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a b s t r a c t

Nonreciprocally coupled systems present rich dynamical behavior such as unidirectional
amplification, fronts, localized states, pattern formation, and chaotic dynamics. Fronts
are nonlinear waves that may connect an unstable equilibrium with a stable one and
can suffer a convective instability when the coupling is nonreciprocal. Namely, a state
invades the other one, and due to boundary conditions, the front stops and creates a
boundary layer. Unexpectedly, in nonreciprocal coupled systems, we observe arbitrarily
large boundary layers in the convective regime when the condition at the fixed edge
does not match the equilibrium value. We analytically determine the boundary layer size
using map iterations; these results agree with numerical simulations. On the other hand,
if one of the boundary conditions matches the unstable equilibrium state, the boundary
layer size diverges; however, due to the computer numerical truncation, it is finite in
numerical simulations. Our result shows that, in nonreciprocally coupled systems, this
mismatch in the boundary condition is relevant in controlling the boundary layer size,
which exhibits a logarithm scaling with the mismatch value.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

It is a known matter that extended systems exhibit a boundary layer when two or more phases compete to
ominate the system dynamics; they can originate from geometrical or topological aspects [1–3], forces driving different
hases [1,3], or the boundary conditions [2,4], to mention a few. One example is nematic liquid crystal layers subjected to
trong anchoring and electric fields. The elastic forces try to balance with the electrical ones leaving the mean orientation
f molecules with a profile that connects two different states. A common example is the boundary layer of viscous flows
assing through an obstacle or inside a pipe. The velocity profile needs to satisfy the no-slip condition and has to connect
ith the asymptotic flow far from the obstacle [4,5]. Both examples exhibit a thin (compared with the system size)
oundary layer, in which the profile of the field has sharp changes near the edges of the respective system. Hence, the
oundary layers are produced by imposing ‘‘uncomfortable’’ conditions at the boundaries. Note that boundary layers have
ifferent physical properties in comparison to the system bulk [4–6], such as the one exhibited by obstacles immersed
n a flow, see Ref. [5]. In general, analytical solutions of boundary layers are not accessible, making therefore numerical
imulations a useful tool to characterize them.
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Fig. 1. Absolute-convective threshold. Panel (a) depicts the u = 0 as absolutely unstable; that is, perturbations propagate in both directions. Panel
b) shows the system in the absolute-convective instability threshold, where the left flank of the perturbation has exactly zero speed. Panel (c)
llustrates the u = 0 state as convective unstable, where perturbations grow up and propagate towards the right flank.

A simple 1D scalar model to study the boundary layer is population propagation (when a fixed boundary condition
s considered), particularly motivated by the spread of genes and diseases. This type of system is modeled by a simple
eaction–diffusion equation known as the Fisher–Kolmogorov–Petrovskii–Piskunov equation (FKPP equation) [7,8]. This
odel is characterized by including the nonlinear response of the logistic model plus a diffusive transport process. Then,

he system is characterized by having two equilibria, one stable (u = 1) and the other unstable (u = 0), where u accounts
for the scalar field. In order to obtain a boundary layer, a fixed (Dirichlet) boundary condition must be considered. Note
that the other flank boundary does not affect the above-mentioned boundary layer and, for example, can be considered
as zero flow (Neumann). The edge with the fixed condition is settled to the unstable equilibrium value. When the system
starts in the unstable state u = 0 and is locally disturbed, the emergence of two counterpropagating fronts moving towards
the system edges are observed so that the stable state, u = 1, invades almost the entire system. These nonlinear waves
are known as Fisher–Kolmogorov–Petrovskii–Piskunov fronts (FKPP fronts) [7–11]. Due to the fixed boundary condition
at the border, a boundary layer is established between the unstable and stable state, and its size is proportional to the
square root of the diffusion coefficient. The above scenario changes radically when one considers a drift or advection
term in the direction towards the flank with zero flow. When the drift coefficient is small, the boundary layer is slightly
modified; however, when this coefficient overcomes a critical value, the system exhibits an absolute–convective instability
(triggered by the advection), and therefore the u = 0 state invades the system. In the latter case, the system does not
present a boundary layer. Fixing a reference frame to the edges, for zero advection, the u = 0 state is said to be absolute
unstable, meaning that perturbations over this state will propagate to the whole system, as seen in Fig. 1(a). On the other
hand, for high enough advection, the u = 0 state will transit to be convective unstable at the absolute-convective instability
threshold as seen in Fig. 1(b). Increasing further the advection, the propagation grows in a co-mobile frame, but in the
edges reference frame, perturbations decay for infinite time, see Fig. 1(c).

