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A B S T R A C T

We theoretically investigate the combined impact of the Kerr and stimulated Raman scattering effect on the formation of localized structures and frequency comb
generation. We focus on the regime of traveling wave instability. We first perform a real-order parameter description by deriving a Swift–Hohenberg equation
with nonlocal delayed feedback. Second, we characterize the motion of traveling wave periodic solutions by estimating their thresholds as well their speed. By
using a numerical continuation method, we construct a bifurcation diagram showing the emergence of traveling wave periodic solutions, as well as bright and
dark moving localized structures. Numerical simulations of the generalized Lugiato–Lefever equation confirm evidence of isolas of localized structures. More
importantly, we show that the stimulated Raman scattering strongly impacts the dynamics of localized structures by creating isolas consisting of bright and dark
localized structures, and by inducing a motion of these structures. Finally, we provide a geometrical interpretation of the formation of isola stacks based on
dynamical systems theory.
1. Introduction

In the early 2000s, Hänsch and Hall introduced and developed
the optical frequency combs, which are equally spaced coherent laser
lines [1,2]. They were generated by microcavity resonators and used
to count light cycles. Their realization using mode-locked lasers and
dissipative solitons has revolutionized many fields of science and
technology, such as high-precision spectroscopy, metrology, and pho-
tonic analog-to-digital conversion [3,4]. The so-called soliton frequency
combs are associated with the formation of localized structures (LSs)
of light, which maintain their shape during propagation, and they
have been experimentally reported in optical microcavities [5,6]. Those
frequency combs are the spectral content of the localized structures,
often called dissipative solitons, which have been theoretically pre-
dicted in driven cavities [7,8]. Dissipative solitons have been reported
in the conservative limit when the injection and losses are both small
and under zero frequency detuning limit [9,10]. The link between
the localized structure in (micro-)resonators and frequency combs
has been established [11–14]. The dynamics of interacting LSs can
cause the stabilization of bounded localized states when a periodic
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forcing is applied [15–17], when taking into account fourth-order
dispersions [18–21] or spatial filtering (or gain dispersion in the time
domain) [22]. This is caused by Cherenkov radiation [23–27], i.e., the
radiation of dispersive waves that are weakly decaying.

Considerable attention has been paid recently to the formation
of frequency combs under the combined action of Kerr nonlinearity
and stimulated Raman scattering (SRS) in optical resonators such as
whispering gallery mode resonators [28,29]. Since the Raman gain
bandwidth is large (it is around 10 THz for silica glass), the combined
influence of Raman scattering and Kerr nonlinearity is frequently ob-
served [30–35]. The effects of SRS and Kerr on the front dynamics
leading to the stabilization of LSs have recently been studied [36–40]
in normal dispersion materials. In this case, LSs have been observed
in a domain far from the traveling wave instability. In this regime, it
has been shown that the combined action of SRS and Kerr nonlinearity
is at the origin of generation of moving bright LSs [36–40]. In the
absence of the SRS effect, bright LSs are unstable. The mechanism
leading to the formation of LSs with varying width results from the
locking front connecting two coexisting continuous wave states [41–
44]. Close to the critical point associated with optical bistability, the
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960-0779/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.chaos.2023.113808
Received 7 June 2023; Accepted 7 July 2023

https://www.elsevier.com/locate/chaos
http://www.elsevier.com/locate/chaos
mailto:mtlidi@ulb.ac.be
https://doi.org/10.1016/j.chaos.2023.113808
https://doi.org/10.1016/j.chaos.2023.113808


Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 174 (2023) 113808M. Tlidi et al.
Fig. 1. Schematic setup of a ring cavity filled with a photonic crystal fiber (PCF). The
cavity is driven by a coherent external injected beam. BS denotes a beam splitter and 𝜏𝑅
is the roundtrip time. (a) A single moving dark localized structure circulating within the
cavity and its Fourier transform. (b) Frequency comb representing the Fourier transform
of the train of dark localized structures coming out from the cavity.

interaction law between two well-separated fronts has been established
analytically [37,39]. In many cases, properties of such localized states
can be related to the phenomenon of collapsed snaking that has been
found in the scalar Lugiato–Lefever equation (LLE [45]) with SRS [40]
and without SRS [46,47], and in the vectorial case where polarization
degree of freedom is considered [48,49].

The dispersion curve may be highly controlled using photonic crys-
tal fibers. Such fibers play a significant role, especially traveling waves
(TW) for supercontinuum generation [50–53]. When optical resonators
are operating close to the zero dispersion wavelength, it is neces-
sary to take into account higher-order dispersion. In silicon microring
resonators, Kerr-Raman scattering and higher order dispersion have
an impact on frequency comb formation [54–60]. In particular, com-
plex dynamics characterized by the formation of dispersive waves,
self-frequency-shifting, and frequency-locking have been reported [54].

