here, a traveling chimera.
We show here that the properties of these resonance structures are responsible for much of the remarkable
complexity of the associated bifurcation diagram.

Most of the above results have been obtained using Kuramoto’s model of phase-coupled oscillators,
although some recent work has been devoted to more realistic oscillator systems, among which coupled
Stuart-Landau oscillator systems are most popular [37]. However, arrays of both coupled van der Pol
oscillators [38] and coupled FitzHugh–Nagumo oscillators [10] have also been studied from this point of
view. These models extend the work on the Kuramoto model to include amplitude dynamics in addition to
the phases, and in the case of the van der Pol oscillators, to coupled relaxation oscillators, i.e. to oscillators
with a strongly nonlinear phase evolution, as well as to excitable systems.

From an experimental perspective, there is a great deal of evidence for the existence of chimera states in
one-dimensional arrays of coupled oscillators [8, 11, 39–42], while two-dimensional oscillator arrays (not to
mention three-dimensional arrays) remain poorly studied. To the best of our knowledge, the only example of
their laboratory realization involves nonlocally coupled Belousov–Zhabotinsky chemical oscillators [8, 9]. In
these experiments, spiral wave chimeras were indeed observed, but usually in the form of moving structures.
In some cases, this motion resembles a two-dimensional random walk that may be associated with finite-size
fluctuations by analogy with one-dimensional systems [43]. On the other hand, spiral wave chimeras with
persistent drift motion were also reported. Motivated by the latter observation, we seek the simplest model
for studying such drifting structures, and one that allows a detailed study of the emergence and stability
properties of uniformly drifting spiral wave chimeras and their parameter dependence, as well as their
relationship to other synchronization patterns in the system.

Since the mathematics behind traveling partially coherent states in more realistic systems involving both
amplitude and phase dynamics remains largely beyond current reach, we revisit here the Kuramoto model,
within which traveling structures can be simulated and, depending on the coupling function adopted,
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computed semi-analytically, at least in the continuum limit described by the Ott–Antonsen ansatz [44]. It is
important to realize that for identical oscillators the Ott–Antonsen approach precludes a simple
self-consistent description of traveling chimera states (see [45, lemma 2] and [46, section 4]). However, this
is no longer the case when the oscillators are nonidentical, and in this paper we therefore assume that the
oscillator frequencies are drawn from a Lorentzian frequency distribution of width γ. Thus γ becomes an
additional (and key) parameter of the system that manifests itself as a damping term in the continuum
description.

In recent work [47] we have studied a discrete two-dimensional oscillator system of this type with a
nonlocal coupling function and showed that this system is able to support bound states of two
counter-rotating spiral waves with incoherent cores that drift either rigidly or exhibit more complex
meandering motion. The specific example considered in [47] was a two-dimensional array of phase
oscillators {θjk(t)}Nj,k=1 evolving according to

dθjk
dt

= ωjk −
1

|Bσ ( j,k) |
∑

(m,n)∈Bσ( j,k)

sin
(
θjk − θmn +α

)
. (1)

This equation implies that each oscillator (j, k) interacts only with its neighbors within the circular region

Bσ ( j,k) =
{
(m,n) : (m− j)2 +(n− k)2 ! σ2N2

}
,

where the distancesm− j and n− k are considered mod N and σ ∈ (0,1/2) is the relative coupling radius.
The interaction is normalized by the number of points |Bσ( j,k)| in the region Bσ( j,k) and involves a phase
lag parameter α ∈ [0,π/2). In addition, it is assumed that the oscillators are heterogeneous in the sense that
their natural frequencies ωjk are drawn randomly and independently from a Lorentzian distribution

g(ω) =
γ

π

1

γ2 +ω2
(2)

of width γ> 0.
The system (1) was found to exhibit a large variety of different moving spiral wave chimeras associated

with the complex spatial structure of their incoherent cores, as summarized in figure 1 for two different
values of the phase lag parameter α. In particular, these states exhibit staggered coexistence as a function of α
(see below), behavior that is associated with different numbers of crescent-shaped filaments in the core of a
moving spiral, hereafter referred to as fingerprint patterns (see figure 1(b–d)). Similar slanted snaking
bifurcation diagrams have been observed for spatially localized states in both fluid and optical
systems [48–52] and are a consequence of the nonlocal nature of the system (1). As a result the relationship
between the presence of stable, albeit moving chimera states and the system parameters is exceedingly
intricate and remains to be elucidated.

In this paper we are able to identify, for the first time, the main prerequisites necessary for the emergence
of moving spiral wave chimeras of different types and to establish their stability properties. To this end we
formulate a version of problem (1) that is tractable semi-analytically, and employ extensive numerical
continuation to follow distinct states through parameter space, together with their stability properties. This
approach builds a picture of the parameter space of the problem, enables us to identify the different chimera
states that are possible, and ultimately allows a detailed understanding of the system. Our results are
corroborated using extensive direct numerical simulations of this system and provide a roadmap for
understanding more realistic coupled oscillator systems.

2. Results

The model (1) is a particular case of a more general nonlocally coupled system

dθjk
dt

= ωjk −
(
2π

N

)2 N∑

m,n=1

Gjk;mn sin
(
θjk − θmn +α

)
(3)

with

Gjk;mn = G

(
2π ( j −m)

N
,
2π (k− n)

N

)
,
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Figure 1.Moving spiral wave chimeras (two left columns) in the discrete oscillator array (1) and their continuum limit
counterparts (two right columns) determined from equation (6). The arrows indicate the drift direction. Panels (a) and (e) focus
on the behavior of the phase near a single spiral core while panels (b) and (f) present snapshots of the corresponding phase θjk(t)
of the full array of oscillators, revealing the presence of a pair of incoherent spiral cores surrounded by a coherent region in the
form of a rotating spiral. The pattern moves in the y direction at a constant speed. Under appropriate conditions, the incoherent
cores break up into nested filamentary structures (panels (b) and (c)). Panels (c) and (g) show snapshots of argz(x,y, t) while
panels (d) and (h) show snapshots of |z(x,y, t)|, a representation that eliminates the global spiral wave frequencyΩ and focuses
on the fingerprint structure of their spiral cores. The continuum limit evidently provides an accurate description of the discrete
system, even for a moderate number of oscillators. The supplementary material [53] provides an animation of the state in panels
(c) and (g). Parameters: N= 128, γ= 0.01, σ= 0.25 with α= 0.6 (top row) and α= 0.7 (bottom row).

where G(x,y) is a non-constant coupling function, which is 2π-periodic with respect to x and y and satisfies
the symmetry conditions

G(−x,y) = G(x,−y) = G(−x,−y) = G(x,y) (4)

and the normalization condition ˆ π

−π

ˆ π

−π
G(x,y)dx dy= 1.

Indeed, if we assume

G(x,y) =

{
1/
(
π3σ2

)
for x2 + y2 ! π2σ2,

0 for x2 + y2 > π2σ2 (5)

in the square domain (x,y) ∈ [−π,π]2, then equation (3) reduces to model (1). The resulting coupling
function G(x,y) is shown in figure 2(a).