The above-mentioned physical systems are described by continuous equations. However, this description fails to cap-
ture some phenomena observed in real systems. Note that real macroscopic systems can be approximated by continuous
equations; nevertheless, they are intrinsically discrete. This means they are composed of a large – but finite – number
of elements that can interact with each other. Likewise, numerical simulations of continuous descriptions are performed
in discrete lattices. Surprisingly, the discrete nature of systems has measurable consequences on the macroscopic world,
such as the dislocation dynamics observed in crystals that can only be explained by the Peierls-Nabarro potential [12], the
front propagation in discrete systems presenting hopping dynamics [9,10,13], the dispersion of propagating waves [14],
or the induction of localized structures [14], to mention a few. In the above examples, the physical principle of reciprocity
governs the coupling between the elements, that is, each element that constitutes the system under study is symmetrically
coupled to its neighbors [15]. Recently, different experiments have implemented nonreciprocal coupling, generally by
breaking the spatial-reflection symmetry. As a consequence of the loss of this symmetry, in extended systems, one expects
the perturbations to generate waves that favor specific directions of propagation. More precisely, nonreciprocal couplings
are achieved by using rotating fluids [16], temporally modulated coupling elements [17,18], elastic metamaterials [19],
or active robotic metamaterials [20].

The study of boundary layers has focused on continuous systems with various boundary conditions. To our knowledge,
few systematic studies have been performed on boundary layers in discrete and nonreciprocal nonlinear systems.
Moreover, recently it has been shown how nonreciprocal coupling in nonlinear coupled damped oscillators is responsible
for convective instabilities, front modulation, and even pattern formation [21]. Our work aims to unveil the boundary
layer formation on discrete systems and the nonreciprocal coupling effect on them based on two prototypical models. In
the continuous limit, this kind of coupling is responsible for advection and may induce an absolute–convective instability
[20,21]. Theoretically, we derive the condition for the convective instability of solutions connecting an unstable with a
stable equilibrium in nonreciprocally coupled nonlinear systems. When the fixed boundary condition value mismatches
2
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Fig. 2. Nonreciprocal Frenkel-Kontorova system. (a) Schematic representation of a chain of pendula with nonreciprocal coupling. The cylinder
llustrates a nonreciprocal torsion spring. ui accounts for the ith pendulum angle. This variable has its origin in the upside-down position. v stands for
he speed of wavefront propagation. (b), (c), (d), and (e) illustrate the angle profile as a function of their index i and the effect of the nonreciprocal
lastic coupling α on FKPP fronts. αc accounts for the nonreciprocal critical elastic coupling that gives rise to absolute–convective instability.

ith the unstable equilibrium, a boundary layer arises; otherwise, systems exhibit an absolute–convective instability.
nexpectedly, we observe arbitrarily large boundary layers; thus, we call them giant boundary layers. We propose a
ethod to predict the boundary layer size based on a recurrence relation describing the equilibrium state that shows
xcellent agreement with the numerical findings. Our analysis illustrates the importance of the convective instability in
KPP fronts in determining the boundary layer size, where an abrupt shift of its size is observed at the instability. This
nstability creates two regimes, one where the boundary layer does not depend on the mismatch between the boundary
ondition and the unstable equilibrium value, and the other where a logarithmic law is obtained for the boundary layer
ize as a function of the boundary condition value.