In regimes devoid of traveling modulational instability, the impact
of stimulated Raman scattering and the Kerr effect has been reported.
In this case, bistability between CW solutions is necessary since the
resulting LSs consist of an heteroclinic connection between the two
branches of CW states [37,39]. Their bifurcation diagram follows a
collapsed snaking type of bifurcation [40].

In this contribution, we theoretically investigate the homoclinic
type of LSs in the regime where the system develops a traveling wave
instability. Temporal LS can be formed even in the monostable regime.
This type of solution has a homoclinic snaking type of bifurcation in
the absence of SRS. We show that stimulated Raman scattering breaks
the snaking structure and promotes LS branches in the form of isolas,
which can form even in the monostable regime.

We show that when this instability becomes subcritical, the system
develops a high degree of multistability: besides the continuous wave
(CW), and the traveling periodic solutions, which are both stable, an
additional variety of stable localized structures are generated. This
behavior is independent of whether the system is operating in the
monostable or the bistable regime. Using a continuation algorithm,
we have established the bifurcation diagram associated with traveling
waves. More importantly, we show that localized structures and combs
branches of solution are isolas since they are not connected to any
modulational instability or traveling wave thresholds.

The structure of the paper is as follows. We describe the creation
of periodic TW solutions in the supercritical domain following the
presentation of the Swift–Hohenberg equation with stimulated Raman
scattering in Section 2. To characterize the motion, we estimate the
threshold associated with the onset of motion as a function of injected
field amplitude, as well as their speed. We show that when this in-
stability becomes subcritical, the system develops a high degree of
multistability: besides the continuous wave (CW), and the traveling
periodic solutions, which are both stable, an additional variety of
stable localized structures is generated. This behavior is independent of
2

whether the system is operating in the monostable or bistable regime.
Then, in Section 3, we carry out a direct numerical simulation of dark
and bright localized structures. We are able to create their bifurcation
diagram, which provides proof of the existence of a stable single and
multiple isolas, thanks to the continuation algorithm (see Subsection
3.1). In the last part of Subsection 3.2, we present numerical simu-
lations showing that the generalized LLE supports isolas of temporal
LSs. Section 4 discusses a geometrical interpretation of isola stack
formation. Following the conclusions, we provide as an appendix a
full derivation of the Swift–Hohenberg equation with nonlocal delayed
feedback.

2. A derivation of a Swift–Hohenberg equation with stimulated
Raman scattering

We consider a ring resonator filled-in with a Kerr dispersive medium
such as a photonic crystal fiber (PCF). Fig. 1 shows a schematic of
the PCF resonator. This resonator is coherently driven by a continuous
wave monochromatic light with an electric field 𝐸𝑖 and corresponding
power 𝐸2

𝑖 . Through the use of a beam splitter, the transmitted portion
of this field is directed into the cavity and propagates through the PCF
under the influence of dispersion, the Kerr effect, stimulated Raman
scattering, and losses. During each round trip, the driving field and the
light that moves throughout the resonator are coherently superimposed.
High-order chromatic dispersion effects are crucial to the dynamics
of this system when the PCF resonator is operating close to the zero
dispersion wavelength. Taking into account these effects, the slowly
varying envelope of the electric field within the resonator is described
by the following generalized Lugiato–Lefever equation [55]
𝜕𝐸
𝜕𝜁

= 𝐸𝑖 − (1 + 𝑖𝛥)𝐸 + 𝑖
(

1 − 𝑓𝑟
)

|𝐸|

2 𝐸

+ 𝑖𝛽2
𝜕2𝐸
𝜕𝑇 2

+ 𝑖𝛽4
𝜕4𝐸
𝜕𝑇 4

+ 𝑖𝑓𝑟𝐸 ∫

𝑇

−∞
𝜙(𝑇 − 𝑇 ′)|𝐸(𝑇 ′)|2𝑑𝑇 ′. (1)

where 𝐸 = 𝐸(𝜁, 𝑇 ) is the normalized mean-field cavity electric field, 𝛥
accounts for the normalized detuning parameter, and losses are normal-
ized to unity. The time 𝜁 is the slow time describing the evolution over
successive round trips, and 𝑇 is the fast time in the reference frame
moving with the group velocity of the light within the resonator. 𝐸𝑖
is the input field amplitude. 𝛽2 and 𝛽4 are the second- and the fourth-
order dispersion terms, respectively. The stimulated Raman scattering
is described by the last term of Eq. (1) and by the cubic nonlinear term.
The strength of the Raman is 𝑓𝑟. The kernel function is

𝜙(𝜏) = 𝑎 exp (−𝜏∕𝜏2) sin(𝜏∕𝜏1)

with 𝑎 = 𝜏0(𝜏21 + 𝜏22 )∕(𝜏1𝜏
2
2 ), and 𝜏0 = [|𝛽4𝐿|∕24𝛼]1∕4, where 𝛼 is

the loss parameter, and 𝐿 is the resonator length. The optical losses
are determined by the mirror transmission and the intrinsic material
absorption. The choice of this kernel, or influence function, shows an
excellent agreement with experiments using standard fibers [61,62]. In
the absence of the stimulated Raman scattering, i.e., 𝑓𝑟 = 0, we recover
the LLE with fourth-order dispersion [63]. In this case, Eq. (1) admits
front-like states connecting the two continuous wave solutions (CWs)
forming a bistable state [41], stationary LSs [18], and moving LSs due
to the third-order dispersion effect [19,64–66].