It is well-known [19, 54, 55] that in the continuum limit N→∞ the long-term dynamics of equation (3)
settle down on the Ott–Antonsen manifold parametrized by a complex-valued function z(x,y, t). This
function is the local order parameter at the position (x, y) at time t and quantifies the synchronization degree
of oscillators θjk(t) with (−π + 2π j/N,−π + 2π k/N)≈ (x,y). Importantly, in the case of Lorentzian-
distributed natural frequencies ωjk the evolution of z(x,y, t) is described by the integro-differential equation

dz

dt
=−γz+ 1

2
e−iαGz− 1

2
eiαz2Gz, (6)

where the damping parameter γ> 0 is determined by the width of the distribution in equation (2) and

(Gz)(x,y, t) =
ˆ π

−π
dx ′
ˆ π

−π
G(x− x ′,y− y ′)z(x ′,y ′, t)dy ′

is a convolution-type integral operator with the coupling function G(x,y) from (3). The above observation
allows us to use equation (6) as a mathematical tool for investigating the properties of moving spiral wave
chimeras in the system (3).
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Figure 2. Two examples of coupling functions considered in this paper. (a) Top-hat function with σ= 0.4. (b) The trigonometric
function (10) with A= 1.63 and B= 2.62, corresponding to the leading order Fourier approximation of the top-hat function
with σ= 0.4.

The discrete system (3) is invariant under discrete translations in two directions, while the continuum
description (6) is invariant under continuous translations. Both are in addition invariant with respect to the
group D4 of rotations and reflections of a square inherited from the coupling function. The problem (6) is
therefore invariant under the group T2+̇D4, the semidirect product of the two-torus of translations and the
discrete group D4. The solutions of this problem may respect certain subgroups of this symmetry group or
have no symmetry. This observation applies to both stationary and drifting states. In particular, every
uniformly drifting state satisfying equation (6), including the simplest moving spiral wave chimeras,
corresponds to a solution of the form

z(x,y, t) = a
(
x− sxt,y− syt

)
eiΩt, (7)

where (sx, sy)T ∈ R2 is the velocity vector and Ω ∈ R is the collective phase frequency. In the case sx = sy = 0,
the pattern is called motionless or stationary. If, in addition, we also have Ω= 0, the corresponding pattern is
called static.

From the symmetry conditions (4) it follows that among all possible moving solutions (7) there are two
special solution types related to these symmetries: solutions of the form

z(x,y, t) = a(x,y− st)eiΩt (8)

with s ∈ R and a(−x,y) = a(x,y) (hereafter Z2 symmetry) corresponding to uniform motion in the y
direction, and solutions of the form

z(x,y, t) = a(x− st,y− st)eiΩt (9)

with s ∈ R and a(y,x) = a(x,y) (hereafter Z̃2 symmetry), corresponding to uniform motion along a
diagonal. We refer to these solutions as symmetric spiral waves but distinguish them by their symmetries Z2

and Z̃2 under reflection. Note that rotations by 90◦ rotate a Z2-symmetric state into another Z2-symmetric
state, and similarly for Z̃2-symmetric states.

2.1. Top-hat coupling function
The bifurcation diagram for Z2-symmetric spiral wave chimeras (8) with the top-hat coupling function (5)
with σ= 0.4 is shown in figure 3. The diagram shows the speed s as a function of the phase lag parameter α,
obtained by inserting ansatz (8) into equation (6), discretizing the resulting equation on a square grid with
128 nodes in x and y directions and using an arc-length continuation scheme and a standard Newton solver
to follow the branch of equilibria of the resulting system of 128× 64 nonlinear equations. (Note that owing
to the reflection symmetry of a(x,y), the number of equations is reduced by half.) This procedure allows us
to compute both stable and unstable solutions; in all cases, the predictions of this approach were confirmed
using direct numerical simulations of the discrete system (1).

Figure 3 identifies four key regions in this diagram with different behavior. Enlargements of regions I and
II are included in the figure together with solution snapshots at the locations labeled in the bifurcation
diagram. These depict |z| in the left half of each panel and arg z in the right half and show that the sequence
of folds in regions I and II is associated with an increasing number of filamentary structures in the spiral

5



New J. Phys. 25 (2023) 103023 M Bataille-Gonzalez et al

Figure 3. The speed s of symmetric spiral wave chimeras moving in the y direction versus the phase lag parameter α in
equation (6) for the top-hat coupling function with σ= 0.4 and γ= 0.01. Four regions of distinct behavior are indicated, two of
which are enlarged in the figure and accompanied by snapshots of the solutions at the locations indicated. The snapshots show the
whole solution, with |z| in the left half of each panel and arg z in the right half. The supplementary material [53] shows an
animation indicating how the solution profile changes along the solution branch in the top panel starting from α= 0 and
confirms that the folds in regions I and II are associated with the successive addition of new filamentary structures in the spiral
cores in a behavior that resembles slanted snaking. Solid (dashed) lines indicate stability (instability).

cores as α increases. In both regions the bifurcation diagram resembles slanted snaking [48–52]. As discussed
below, these filamentary structures are a consequence of the two-frequency nature of the traveling chimera
state: its global oscillation frequency Ω and its translation frequency determined by the speed s.

Figures 4 and 5 show the corresponding behavior in regions III and IV. The former shows the gradual
approach of the two cores to one another along the branch, resulting in the presence of filaments that extend
across the whole domain beyond the location indicated by the red star, while the latter shows the gradual
onset of the translation motion from α= 0 until α= 0.4 where the speed s is large enough for prominent
filaments to be present in the spiral cores. Finally, figure 6 shows the effects of decreasing the top-hat radius σ
on the behavior in region I. We observe that as σ decreases so does the corresponding value of α resulting in
smaller speed s and a smaller spiral core, all for a given number of core filaments. Overall, however, the
behavior remains qualitatively unchanged.
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Figure 4. Detail of region III of figure 3 showing the coalescence of two spiral cores and the creation of an extended filament. The
bottom panels present the cross section of |z| at y= 0.

Figure 5. Detail of region IV of figure 3 showing the onset of motion for two-core spiral chimeras as α increases from zero and the
subsequent development of filamentary structures in the spiral cores at larger speeds s. The black arrows indicate the direction of
propagation.

We remark that even with a relatively small number of discretization points the time needed to calculate
the diagram shown in figure 3 turned out to be extremely long (ca. 6 weeks on a dedicated computer with
large RAM). In contrast, the results we are going to describe in the next section were obtained much more
rapidly (ca. 3–4 days on a laptop with a double number of discretization points in each direction). This
remarkable computational speed-up was achieved thanks to the use of a special analytical technique for
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Figure 6. Detail of region I of figure 3 for different values of the coupling radius σ. Increasing σ displaces the branch to larger α
resulting in larger speed s and a larger spiral core.

calculating periodic orbits in the Ott–Antonsen manifold proposed in [56] by one of the authors of this
paper.