We derive a paradigmatic Swift–Hohenberg equation (SHE) with
stimulated Raman scattering describing the evolution of pulses propa-
gating in a photonic crystal fiber resonator. This reduction is performed
close to nascent optical bistability. Starting from the generalized LLE
Eq. (1), the deviation 𝑢 of the electric field from its value at the onset
of bistability obeys a generalized SHE with stimulated Raman scattering

𝜕𝑡𝑢 = 𝜂 + 𝜇𝑢 − 𝑢3 + 𝛽𝜕2𝜏 𝑢 − 𝜕4𝜏 𝑢

+
𝜏
𝜙(𝜏 − 𝜏′)𝑢(𝜏′)𝑑𝜏′, (2)
∫−∞
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Fig. 2. Traveling wave solutions in the supercritical regime. (a) Profile of a periodic
traveling wave solution obtained by numerical simulations of Eq. (2). (b) 𝑡 − 𝜏 map
showing the time evolution of the profile. (c) The velocity of the traveling wave
solution 𝑣 as a function of the strength of the Raman effect. Full line and red triangles
show, respectively, the analytical solution (formula Eq. (5)) and numerical simulation
results. (d) Supercritical bifurcation diagram obtained in the monostable regime. The
full and broken lines correspond to the stable and unstable homogeneous steady state,
respectively, while the circles correspond to the maxima and the minima of moving
periodic structures. Parameters are 𝛽 = −1.5, 𝜏0 = 14, 𝑓 = 0.18, 𝜏1 = 3, 𝜏2 = 10 (a, b, c)
𝜇 = −0.35, and 𝜂 = −0.35. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

A detailed derivation is presented in the Methods section. The pa-
rameters 𝜂 and 𝜇 represent, respectively, the driven field and the
frequency detuning deviations from their value at the critical point
associated with bistability. The second and fourth-derivatives describe
dispersion terms. The last contribution accounts for the stimulated
Raman scattering with the new kernel function defined as 𝜙(𝜏) =
√

3∕2𝑎𝑓 exp−𝜏0(𝜏−𝜏′)∕𝜏2 sin(𝜏0(𝜏 − 𝜏′)∕𝜏1) where 𝑓 is the strength of the
nonlocal delayed feedback.

The Fisher–Kolmogorov–Petrovsky–Piscunov (FKPP) equation de-
rived in earlier research [37,39] is much different from Eq. (2). First,
because the fourth derivative term originating from high-order dis-
persion is missing, the FKPP equation is unable to characterize the
traveling modulational instability. Second, the scaling in fast and slow
times utilized to derive the FKPP equation differs significantly from the
scaling used to establish the Swift–Hohenberg with nonlocal response
Eq. (2).

In the absence of stimulated Raman scattering, we recover the well-
know SHE that has been first derived in the spatial domain [67,68] and
in the temporal domain [66]. Without the fourth-order dispersion and
the stimulated Raman scattering, Eq. (2) supports stationary localized
structures and clusters of them both in the spatial domain [8] and in
the temporal domain [66]. In this case, traveling wave instability and
motion of temporal structures are forbidden. This is because, in the
absence of stimulated Raman scattering and fourth order of dispersion,
Eq. (2) is variational. This means that a Lyapunov functional exists
for this equation, ensuring that the evolution will move towards the
state, for which the functional has the smallest possible value that is
compatible with the system boundary conditions.

The linear CW solutions of Eq. (2) satisfies the cubic equation 𝜂 =
𝑢3𝑠 − (𝜇 +

√

3𝑓∕2)𝑢𝑠 = 𝑢3𝑠 − 3𝛿𝑢𝑠∕4. The linear stability analysis with
respect to finite frequency perturbations of the form exp (𝜆𝑡 + 𝑖𝜔𝜏) yields
eigenvalues 𝜆 of the linear operator. The CWs states exhibit a traveling
wave instability leading to moving periodic solutions when the real part
of 𝜆 is positive. When taking into account the stimulated Raman scat-
tering and higher order dispersion, a portion of homogeneous solutions
3

𝑢𝑠 undergo a traveling wave instability in the range 𝑢− < 𝑢𝑠 < 𝑢+. The
thresholds associated with this instability are

𝑢± = ±

√

√

√

√

√

𝛽2 + 4𝜇
3

−

√

3𝑓 (𝜏21 + 𝜏22 )

3(𝜏21 − 𝜏22 )
. (3)

The corresponding injected field amplitudes are

𝜂± = −

[
√

3𝑓
6

𝜏21
𝜏21 − 𝜏22

+
5
√

3𝑓 + 8𝜇 − 𝛽
12

]

𝑢±, (4)

where the frequency at both thresholds is 𝜔2
𝑐 = −𝛽∕2 with 𝜔𝑐 as

the critical frequency. From this threshold emerge periodic traveling
wave solutions whose profile and 𝑡 − 𝜏 map are shown respectively, in
Fig. 2(a) and 2(b). We derive an analytical formula for the velocity 𝑣 of
a traveling wave solution. The results are plotted in Fig. 2(c), showing
excellent agreement between the analytical formula and numerical
results. The bifurcation diagram is shown in Fig. 2(d) indicating that the
traveling wave instabilities appear supercritically. The mathematical
expressions for the traveling wave instability thresholds 𝜂± and the
corresponding intracavity field amplitudes 𝑢± are provided explicitly
in Methods section, respectively (see Eqs. (3) and (4)). The temporal
period at both thresholds is 𝑇𝑐 = 2𝜋

√

2∕
√

−𝛽. We have also estimated
the linear velocity of the periodic solution

𝑣 =
𝜕𝐼𝑚(𝜆)
𝜕𝜔𝑐

=
4
√

3𝑓𝑟𝛽𝜏03𝜏41𝜏
4
2
(

𝜏12 + 𝜏22
)

𝐴1

𝐴2
2

, (5)

where 𝐴1 and 𝐴2 are

𝐴1 =
[

3𝛽𝜏21𝜏
2
2 − 4𝜏20 (𝜏

2
1 − 𝜏2

2)
]

−4𝜏04(𝜏21 + 𝜏22 )
2, (6)

𝐴2 = 𝛽𝜏21𝜏
2
2
[

𝛽𝜏21𝜏
2
2 − 4𝜏20 (𝜏

2
1 − 𝜏2

2)
]

+4𝜏40 (𝜏1
2 + 𝜏2

2)2.

The velocity as well as the thresholds associated with the traveling
wave instability have been obtained analytically within the limit of a
low-frequency regime.

3. Isolas of frequency comb generation

In the absence of stimulated Raman scattering, the fourth-order
dispersion strongly affects the dynamical behavior of all fiber res-
onators by allowing for new unstable frequencies to appear, and the
modulational unstable domain to become bounded [63]. In the monos-
table case, the primary instability threshold is degenerate where two
separate frequencies simultaneously appear while in the bistable case,
high-frequency modulational instability precedes the limit point [63].
Furthermore, the fourth-order dispersion allows for the stabilization of
dark LSs in the temporal [18] and spatial [69] domains. The interaction
and pinning can be strongly modified by the influence of high-order
dispersion effects [25,26].

Localized structures usually found close to the subcritical modula-
tional instability [7,8] exhibit a well-known homoclinic snaking type of
bifurcation that has been first reported in the time domain in [18], and
in the spacial domain [69] (see also recent papers on this issue [70,71]).
They exhibit multistability behavior in a finite range of parameters
referred to as the pinning region [72]. From a dynamical point of view,
their bifurcation diagram consists of two snaking curves; one describes
LSs with odd number of peaks, the other corresponds to an even number
of peaks. The two snaking curves are connected and emerge from
the modulational instability threshold. They are intertwined, which
is associated with the back-and-forth oscillations across the pinning
region. This feature is a characteristic of systems possessing a reflection
symmetry in the spatial domain 𝑥 → −𝑥 or in the temporal domain (𝜏
→ −𝜏) such as a Swift–Hohenberg type of equation [73,74] and the
Lugiato–Lefever equation [70,71,75].
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Fig. 3. Isola stack of localized structures obtained by continuation algorithm of Eq. (2).
(a) Solution profiles for the respective points in the bifurcation diagram with 𝜂 = −0.015,
𝜂 = 0.003, and 𝜂 = +0.014. (b) Bifurcation diagram obtained in the bistable regime. BI𝑛
and DI𝑛, i=1,2,3,4 represent bright and dark isolas of solutions with n peaks and n dips,
respectively. (c) Speed of LSs as a function of the injection parameter 𝜂. Parameters
are 𝜇 = −0.1, 𝛽 = −1.8, 𝑓 = 0.28, 𝜏0 = 1, 𝜏1 = 3, and 𝜏2 = 10. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

3.1. Isolas of localized structures in the Swift–Hohenberg equation with
nonlocal response

In what follows, we investigate numerically the formation of both
bright and dark LSs under the combined influence of SRS-Kerr together
with fourth-order dispersion. The presence of stimulated Raman scat-
tering breaks the reflection symmetry and allows for the motion of
LS. We focus on a strongly nonlinear regime where the traveling wave
bifurcation is subcritical. For this purpose, we proceed by discretizing
Eq. (2) in 𝑁 = 512 nodes with a temporal step size of 𝛥𝜏 = 0.25. Tem-
poral derivatives with respect to the retarded time 𝜏 are then computed
spectrally for better accuracy and time integration is performed using a
4th order adaptive Runge–Kutta scheme. traveling waves and moving
bright and dark localized structures solutions of Eq. (2) are obtained
by integrating numerically with periodic boundary conditions. They
are shown in Fig. 3(a), and they are denoted by TW, 𝐵𝐼1, and 𝐷𝐼1,
respectively.