2.2. Trigonometric coupling function
The results for the top-hat coupling function (5) illustrate some of the complexities inherent in the present
problem. Since our ultimate goal is to understand the properties of spiral wave chimeras in the case of
general coupling functions G(x,y), we need a deeper analytical approach to this problem. This becomes
possible if we limit ourselves to a narrower class of D4-symmetric functions of the form

G(x,y) =
1

(2π)2
(1+A(cosx+ cosy)+Bcosxcosy) , (10)

where A and B are real parameters such that A2 +B2 ̸= 0. This expression arises as a truncation of a Fourier
series representation of the coupling function G(x,y), assumed to be an absolutely integrable 2π-periodic
function:

G(x,y) =
∞∑

n,m=−∞
ĝnme

i(nx+my), (11)

where

ĝnm =
1

(2π)2

ˆ π

−π

ˆ π

−π
G(x,y)e−i(nx+my) dx dy.

Moreover, if this function satisfies (4), then

ĝ−n,m = ĝn,−m = ĝ−n,−m = ĝn,m.

In addition, if its integral is normalized to the identity,

ˆ π

−π

ˆ π

−π
G(x,y) dx dy= 1,

then ĝ0,0 = 1/(2π)2. The simplest non-constant truncation of (11) is obtained on keeping terms with indices
n,m= 0,±1 only, leading to (10) with

A= 8π2ĝ1,0, B= 16π2ĝ1,1.
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Figure 7. The parameters A and B in equation (10) corresponding to the leading order Fourier approximation to the top-hat
coupling function (5) with different σ.

For example, if we calculate the Fourier coefficients ĝ1,0 and ĝ1,1 of the top-hat coupling function (5) and
insert them in the above formulas, we obtain the fit σ (→ (A(σ),B(σ)) shown in figure 7.

In the following we study the resulting spiral chimeras as a function of the coefficients A and B in the
relevant range revealed by figure 7, together with their stability properties, starting with stationary two-core
chimeras for α= 0. The damping parameter γ is fixed at γ= 0.01.

2.3. Static patterns
For α= 0 equation (6) is variational and all chimera states are therefore time-independent and motionless,
and correspond to equilibria of the form

z(x,y, t) = a(x,y) .

In section 3.1 below, we construct the self-consistency equation determining these equilibria and explain
how we solve it. In addition, we describe how the linear stability analysis of such equilibria can be performed.
Using these mathematical tools, we calculate bifurcation diagrams for various values of the coupling
parameters A and B. Specifically, we show that all static solutions of equation (6) with the coupling
function (10) and α= 0, including two-core chimeras, have the form

a(x,y) =
w(x,y)

γ+
√
γ2 + |w(x,y) |2

, (12)

where

w(x,y) ∈ Span{1,cosx,cosy, sinx, siny,cosxcosy,cosx siny, sinxcosy, sinx siny} .

Patterns with symmetry under the reflection x→−x, i.e. with a(−x,y) = a(x,y), are Z2-symmetric, and are
described by a subset of the admissible functions w(x,y), namely

w(x,y) ∈ Span{1,cosx,cosy, siny,cosxcosy,cosx siny} ,

while patterns satisfying a(y,x) = a(x,y), i.e. with reflection symmetry in the diagonal, are Z̃2-symmetric,
and are described by functions w(x,y) of the form

w(x,y) ∈ Span{1,cosx+ cosy, sinx+ siny,cosxcosy, sinx siny} .

Among these states we distinguish between fundamental states that are independent of the parameter B
in (10), and compound states that depend on B. The former include the following:

(a) Completely incoherent state

a(x,y) = 0.

9
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(b) Partially coherent uniform state

a(x,y) =
√

1− 2γ, γ < 1/2.

(c) Partially coherent splay state

a(x,y) = qeiy, q ∈ (0,1) .

(d) Generalized antiphase state

a(x,y) =
p+ iq siny

γ+
√
γ2 + p2 + q2 sin2 y

, p" 0, q> 0,

called an antiphase state when p= 0.
(e) Planar state

a(x,y) =
p+ rcosy+ iq siny

γ+
√
γ2 +(p+ rcosy)2 + q2 sin2 y

with p, r,q> 0.
(f) Four-core spiral pattern

a(x,y) =
q(cosx+ i siny)

γ+
√
γ2 + q2

(
cos2 x+ sin2 y

) , q> 0.

(g) Generalized four-core spiral pattern

a(x,y) =
pcosx+ rcosy+ iq siny

γ+
√
γ2 +(pcosx+ rcosy)2 + q2 sin2 y

with p, r,q> 0.

The above states are all Z2-symmetric, but similar expressions can be written for fundamental
Z̃2-symmetric states. This is a consequence of the following.

2.3.1. Equivalence of the cases A= 0 and B= 0
From the identity

1

(2π)2
(1+Bcosxcosy) =

1

(2π)2

(
1+

B

2
(cos(x− y)+ cos(x+ y))

)

it follows that every pattern observed for (A,B) = (A0,0) has its counterpart rotated by the angle π/4 and
observed for (A,B) = (0,2A0). Therefore, the dynamics of equation (6) in the case A= 0 and in the case
B= 0 are identical modulo the above spatial rotation and rescaling. This result is independent of the value of
the phase lag parameter α.

2.4. Bifurcation diagrams for static patterns
Thanks to the simplicity of the above formulas, the existence and stability properties of the completely
incoherent state, the partially coherent uniform state and the partially coherent splay state can be described
comprehensively. In particular, in section 3.1 we show that:

(i) the completely incoherent state is linearly stable if γ "max(1/2,A/4,B/8) and unstable otherwise,
(ii) the partially coherent uniform state exists only for γ < 1/2 and is linearly stable if A! 2 and B! 4 and

unstable otherwise.

The stability analysis of the partially coherent splay state can be performed by generalizing the analytical
scheme proposed in [35, 57]; the stability analysis for four-core spiral patterns in the case B= 0 was
performed in [31, 36].

To display our results, including stability results, we employ the global order parameter

R≡ 1

(2π)2

∣∣∣∣
ˆ π

−π

ˆ π

−π
a(x,y) dx dy

∣∣∣∣. (13)

10



New J. Phys. 25 (2023) 103023 M Bataille-Gonzalez et al

Figure 8. The B= 0 panel (top left) shows the global order parameter R for different static solutions of equation (6) with the
trigonometric coupling function (10) and α= 0 as a function of the parameter A. The four other panels with B> 0 show only
two-core spiral chimeras, namely Z2-symmetric chimera states (orange curves), Z̃2-symmetric chimera states (blue curves),
asymmetric chimera states (purple curves), and super-asymmetric chimera states (light green curve). Stable (unstable) states are
shown in solid (dashed) lines. Snapshots at the top right and at the bottom show sample stable states in terms of arg z and |z|.