We first seek moving periodic and localized states with constant
speed 𝑣. These states correspond to solutions of Eq. (2) in the co-moving
frame with 𝑣

0 = 𝜂 + 𝜇𝑢 − 𝑢3 + 𝑣𝜕𝜏𝑢 + 𝛽𝜕2𝜏 𝑢 − 𝜕4𝜏 𝑢 (7)

+

√

3
2𝑓𝑎 ∫

𝜏

−∞
𝜙(𝜏 − 𝜏′)𝑢(𝜏′)𝑑𝜏′.

In addition, due to the translational symmetry of the system, we must
add a pinning condition in order to ensure the uniqueness of the
4

solution

0 = ∫ 𝑢0(𝜏)𝜕𝜏𝑢(𝜏)𝑑𝜏. (8)

This condition can be derived by imposing that the difference with a
previously known solution 𝑢0 for a given parameter 𝜂0 ≈ 𝜂 must be
minimized, i.e., 𝑚𝑖𝑛𝛥𝜏‖𝐷(𝛥𝜏)‖, where ‖.‖ is the 𝐿2 norm, which will
be defined below, and 𝐷(𝛥𝜏) ≡ 𝑢(𝜏 + 𝛥𝜏) − 𝑢0(𝜏). Eqs. (7) and (8)
are solved by means of the pseudo-arclength continuation method [76]
which allows to seamlessly follow the solution branch through folds (cf.
Fig. 3).

To visualize these solutions, it is convenient to plot the dimension-
less 𝐿2 norm,

 = ∫ 𝑑𝜏|𝑢 − 𝑢𝑠|
2 (9)

as a function of 𝜂. The results are summarized in the bifurcation
diagram shown in Fig. 3(b). The critical thresholds 𝜂± associated with
the TW instability are located on the upper and lower branch of the
CW solution.

In the bistable regime, the TW instability always appears subcrit-
ically. From the threshold associated with this instability emerges an
unstable branch of TW periodic solutions (dotted purple curve). The
existence domain of TW periodic solutions is in the range 𝜂∗− < 𝜂 < 𝜂∗+
(purple curve). This branch of TW solutions is connected to the upper
threshold 𝜂+ by a dotted purple curve as shown in Fig. 3(b). More
importantly, the left (right) portion of Fig. 3(b) shows a set of branches
of bright (dark) LS. These localized state branches are distinguished by
the multitude of peaks and dips in their temporal structure. An example
of periodic TW wave, bright and dark localized structures are shown in
Fig. 3(a). The two sets of branches of bright and dark LSs form isolas
of localized states that are not connected to the thresholds of the TW
instabilities. We estimate the velocity of LSs to better characterize them,
and the results are presented in Fig. 3(c). This figure shows that the
speed reduces as the number of peaks rises. The isola branch with the
purple color corresponds to the single peak solution that is the fastest
LSS.

Although both the bright and the dark localized branches of solu-
tions are shown in the bifurcation diagram in Fig. 3, to simplify the
analysis, we focus on the dark localized structures. Their shape changes
as a function of the strength of the injected field amplitude as shown
Fig. 4(a) for the corresponding points A, B, C, and D in the bifurcation
diagram of Fig. 4(c). This figure is obtained by zooming in on Fig. 3(b)
around the upper CW solution. This portion of the bifurcation diagram
reveals clearly that branches of localized structures are not connected
to the TW instability. Moving dark localized structures form single or
multiple isolas. This feature is displayed in Fig. 4(c). The spectra of
dark LS are shown in Fig. 4(b).

3.2. Isolas of localized structures in the generalized LLE with Raman scat-
tering

The reduction from the generalized LLE Eq. (1) to a
Swift–Hohenberg equation without a nonlocal delayed response Eq. (2)
is a well-known framework for the analysis of periodic or localized
structures [8]. It typically applies to systems that experience a mod-
ulational instability close to a second-order critical point, marking the
onset of a hysteresis loop (nascent bistability). It has been demonstrated
that the Swift–Hohenberg equation with high orders of dispersion and
no Raman scattering reproduces qualitatively the same results as the
full LLE model [66].

In what follows, we shall show that isolas of localized structures
are also solutions of the full LLE model Eq. (1). For this purpose, let
us fix the detuning parameter by considering the monostable regime,
i.e., 𝛥 <

√

3. Fig. 5 depicts an example of a single peak moving localized
structures and their corresponding comb.
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Fig. 4. (a) Solution profiles corresponding to the points A, B, C and D in the bifurcation
diagram. (b) Corresponding Fourier spectra. (c) Magnification on the upper CW branch
of the bifurcation diagram presented in Fig. 3(b). Same parameters as in Fig. 3. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

They are obtained numerically by using a periodic boundary con-
dition compatible with the ring geometry of the optical resonator
depicted in Fig. 1. The grid size is 512 with a temporal step size of
0.25.