However, a number of the states listed above have the same global order parameter, R= 0, as the completely
incoherent state. To distinguish among these states, we introduce the quantity

S=
1

(2π)2

∣∣∣∣
ˆ π

−π

ˆ π

−π
a(x,y) siny dx dy

∣∣∣∣ (14)

measuring the contribution of siny in the Fourier expansion of a(x,y).
Figure 8, top panel, shows the global order parameter R for static states computed from equation (6) for

different values of the parameter A in equation (10) when B= 0, α= 0. We observe:

(i) B= 0: the partially coherent uniform state R=
√
1− 2γ (gray line, state (b)) becomes unstable through

a pitchfork of revolution at A= 2. This bifurcation gives rise to fundamental Z2-symmetric states

11
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Figure 9. Static patterns z= a(x,y) from equation (6) for different values of the parameter A in equation (10) when B= 0, α= 0,
shown in terms of the quantity

√
R2 + S2 with R and S defined in equations (13) and (14) for comparison with figure 8, top

panel. Corresponding branches are indicated by like colors, while stable (unstable) states are shown in solid (dashed) lines. The
yellow branch shows the partially coherent splay state, while the blue line shows the D4-symmetric four-core spiral chimera.
Snapshots at the right show sample states in terms of |z| and arg z.

(green curve, state (d)). For this state |a(x,y)| has period π in the y direction. These states lose stability
at a secondary pitchfork bifurcation creating a branch of fundamental Z2-symmetric solutions with
period 2π in |a(x,y)| in the y direction (pink curve, state (e)). This new arc-shaped branch in
figure 8(a) is everywhere unstable and connects the green branch of period π states with the branch of
partially coherent splay states with R= 0.

Along the pink branch of period 2π states there are two tertiary pitchfork bifurcation points, with a
S-shaped branch of Z2-symmetric states modulated in both x and y directions in between (orange
curve, state (h)). These states correspond to stationary compound Z2-symmetric two-core spiral
chimeras and so depend on the parameter B. At B= 0 these states are all unstable (dashed orange
curve).

On the dashed brown branch we find unstable compound D2 = Z2
2-symmetric four-core chimeras

(state (j)) described by the formula (12) with w(x,y) ∈ Span{1,cosx, siny,cosx siny}. This branch
connects the period π fundamental states with the fundamental D4-symmetric four-core chimeras with
R= 0. A tertiary branch of unstable compound states (dashed red curve, state (k)) bifurcates from the
brown branch.

(ii) B= 0: to distinguish between the different states with R= 0 we show in figure 9 the same bifurcation
diagram but showing the quantity

√
R2 + S2 as a function of A instead of R. In this figure, the yellow

line shows the partially coherent splay states (state (c)), while the blue line corresponds to
D4-symmetric four-core spiral chimeras (state (f)). We see that each of these states bifurcates from the
completely incoherent state a(x,y) = 0 at A= 4γ and loses stability with decreasing A in subcritical
bifurcations, generating unstable states with R> 0. Moreover, two other unstable fundamental
branches, a branch of anti-phase states (light green curve, state (d0)) and a branch of generalized
four-core patterns (dark purple curve, state (g)) also emerge at the same parameter value, A= 4γ,
indicating the highly degenerate nature of this point.

(iii) B> 0: figure 8 shows how the behavior of the compound states changes with the coefficient B in the
coupling function. The figure shows that while the fundamental Z2-symmetric solution is independent
of B its stability may change as B changes. A similar statement applies to fundamental Z̃2-symmetric
solutions. The stability of tertiary states may likewise change. In particular, at B= 2, there appears a
narrow parameter range A≈ (1.93,1.95) with stable Z2-symmetric two-core spiral chimeras. This
range corresponds to the segment of the orange solution branch with negative slope.

(iv) At B= 4, the segment of the orange branch with negative slope is broader but the stability range of
Z2-symmetric spiral chimeras is limited by a (subcritical) quaternary bifurcation to (unstable)
asymmetric two-core states (purple branch) that connect the states with Z2 symmetry to similar states
with Z̃2 symmetry (blue branch, state (i)). By asymmetric we mean any state that is neither Z2- nor

12
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Figure 10. The (A,B) parameter plane (panel (e)) showing regions of stable (shaded) static spiral wave chimeras from the
Ott–Antonsen equation (6) with α= 0 together with solution snapshots corresponding to the color-coded diamond symbols,
showing the phase θ and modulus |z| of the complex order parameter z. Filled circles indicate the parameters of stable spiral wave
chimeras found in direct numerical simulations of equation (3) with N= 512. The solid and dash-dotted stability boundaries
correspond to fold and pitchfork bifurcations, respectively. (a) Z2-symmetric chimera, (b) Z̃2-symmetric chimera, (c)
Z2-asymmetric chimera, (d) Z̃2-symmetric chimera and (f) Z̃2-asymmetric (super-asymmetric) chimera. Profiles (b) and (d)
correspond to different stability intervals on the same solution branch (see blue branch in figure 8).

Z̃2-symmetric. Stability calculation points to a narrow region of bistability between the Z2- and
Z̃2-symmetric states. Stable asymmetric states are present at larger values of B (purple branch, state (ii)).

(v) At B= 5, the Z2-symmetric spiral chimeras are unstable, but Z̃2-symmetric spiral chimeras can still be
stable in a certain parameter range (blue branch, state (i)). A branch of Z̃2-asymmetric spiral chimeras
(light green branch, state (iii)) bifurcates from the Z̃2-symmetric spiral chimeras and some of these
may also be stable. We call the resulting states super-asymmetric to distinguish them from the other
states previously called asymmetric. The reason for this terminology is the following. Every Z2- or
Z̃2-symmetric state as well as every asymmetric state is represented by expression (12) with an
appropriate function w(x,y) in the nine-dimensional manifold determined by expressions (22)
and (25) from section 3.1. In contrast, for super-asymmetric states such a representation is not
possible. In this case, the corresponding function w(x,y) is still given by (22) but with fully complex
coefficients, except for those in the pinning conditions (24).

For every static two-core spiral chimera shown in figure 8 we performed continuation of its stability
boundaries. As a result, we identified five partly overlapping stability regions in the (A,B) plane shown in
figure 10. Each of these regions is bounded by two fold bifurcation curves (solid lines) and one pitchfork
bifurcation curve (dash-dotted line).

13
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Figure 11. (a) The global order parameter R of Z2-symmetric two-core spiral wave chimeras versus the parameter A of the
trigonometric coupling function (10) when B= 3 and α= 0. (b) The speed s of symmetric spiral wave chimeras moving in the y
direction versus the phase lag parameter α computed from equation (6) with the trigonometric coupling function (10) with four
different values A (color-coded) and B= 3. Open circles indicate the speed of stable spiral wave chimeras found in direct
numerical simulations of equation (3) with the same coupling function (10) and N= 512.