The T-𝜁 map of Fig. 5(a) depicts traveling temporal localized struc-
tures with a constant speed. The motion is directly imputable to the
stimulated Raman scattering effect since it breaks the reflection sym-
metry 𝜁 → -𝜁 . As shown in Fig. 5(b), the profile of temporal localized
structures becomes asymmetric in this case. The spectral content of
the intensity profile forms an optical frequency comb that shows an
asymmetry as shown in Fig. 5(c). The comb lines are all equally
spaced since the free spectral range, given by the inverse of the cavity
round-trip time, has a fixed value.

Fig. 6 depicts a single peak localized structure (𝐵𝐼1), bounded states
(𝐵𝐼2), and a periodic train of peaks (TW) moving at constant speed. The
above mentioned continuation algorithm allows for the construction
of the bifurcation diagram shown in Fig. 6(b). There are four curves
in the plot of the 𝐿2 norm as a function of the injected field 𝐸𝑖. The
blue curve displays a single CW solution. The red curve represents
the branch of traveling periodic solutions that emerges from the CW
solutions. The green and orange curves represent the single and bound
branches, which state localized structures with one and two peaks,
respectively. Because they are far apart, temporal localized structures
interact via their exponentially decaying tails and bounded states.
Interactions of localized structure have been studied in the absence
of stimulated Raman scattering, in the spatial domain [77]. This weak
type of interaction is affected by the third- [25] and the fourth- [26]
orders of dispersion.

The profile of a moving peak localized structure is deeply affected
by the change of the injected field amplitude. This feature is illustrated
in Fig. 7(a). A zoom on that figure shows that neither branches of
single and bounded states localized are connected to the CW solu-
tions (see Fig. 7(b)). As in the limit of nascent bistability where the
dynamics is governed by a Swift–Hohenberg with nonlocal delayed
feedback (Eq. (2)), the generalized LLE Eq. (1) exhibits isola type of
solutions. The stimulated Raman scattering is directly responsible for
disconnecting the localized branches of solutions from the CW solution.
Because we integrate the nonlocal delayed integral term from −∞ to a
finite time, the reflection symmetry is broken. However, the branches
of periodic TW solutions are still connected to the CW solutions.
5

Fig. 5. Moving localized structures obtained by numerical simulations of Eq. (1). (a)
T-𝜁 map. (b) Temporal profile (c) Corresponding Fourier spectrum. Parameters are
𝛥 = 1.7, 𝐸𝑖 = 1.219, 𝑓𝑟 = 0.05, 𝛽2 = 1, 𝛽4 = 0.01, 𝜏0 = 1, 𝜏1 = 3, 𝜏2 = 10. Numerical
simulation has been performed using 512 cells, with a T step of 0.25 and a 𝜁 step of
0.001.

In order to better understand the creation of isolas from the perspec-
tive of dynamical system theory, we give a geometrical explanation in
the next section.

4. Geometrical interpretation

The localized states are stationary solutions of the co-moving frame
of Eq. (2). Geometrically, these solutions correspond to homoclinic
curves in the phase portrait [78]. The latter is a geometrical represen-
tation of the trajectories of the dynamical system of Eq. (2) in the phase
plane, which is the Poincaré plane (see Fig. 8). The geometrical inter-
pretation of homoclinic snaking is a well-documented issue and is by
now fairly well understood [74]. The homoclinic orbit bifurcates from
a heteroclinic loop which is generated by connecting CW (equilibrium)
to a periodic orbit. The homoclinic curves correspond to the asymptotic
state of the localized solutions and are formed by the intersection of the
stable (𝑊 𝑠) and unstable (𝑊 𝑢) manifolds of the uniform equilibrium.
The phase portrait’s manifold intersection is shown schematically in
Fig. 8. The points represent the various localized states or homoclinic
curves. Note that the equilibrium that produces manifolds is a hyper-
bolic equilibrium for the related stationary system and corresponds to
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Fig. 6. (a) Temporal profile of a single, bounded states, and periodic train of pulses
indicated by 𝐵𝐼1, 𝐵𝐼2, and 𝑇𝑊 , respectively. (b) Bifurcation diagram representing CW
(blue curve), train of periodic pulses (red curve) solutions. The unstable branch of
TW is indicated in doted curve. The two isolas of localized structures are indicated
by green and orange colors, respectively. Parameters are the same as in Fig. 5. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

a uniform stable condition of the spatiotemporal system (co-mobile).
That is, the manifolds are the nonlinear extension of the eigenvectors
associated with the equilibrium.