2.5. Moving spiral wave chimeras
Moving spiral wave chimeras are observed in the non-variational case, i.e. for α ̸= 0. To continue such states
in parameter space we used a numerical method based on the self-consistency equation from section 3.2
together with a non-iterative algorithm for calculating periodic orbits in the Ott–Antonsen manifold [56]. To
describe typical bifurcation diagrams as the phase lag α changes, we consider the case B= 3. Figure 11(a)
shows a diagram analogous to figure 8 that indicates that for A= 2 and α= 0 there are three coexisting
motionless Z2-symmetric two-core spiral wave chimeras (pink diamonds). Only one, the one with an
intermediate value of R, is stable. When α increases each of these spiral patterns persists as a moving spiral
wave chimera and its stability remains unchanged for small α (pink curves in figure 11(b)). For larger α the
dependence of the speed s on α becomes nonlinear (figure 11(b)) and the bottom and intermediate branches
annihilate in a fold point at α≈ 0.74 while the upper, s> 0 branch continues beyond this point.

If we take A= 2.1 the upper, s> 0 branch continues to exist (not shown) while a loop composed of the
two s< 0 branches detaches from α= 0 (black curves) but stable solutions continue to exist on the upper
portion of the resulting isola. This loop shrinks rapidly with increasing A and disappears by A= 2.2, thereby
eliminating stable two-core spiral chimera states.

A qualitatively different scenario occurs if we decrease the parameter A. For A= 1.9 the middle branch
now corresponds to s> 0 forming part of a looped branch that grows in size and intersects the horizontal
axis at some α∗ ≈ 0.645 (blue curves). Thus the spiral wave chimeras travel in opposite directions for α< α∗
and α> α∗.

In contrast, for A= 1.8 and α= 0 the remaining two-core spiral wave chimera (figure 11(a)) results in
moving states with s< 0 (red curve in figure 11(b)) with the two upper branches detached from α= 0
forming an S-shaped curve whose intermediate section corresponds to numerically stable two-core spiral
wave chimeras. Snapshots of the solutions along this branch (figure 12) show that with increasing |s| the
incoherent regions around the phase defects develop internal structure in the form of crescent-shaped
filaments. Along the bottom part of the branch, the development of each new filament corresponds to an
S-shaped fold in the solution branch in the (α, s) plane reminiscent of slanted snaking of spatially localized
states [48–52]. However, in other cases, especially when the number of filaments is large (more than 10 or so)
or s is close to zero, the speed s evolves monotonically with α in a manner reminiscent of smooth snaking
[51]. Both behaviors are characteristic of nonlocal systems.

Note that the shape of the solution branch for A= 1.8 resembles qualitatively the behavior of the solution
curve in figure 3 calculated for the top-hat coupling function. Moreover, the changes in the profiles a(x,y)
along the curve are also reminiscent of those shown in figure 3.
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Figure 12. The solution branch for A= 1.8, B= 3 shown in red in figure 11(b) together with the corresponding fingerprint
patterns at the locations labeled in the main panel.

3. Methods

3.1. Static patterns for equation (6) withα= 0
In the case α= 0, equation (6) is variational and its long-term dynamics therefore correspond to static
patterns or equilibria of the form

z(x,y, t) = a(x,y) . (15)

All two-core spiral wave solutions of equation (6) shown in figure 8 have this form. Below we describe the
mathematical methods used to carry out continuation and stability analysis of these states. For this, we adapt
the techniques from [36, 45].

3.1.1. Self-consistency equation
Inserting ansatz (15) into equation (6) we obtain

0=−γa+ 1

2
Ga− 1

2
a2Ga

or equivalently

w(x,y)a2 + 2γa−w(x,y) = 0, (16)

where

w(x,y) = (Ga)(x,y) . (17)

Solving equation (16) for a and choosing the square root branch that ensures the inequality |a|! 1, we
obtain
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a(x,y) =
−γ+

√
γ2 + |w(x,y) |2
w(x,y)

=
w(x,y)

γ+
√
γ2 + |w(x,y) |2

. (18)

Expressions (17) and (18) agrees with one another iff the function w(x,y) satisfies the self-consistency
equation

w(x,y) =

ˆ π

−π

ˆ π

−π
G(x− x ′,y− y ′)Hγ (w(x ′,y ′)) dx ′ dy ′, (19)

where

Hγ (w) =
w

γ+
√
γ2 + |w|2

.

3.1.2. Reduced self-consistency equation
Let us consider equation (19) in the case of the trigonometric coupling function (10). First, we define an
inner product on the space C([−π,π];C),

⟨u,v⟩= 1

(2π)2

ˆ π

−π

ˆ π

−π
u(x,y)v(x,y)dx dy.

Then, it is easy to see that for the trigonometric coupling function (10) we have

(Gu)(x,y) =
9∑

k=1

ξk⟨u,ψk⟩ψk (x,y) ,

where

ψ1 (x,y) = 1, ψ2 (x,y) = cosx, ψ3 (x,y) = cosy,

ψ4 (x,y) = siny, ψ5 (x,y) = cosxcosy, ψ6 (x,y) = cosx siny,

ψ7 (x,y) = sinx, ψ8 (x,y) = sinxcosy, ψ9 (x,y) = sinx siny,

and

ξk =

⎧
⎨

⎩

1 for k= 1,
A for k= 2,3,4,7,
B for k= 5,6,8,9.

(20)

Note that the functions ψk(x,y) are mutually orthogonal with respect to the inner product ⟨·, ·⟩. Moreover,

⟨ψn,ψn⟩=

⎧
⎨

⎩

1 for n= 1,
1/2 for n= 2,3,4,7,
1/4 for n= 5,6,8,9.

(21)

Owing to the finite-rank nature of the resulting integral operator G every solution of the self-consistency
equation (19) can be written in the form

w(x,y) =
9∑

k=1

ŵkψk (x,y) (22)

with complex coefficients ŵk. Inserting (22) into equation (19) and equating similar terms on the left and
right sides, we obtain the finite-dimensional system

ŵj = ξj

〈
Hγ

(
9∑

k=1

ŵkψk

)
,ψj

〉
, j = 1, . . . ,9. (23)

The system (23) inherits the three continuous symmetries of equation (19). Therefore a unique solution
requires that we impose three pinning conditions, for example

ŵ1 = |ŵ1|, ŵ4 = i |ŵ4|, ŵ7 = i |ŵ7|. (24)
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Note that owing to the first pinning condition the value of ŵ1 always coincides with the global order
parameter R defined in equation (13).

It turns out that the vast majority of stable static solutions of equation (6) with the coupling
function (10) and in particular almost all the patterns shown in figure 8 are represented by solutions of the
system (23) and (24) on the invariant manifold determined by the identities

{
Im ŵk = 0 for k= 1,2,3,5,9,
Re ŵk = 0 for k= 4,6,7,8.

(25)

The invariance of this manifold follows from the fact that the basis functions ψk with k= 1,2,3,5,9 have the
reflection symmetry

ψk (−x,−y) = ψk (x,y) ,

while the remaining four functions with k= 4,6,7,8 satisfy the antisymmetric relation

ψk (−x,−y) =−ψk (x,y) .

The restriction of the system (23), (24) to the manifold (25) almost halves the dimensionality of the system
and allows a significant speed-up of its solution.

We may further reduce the dimensionality of the system (23), (24) by looking for Z2-symmetric solutions
of equation (19). Such solutions satisfy the relation w(−x,y) = w(x,y), so we must assume
ŵ7 = ŵ8 = ŵ9 = 0. The resulting six equations require only the first two pinning conditions in (24) in order
to obtain a unique solution. A similar approach applies to Z̃2-symmetric solutions as well.

3.1.3. Initial conditions for system (23)
To apply a Newton solver to system (23) we need to have a good initial guess. In addition, it is desirable that
this guess satisfies the pinning conditions (24). We perform this task as follows.

We run the numerical simulations for the oscillator system (3) with the coupling function (10) until it
approaches a stationary state of interest. Using the last snapshot of the phases θjk, we calculate a discrete
analog of formula (17),

Wjk =

(
2π

N

)2 N∑

m,n=1

G

(
2π ( j −m)

N
,
2π (k− n)

N

)
eiθmn ,

where the complex exponent eiθmn appears instead of z(−π+ 2πm/N,−π+ 2πn/N). Next, using the
discrete Fourier transform, we calculate the necessary Fourier coefficients ŵk.

These coefficients do not, in general, satisfy the pinning conditions (24). To impose the pinning
condition on ŵ1, we apply a transformation

ŵk (→ ŵk
ŵ1

|ŵ1|
, k= 1,2, . . . ,9.

Next, we perform a transformation that ensures the pinning condition for ŵ4

ŵ3 (→ ŵ3 cosy0 − ŵ4 siny0,

ŵ4 (→ ŵ3 siny0 + ŵ4 cosy0,

ŵ5 (→ ŵ5 cosy0 − ŵ6 siny0,

ŵ6 (→ ŵ5 siny0 + ŵ6 cosy0,

ŵ8 (→ ŵ8 cosy0 − ŵ9 siny0,

ŵ9 (→ ŵ8 siny0 + ŵ9 cosy0,

where

eiy0 =± Re (ŵ3)− iRe (ŵ4)√
[Re (ŵ3)]

2 + [Re (ŵ4)]
2

and from the two signs in the last formula, the one that makes the imaginary part of ŵ4 positive is chosen.
Finally, we perform a third transformation,
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ŵ2 (→ ŵ2 cosx0 − ŵ7 sinx0,

ŵ7 (→ ŵ2 sinx0 + ŵ7 cosx0,

ŵ5 (→ ŵ5 cosx0 − ŵ8 sinx0,

ŵ8 (→ ŵ5 sinx0 + ŵ8 cosx0,

ŵ6 (→ ŵ6 cosx0 − ŵ9 sinx0,

ŵ9 (→ ŵ6 sinx0 + ŵ9 cosx0,

where

eix0 =± Re (ŵ2)− iRe (ŵ7)√
[Re (ŵ2)]

2 + [Re (ŵ7)]
2
.

The sign in this expression is chosen such that the imaginary part of ŵ7 positive. The resulting coefficients ŵk

satisfy all the pinning conditions (24) exactly.

3.1.4. Stability analysis
To analyze the linear stability of the equilibria of equation (6), we proceed as follows. We insert the ansatz

z(x,y, t) = a(x,y)+ v(x,y, t)

into the equation and linearize it with respect to the infinitesimal perturbation v. Thus

dv

dt
=−η0 (x,y)v+

1

2
Gv− 1

2
a2 (x,y)Gv, (26)

where

η0 (x,y) = γ+ a(x,y)Ga,

the subscript 0 on η0(x,y) indicating that we are considering a static pattern. Owing to (17) and (18), we have

η0 (x,y) =
√
γ2 + |w(x,y) |2, (27)

implying that η0(x,y) is real and satisfies |η0(x,y)|" γ.
The structure of equation (26) implies that the spectrum consists of two parts: the essential spectrum

σess =
{
−η0 (x,y) : (x,y) ∈ [−π,π]2

}
⊂ R

and the point spectrum σpt consisting of isolated eigenvalues of finite multiplicity. To find the eigenvalues
λ ∈ σpt we employ the ansatz

v(x,y, t) = v+ (x,y)eλt + v− (x,y)eλt,

which yields a solution to equation (26) provided the eigenvalue λ and the components (v+,v−)T of the
eigenmode satisfy

λ

(
v+
v−

)
=

⎛

⎝
−η0v+ + 1

2Gv+ − 1
2a

2Gv−

−η0v− + 1
2Gv− − 1

2a
2Gv+

⎞

⎠ ,

or equivalently
(

v+
v−

)
=

1

2
(λ+ η0)

−1
(

Gv+ − a2Gv−
Gv− − a2Gv+

)
. (28)

Applying the integral operator G to both sides of equation (28), we obtain the nonlocal eigenvalue problem

(
V+

V−

)
=

1

2

⎛

⎝
G
[
(λ+ η0)

−1 (V+ − a2V−
)]

G
[
(λ+ η0)

−1 (V− − a2V+

)]

⎞

⎠ (29)

for the components

V+ (x,y) = (Gv+)(x,y) , V− (x,y) = (Gv−)(x,y)

of the eigenmode of the local mean field V≡ Gv.
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Recall that for the coupling function (10), the integral operator G has a finite-dimensional range spanned
by the functions ψk(x,y), k= 1, . . . ,9. Therefore, every solution of equation (29) can be written in the form

V≡
(

V+

V−

)
=

9∑

k=1

V̂kψk (x,y)

with some V̂k ∈ C2. Inserting this ansatz into equation (29) yields a system of nonlinear equations for the
nine pairs of complex coefficients V̂k. Collecting these coefficients into a single vector V̂ ∈ C18, we can
rewrite these equations as an equivalent matrix equation,

V̂=
1

2
B(λ) V̂,

where we solve for the eigenvalue λ and the corresponding vector V̂ ∈ C18. The matrix B(λ) has the structure

B(λ) =

⎛

⎜⎜⎜⎝

B11 (λ) B12 (λ) · · · B19 (λ)
B21 (λ) B22 (λ) · · · B29 (λ)

...
...

. . .
...

B91 (λ) B92 (λ) · · · B99 (λ)

⎞

⎟⎟⎟⎠

and consists of 2× 2 blocks:

Bmn (λ) = ξm

⎛

⎜⎜⎜⎜⎝

〈
1

λ+ η0
ψm,ψn

〉
−
〈
Hγ (w)

2

λ+ η0
ψm,ψn

〉

−
〈
Hγ (w)

2

λ+ η0
ψm,ψn

〉 〈
1

λ+ η0
ψm,ψn

〉

⎞

⎟⎟⎟⎟⎠
,

where the ξm are defined by (20) and we have replaced a(x,y) by expression (18). Thus the matrix B(λ) is
completely determined by the solution w(x,y) of the self-consistency equation (19).