When the phase portrait’s dimension is higher than two, the man-
ifolds surrounding a hyperbolic point exhibit a complicated geomet-
ric structure typically referred to as manifold entanglement [79,80].
Poincaré first proposed that this entanglement would lead to chaotic
behavior in regular temporal systems [81]. The coexistence of localized
structures caused by the entangled manifolds in the portrait space
of stationary systems is known as the homoclinic snaking bifurcation
diagram [74,82]. This coexistence of solutions is characterized by the
fact that the symmetrical localized states are connected with other ones
with more or less one spatial oscillation. This process occurs through
saddle–node bifurcations, generating a snake-like structure in the bi-
furcation diagram [74]. Experimental observation of this bifurcation
diagram has been carried out for a liquid crystal light valve with optical
feedback [83]. The ordered sequence of homoclinic curves (localized
states) results from spatial reflection symmetry in the system (𝜏 → −𝜏),
where 𝛱 represents the spatial reflection symmetry plane.

Then the unstable manifold intercepts the plane of symmetry 𝛱 .
ue to the reflection symmetry, the stable manifold intercepts 𝛱 in a
irror image. This entanglement generates a sequence of symmetric

ocalized states represented by the green dots in Fig. 8(a). The bifur-
ation diagram associated with LSs contains two intertwined snaking
urves. This classical scenario is not expected in irreversible systems,
.e., systems devoid of reflection symmetry. In this case, asymmetrical
olutions shown in Fig. 3(a) or in Fig. 8(b) are possible. Fig. 8(b)
llustrates asymmetrical solutions indicated by black points. These are
lose to the homoclinic bifurcation diagram, but not connected with
ther LSs. This behavior is referred to as isolas [84–88]. Namely, the
olutions only connect with other four asymmetric ones, forming a loop
n the phase diagram, typically with the shape of a Lissajous curve (see
igs. 3 and 4(c)).

In the case that the system under study loses reflection symmetry
𝜏 ̸→ −𝜏), the intersection of the stable and unstable manifolds does not
oincide generically with the surface 𝛱 that initially accounted for the
lane of symmetry [89]. Even both manifolds now are not symmetrical.
6

Fig. 7. (a) Profiles of localized structures at different values of the injected field
intensity. (b) Zoom of Fig. 6(b) showing isola of solutions for the generalized LLE
Eq. (1). (c) Speed of the localized structures as a function of the injected field intensity.
Parameters are the same as in Fig. 6. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Schematic representation of stable (𝑊 𝑠) and unstable (𝑊 𝑢) manifold in the
phase portrait. Representation of intersection of stable and unstable manifolds in
systems with reflection symmetry (a) and without symmetry (b). 𝛱 accounts for the
spatial reflection symmetry plane. The colored dots represent the homoclinic curves
(localized structures). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 8(b) depicts the typical image of the intercepts of manifolds in sys-
tems without reflection symmetry. Then all localized structures become
asymmetric since there is no ordered sequence imposed by reflection
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symmetry. Hence, the system transforms the homoclinic snaking into
an isola stack (see Fig. 3) [86,87,89]. Namely the localized structures
in the bifurcation diagram are connected by groups of four solutions
generically.

In brief, the Swift–Hohenberg Eq. (2) without the effect of stim-
ulated Raman scattering is known to exhibit a homoclinic snaking
bifurcation diagram [89]. When taking into account the odd-order
of dispersion, the reflexion symmetry is broken. For instance, in the
presence of third-order dispersion, bright and dark dissipative solitons
become asymmetric and acquire an additional group velocity shift
associated with this asymmetry [90]. In this case, isolas of localized
structures have been reported [90]. Incorporating the stimulated Ra-
man scattering breaks the reflection symmetry and induces an isola
stack. In this case, the homoclinic snaking bifurcation structure breaks
up.

5. Conclusions

To sum up, we have investigated the confinement of light in driven
nonlinear ring cavities containing a micro-structured photonic crystal
fiber. The effects of the Kerr effect, stimulated Raman scattering, and
high orders of dispersion on the formation of temporal localized struc-
tures have been theoretically examined. In the spectrum domain, these
nonlinear solutions correspond to combs.

We performed a real order parameter description leading to the
derivation of a Swift–Hohenberg type of equation with a nonlocal
delayed response. Due to the presence of stimulated Raman scattering,
the resultant Swift–Hohenberg equation is nonvariational, which means
that there is no potential or Lyapunov functional to minimize. We
show that this equation supports traveling waves solutions. We have
characterized them in the supercritical regime. The threshold as well
as the speed are estimated.

In the subcritical regime where periodic traveling solutions coexist
with stable background (CW solution), both bright and dark moving
localized structures are stabilized. These structures are asymmetric
and direct numerical simulations have indicated that both structures
have an overlapping domain of coexistence. By using a continua-
tion algorithm, we have established their bifurcation diagram and
estimated their velocity. More importantly, the stimulated Raman scat-
tering breaks the reflection symmetry and destroys the homoclinic
snaking bifurcation structure, allowing for isola stacks of dark localized
states to form. This is in contrast with reversible systems that possess
the reflection symmetry where the bifurcation diagram consists of two
intertwined snaking curves.