The eigenvalues λ can be found as solutions of the characteristic equation

det

[
I18 −

1

2
B(λ)

]
= 0, (30)

where In denotes the n× n identity matrix. If all solutions λ ≠ 0 of equation (30) lie in the left half-plane,
Re λ< 0, then the corresponding equilibrium a(x,y) is linearly stable. In contrast, if equation (30) has at
least one solution λ= λ∗ such that Re λ∗ > 0, then the equilibrium a(x,y) is unstable.

3.1.5. Stability of the completely incoherent state
The completely incoherent state corresponds to the zero solution w(x,y) = 0 of equation (19) and hence to
the zero solution z(x,y, t) = 0 of equation (6). It is present for all values A,B ∈ R. In this case, η0(x,y) = γ
from equation (27), and therefore

Bmn (λ) = cm⟨ψm,ψn⟩(λ+ γ)−1 I2.

Owing to the mutual orthogonality of the trigonometric functions ψm and the relations (21), we easily see
that equation (30) factorizes into three equations

det

[
I2 −

1

2
(λ+ γ)−1 I2

]
= 0,

det

[
I2 −

A

4
(λ+ γ)−1 I2

]
= 0,

and

det

[
I2 −

B

8
(λ+ γ)−1 I2

]
= 0,

which determine three eigenvalues

λ=−γ+ 1

2
, λ=−γ+ A

4
, λ=−γ+ B

8
,
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each of double multiplicity. Consequently, the completely incoherent state z(x,y, t) = 0 is linearly stable if
γ "max(1/2,A/4,B/8) and is unstable otherwise.

3.1.6. Stability of the partially coherent uniform state
This state corresponds to nonzero constant solutions of equations (19) and (6) of the form

w(x,y) = p.

Inserting this ansatz into equation (19) we obtain

p=
p

γ+
√
γ2 + p2

yielding

p=
√

1− 2γ for γ < 1/2,

and η0(x,y) =
√
γ2 + p2 = 1− γ; see equation (27). Moreover,

Bmn (λ) =
cm⟨ψm,ψn⟩
λ+ η0

(
1 −p2

−p2 1

)
=

cm⟨ψm,ψn⟩
λ+ 1− γ

(
1 2γ− 1

2γ− 1 1

)
.

Due to the mutual orthogonality of the trigonometric functions ψm and the relations (21), we easily see that
equation (30) factorizes into nine equations (m= 1, . . . ,9),

det

[
I2 −

cm⟨ψm,ψm⟩
2(λ+ 1− γ)

(
1 2γ− 1

2γ− 1 1

)]
= 0,

and that each factor determines two eigenvalues,

λ=−1+ γ+
cm⟨ψm,ψm⟩

2
(1± (2γ− 1)) .

For γ < 1/2 and cm " 0, the largest eigenvalue is

λ=−1+ γ+
cm⟨ψm,ψm⟩

2
(1− (2γ− 1)) = (1− γ)(cm⟨ψm,ψm⟩− 1) .

Thus the linear stability condition for partially coherent uniform states reads

A

2
− 1! 0 and

B

4
− 1! 0.

If either of the above two inequalities is violated, then the corresponding partially coherent uniform state is
unstable.

3.2. Moving spiral wave chimeras for equation (6) withα ̸= 0
In this section we describe the mathematical tools used to calculate moving spiral wave solutions of
equation (6) and to determine their stability. We focus on Z2-symmetric solutions of the form

z(x,y, t) = a(x,y− st)eiΩt (31)

with speed s, collective frequency Ω and a reflection-symmetric profile a(x,y) = a(−x,y).

3.2.1. Self-consistency equation
Inserting ansatz (31) into equation (6), reordering the terms and dividing the resulting equation by s ̸= 0, we
obtain

∂a

∂y
=
γ+ iΩ

s
a− 1

2s
e−iαGa+ 1

2s
eiαa2Ga. (32)

We look for 2π-periodic solutions in both x and y satisfying the inequality |a(x,y)|! 1. Therefore, if we
happen to know s, Ω and Ga, then for each fixed x ∈ [−π,π] equation (32) can be read as a periodic
boundary value problem for the complex Riccati equation

da

dy
= w(x,y)+ ζa−w(x,y)a2, (33)
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where a(x, ·) is an unknown function, x is a parameter,

w=− 1

2s
e−iαGa

and

ζ =
γ+ iΩ

s
.

It is known [56] that, for every ζ /∈ iR and every w(x, ·) ∈ Cper([−π,π];C), equation (33) has a unique
2π-periodic solution u(y) depending on x as a parameter such that |u(y)|< 1. The corresponding solution
operator is denoted by U(w,ζ). Then equation (32) with the additional condition |a(x,y)|! 1 can be recast
into the equivalent form

−2seiαw(x,y) = GU
(
w(x,y) ,

γ+ iΩ

s

)
. (34)

We interpret equation (34) as a self-consistency equation analogous to equation (19). It is to be solved for the
function w(x,y) and the two scalars s and Ω. This can be done if we equip equation (34) with two pinning
conditions,

Im

(ˆ π

−π

ˆ π

−π
w(x,y)dx dy

)
= 0, (35)

Im

(ˆ π

−π

ˆ π

−π
w(x,y) siny dx dy

)
= 0, (36)

and recall that w(x,y)must share the reflection symmetry of the function a(x,y).
In the case of the trigonometric coupling function (10) we can assume

w(x,y) =
6∑

k=1

ŵkψk (x,y) .

The basis function ψ7, ψ8 and ψ9 do not appear in the sum because they do not satisfy the symmetry relation
ψ(−x,y) = ψ(x,y). Equation (34) is thus equivalent to the six-dimensional complex system

−2seiαŵj = ξj

〈
U
(

6∑

k=1

ŵkψk,
γ+ iΩ

s

)
,ψj

〉

for six complex unknowns ŵj and two real unknowns Ω and s. The balance between the number of equations
and the number of unknowns is ensured by the two pinning conditions (35) and (36), which are equivalent
to the two scalar constraints

Im ŵ1 = 0 and Im ŵ4 = 0.

3.2.2. Solution operator U(w,ζ)
There is no explicit expression for the operator U(w,ζ). But, as shown in [56], its value can be determined by
solving only four initial value problems for equation (33). This possibility follows from the fact that the
Poincaré map of equation (33) coincides with the classical Möbius transformation.

3.2.3. Stability analysis
The linear stability analysis of a uniformly drifting state (31) can be performed by analogy with the static
case, see section 3.1. For this, we insert the ansatz

z(x,y, t) = (a(x,y− st)+ v(x,y− st, t))eiΩt

into equation (6) and linearize the resulting equation with respect to the infinitesimal perturbation v. We
thereby obtain a linear partial integro-differential equation for v,

−s
∂v

∂ξ
+
∂v

∂t
=−η (x,ξ)v+ 1

2
e−iαGv− 1

2
eiαa2 (x,ξ)Gv, (37)
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where ξ ≡ y− st is the comoving variable and

η (x,ξ)≡ γ+ iΩ+ eiαa(x,ξ)Ga.