The full LLE has been numerically simulated to demonstrate proof of
isolas branches of solutions. As a function of the injected field strength,
single peak and bounded states of localized branches of solutions have
been constructed. Note that there have been reports of other type of
localized structures with varying width [37,39,40]. These solutions
arise from front interaction, need bistability between CWs for their
formation, and exhibit a collapsed snaking type of bifurcation in their
bifurcation structure. Contrastingly, the localized states described here
are distinct in a number of ways: they have a finite size determined
by the frequency that is the most unstable; their formation does not
necessitate bistability; and their bifurcation diagram exhibits behavior
akin to an isola stack. Finally, we have provided a geometrical inter-
pretation of the impact of broken reflection symmetry mediated by the
stimulated Raman scattering on the formation of isola stacks.
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Appendix

A.1. Derivation of the Swift–Hohenberg equation with delayed nonlocal
response

The purpose of this section is to present the derivation of a Swift–
Hohenberg with a delayed nonlocal response, i.e., the stimulated Ra-
man scattering. To do that, we explore the fast-slow time dynamics
of the generalized LLE Eq. (1), in the neighborhood of the critical
point associated with nascent bistability. At this second-order critical
point that marks the onset of a hysteresis loop, the output versus input
characteristics have an infinite slope, i.e., 𝜕𝐸𝑖∕𝜕|𝐸𝑠| = 𝜕2𝐸𝑖∕𝜕|𝐸𝑠|

2 = 0
where |𝐸𝑠| is the CW solutions of Eq. (1) that satisfy 𝐸2

𝑖 = |𝐸𝑠|
2[1+(𝛥−

|𝐸𝑠|
2)2]. The coordinates of the critical point associated with bistability

are [45]

𝐸𝑐 = (3 − 𝑖
√

3)
𝐸𝑖𝑐
4

, 𝐸2
𝑖𝑐 =

8
√

3
9

, and 𝛥𝑐 =
√

3. (10)

To explore the vicinity of the second-order critical point, we define a
small parameter 𝜖 which measures the distance from the critical point
associated with the bistability as

𝛥 = 𝛥𝑐 + 𝛿𝜖2. (11)

We then expand the input field amplitude, and the slowly varying
intracavity electric field in terms of 𝜖 as

𝐸𝑖 = 𝐸𝑖𝑐 + 𝑠1𝜖 + 𝑠2𝜖
2 + 𝑠𝜖3 +⋯ , (12)

𝐸 = 𝐸𝑐 + 𝜖(𝑢0, 𝑣0) + 𝜖2(𝑢1, 𝑣1) (13)
+ 𝜖3(𝑢2, 𝑣2) +⋯

where 𝑢𝑖 and 𝑣𝑖 denote the real and the imaginary parts of the intra-
cavity field. Our goal is to derive a slow time and slow space amplitude
equation. A preliminary analysis indicates that we need to consider
a small second-order dispersion coefficient 𝛽2 ≡ 𝜖𝛽 to have bounded
solutions in both slow and fast time. We seek corrections to the steady
states at criticality that depend on slow variables 𝑡 = 𝜖2𝜁 and 𝜏 =
31∕4𝜖𝑇 . We assume in addition that the strength of the delayed Raman
effect is small, i.e., 𝑓𝑟 → 𝑓𝜖2, and we set the 𝛽4 value to one. Replacing
the above expansions in the generalized Lugiato–Lefever Eq. (1), we
obtain at the leading order in 𝜖: 𝑠1 = 0 and 𝑢0 =

√

3𝑣0. At the next
rder 𝜖2, we obtain 𝑠2 =

√

𝛿∕2
√

3. Finally at 𝜖3, we get

𝜕𝑢0 = 𝑠 +

(

𝛿
√

−
2𝑓

)

𝑢0 −
4
√

𝑢30 (14)

𝜕𝑡 3 3 3 3
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k
𝜏

R

+
𝛽
√

3

𝜕2𝑢0
𝜕𝜏2

− 1
√

3

𝜕4𝑢0
𝜕𝜏4

+
2𝑎𝑓
3 ∫

𝜏

−∞
𝑒
− 𝜏0(𝜏−𝜏

′)
𝜏2

sin
[

𝜏0(𝜏 − 𝜏′)∕𝜏1
]

𝑢0(𝜏′)𝑑𝜏′,

With the following changes of parameters 𝑡 → 33∕2𝑡∕4, 𝜂 = (33∕2∕4)𝑠,
𝜇 =

√

3(
√

3𝛿 − 2𝑓 )∕4, and 𝛽 → 3∕4𝛽, we obtain the Swift–Hohenberg
quation with stimulated Raman scattering Eq. (2), where the new
ernel function is defined as 𝜙(𝜏) =

√

3∕2𝑎𝑓 exp−𝜏0(𝜏−𝜏′)∕𝜏2 sin(𝜏0(𝜏 −
′)∕𝜏1).
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