The spectral problem for the eigenvalues λ ∈ C and eigenmodes (v+,v−)T can be derived from equation (37)
on using the ansatz

v(x,ξ, t) = v+ (x,ξ)eλt + v− (x,ξ)eλt.

After substitution into equation (37), we obtain

λ

(
v+
v−

)
=

⎛

⎝
s
∂v+
∂ξ − ηv+ + 1

2e
−iαGv+ − 1

2e
iαa2Gv−

s
∂v−
∂ξ − ηv− + 1

2e
iαGv− − 1

2e
−iαa2Gv+

⎞

⎠ , (38)

where it is assumed that v+ and v− are 2π-periodic with respect to x and ξ.
Rigorous analysis of the properties of the spectrum defined by equation (38) can be performed using the

approach proposed in [24, section 4]. On the other hand, a naive way to calculate the spectrum numerically
is to discretize equation (38) on a uniform grid, approximate the derivatives by finite differences and the
integrals by the trapezoid rule. This procedure leads to a matrix eigenvalue problem, which can be solved by
standard numerical routines. However, this method has a significant drawback. Since the eigenmodes
v+(x,ξ) and v−(x,ξ) depend on two variables, each of these functions must be approximated by arrays of
minimal size 100× 100= 104. The corresponding eigenvalue problem thus involves a huge, dense matrix
of size 104 × 104. As a consequence, the computation of the eigenvalues is extremely time-consuming
and we do not perform it in this paper. As an alternative stability analysis scheme, we use the following
phenomenological approach. Given a solution (31) of equation (6), we calculate an initial condition of the
corresponding system (3) using the formula

θjk (0) = arg a(−π + 2π j/N,−π + 2π k/N) .

We then run simulations of the system (3) for 104 time units. If at the end we obtain a state resembling the
expected solution (31), we consider it a stable solution of equation (6). Moreover, in this case, we use the last
5000 time units to calculate the mean drift speed of the corresponding pattern, which is plotted on top of the
theoretically predicted curves in figure 11(b).

4. Discussion and conclusion

We have shown that both stationary and moving partially synchronized states of two-dimensional arrays of
nonlocally coupled nonidentical phase oscillators are well described in the continuum limit by a
self-consistency condition originally derived by Ott and Antonsen [44]. In particular, we have shown that we
can correctly compute the speed s of these structures as a function of the phase-lag parameter α, with s
solving a nonlinear nonlocal eigenvalue problem. We have also shown that the same procedure can be used
to determine the stability of these states and confirmed the results using direct numerical simulations of the
discrete oscillator system. Our results explain the multiplicity of the different stable states in systems of this
type, as well as the various bifurcations responsible for transitions between them.

Although the work was motivated by simulations performed with a top-hat coupling function, much of
our progress was based on a two-parameter truncation of the Fourier expansion of this function. The
advantage of using coupling functions of this type is apparent from earlier work in [31, 35, 57]. It turns out,
for reasons that we do not fully understand, that the values of the parameters A and B typical of different
top-hat coupling functions in fact capture the most interesting regimes in the (A,B) plane, regimes where
stable stationary and moving chimeras are present (figures 7 and 10).

Our approach enabled us to understand how stable two-core spiral chimeras are generated for different
values of the parameters (A,B) as well as of α, albeit for a single value of the width of the Lorentzian
frequency distribution, γ= 0.01. We have seen that when α= 0 two-core symmetric spiral chimeras,
either Z2-symmetric or Z̃2-symmetric, are found on tertiary branches, following three successive
symmetry-breaking bifurcations, the first of which generates a π-periodic state |a(x,y)| from the partially
coherent state, while the second creates a 2π-periodic state |a(x,y)|, after which the incoherent cores localize
in the transverse direction. For stability these two-core states require nonzero values of both coupling
coefficients A and B; the optimal conditions are such that the functions 1, Acosx, Acosy and Bcosxcosy
have comparable L2-norms, i.e. for A≈ 2 and B≈ 4. Four-core states are created by a similar process. These
states are all static.
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When α> 0, these states begin to drift, resulting in a quasiperiodic state. Such two-frequency states are
associated with the appearance of curved filaments in the incoherent cores. The number of such filaments
increases with α, and the addition of each new filament is associated with a fold in the bifurcation diagram,
resulting in states with a great many filaments in the core such as state (viii) of figure 12. The filaments of
moving symmetric chimera states are curved in the direction opposite to the direction of motion. Moreover,
they typically appear in the front part of the moving structure, in contrast to the one-dimensional traveling
chimera states, where similar spatial oscillations emerge in the wake of the moving structure. However, the
speed s of such states is in general a highly nonmonotonic function of α and may vanish for nonzero α. It is
remarkable that results of this complexity can be accessed semi-analytically and that their stability properties
can likewise be established by similar techniques. Direct numerical simulations of the discrete system have
confirmed these results with exquisite accuracy (figure 11(b)).

In this paper, we focused on the properties of symmetric moving spiral wave chimeras with a
trigonometric coupling function. We expect that with some modifications, the computational scheme
described in section 3.2 can also be applied to study asymmetric spiral wave chimeras. Our results for the
variational case α= 0 show how such states are related to each other. Moreover, our methods readily extend
to three-dimensional arrays of phase oscillators with trigonometric coupling functions [36] as well as to
spatially-coupled arrays of phase oscillators with finite response times [58].

Although most of our results are for the trigonometric coupling function, the results qualitatively
reproduce many of the direct numerical simulation results obtained for the top-hat coupling function. The
trigonometric coupling approximation to this and related coupling functions has the advantage that both
stable and unstable spiral chimera states can be readily computed. The latter are of inestimable value for
establishing the sequence of bifurcations that are required to generate the observed stable states. We expect
that the scenarios we have identified for the trigonometric coupling function carry over to other, more
realistic coupling functions, where their presence can be established only with the greatest difficulty.

At a practical level, our findings can be used to explain the appearance of traveling spiral wave
chimera-like patterns in phase oscillator models related to the dynamics of hydrodynamically coupled cilia
carpets [6, 7]. On the other hand, they can potentially suggest new experimental designs for experiments on
Belousov-Zhabotinsky chemical oscillators [8, 9]. In a broader context, we may expect that qualitatively
similar spiral waves and corresponding bifurcation scenarios can be found in neural field models [59, 60] or
models of cardiac tissue electrophysiology [61], where moving spiral waves are common. Potential systems
that also support spiral wave chimeras include excitable optical systems, such as semiconductors lasers
with [62, 63] or without absorber-saturable medium [64] or with two distinct time delays [65]. We mention,
finally, two recent papers describing novel realizations of chimera states, an experimental system of
degenerate optical parametric oscillators mimicking neuronal dynamics in biological systems [66] and a
two-component Bose–Einstein condensate of ultracold atoms, a Hamiltonian system exhibiting spiral
chimera states that may also be realizable in experiments [67].
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