. Systems with nonreciprocal coupling

Two prototypical models that exhibit front propagation into an unstable state, FKPP fronts, are the Frenkel-Kontorova
12] and the Fisher–Kolmogorov–Petrovskii–Piskunov model [7,8]. The FKPP equation was proposed to model the spread
f genes mutations and populations (see the textbook [22] and reference therein). The Frenkel-Kontorova model has
een derived from several physical situations, including, for example, crystal lattices, torsion chain of pendula (cf.
ig. 2), coupled Josephson junctions, and coupled nonlinear oscillators [12]. In the previous examples, the coupling
echanism usually preserves the space reflection symmetry of the system; namely, they exhibit a reciprocal coupling [15].
ecently, several techniques, methods, and experiments have been developed to break the reciprocity and study the
ffect of nonreciprocal coupling [16,19,20,23]. Particularly, robotic metamaterials have been employed to explore energy
ropagation when space reflection symmetry is absent in linear oscillator chains. In these systems, it was shown that
erturbations propagate asymmetrically [20], that is, waves are amplified in a preferred direction. Indeed, nonreciprocal
oupling allows conducting of the energy in a desired direction. Furthermore, it led to the study of nonreciprocally coupled
hains of nonlinear oscillators and front solutions in them [21]. To extend the understanding of nonreciprocal coupling
nd its effects, we analyze the overdamped discrete extended one-dimensional model given by

u̇i = f (ui) + (D − α)(ui+1 − ui) − (D + α)(ui − ui−1), (1)

where ui(t) describes the variable under study for the ith element of the system, for example, the displacement of
the ith oscillator with respect to its equilibrium, the population of a given specie in a specified region, or the phase
of a given superconductor, to mention a few. α and D account for the nonreciprocal and reciprocal coupling strength,
respectively. The chain consists of (N+1) basic elements, which local dynamics is described by the nonlinear function or
reaction term f (ui), and each element interacts with its nearest neighbors. The nonlinear functions that are considered
in this work are f (ui) = sin(ui) (Frenkel-Kontorova nonlinearity) and f (ui) = ui(1 − ui) (Fisher–Kolmogorov–Petrovskii–
iskunov nonlinearity). Boundary conditions u0 = ϵ (Dirichlet) and uN+1 = uN−1 (zero flow) are imposed. Note that the
ransformation symmetry i ↔ N− i is absent as a consequence of boundary conditions. Likewise, the reflection symmetry
± 1 → i ∓ 1 is absent when α ̸= 0.
It is worth noting that in Eq. (1), if one defines the coordinate x = il0, where l0 is the distance between the basic

lements, the continuous limit appears as D and α go to infinity at the same time as l0 vanishes, such that Ddiff ≡ Dl20 and
≡ 2αl remain finite. With these assumptions, the coupling terms become a diffusive transport and a linear advection.
adv o
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Fig. 3. Schematic representation of the local dynamics. Example of a reaction term f (u) appearing in Eq. (1) as a function of u.

Note that the linear advection can be eliminated using a co-mobile reference frame for infinite systems. Despite the
usefulness of the continuous limit to approximate the system solutions [20], we have recently proven that nonreciprocal
coupling in discrete systems induces instabilities that are not present in their continuous limit [21].

Without loss of generality, one can choose two reference states such that f (0) = 0, f ′(0) > 0, f (a) = 0, and f ′(a) < 0,
where ui = 0 and ui = a are equilibria (i = 0, 1, 2, . . . ,N). Fig. 3 depicts the typical reaction term under consideration.
We assume that there exists a solution connecting both equilibria – a FKPP front – where ui = 0 and ui = a are unstable
and stable states, respectively. Fronts are particle-type solutions characterized by a position and core. In particular, the
position is defined as the coordinate or index with the greatest spatial variation.

2.1. The overdamped Nonreciprocal Frenkel-Kontorova model

When f (ui) = sin ui and α = 0 in Eq. (1), the model is known as the overdamped Frenkel-Kontorova model [12]. When
inertia is not neglected, the Frenkel-Kontorova model naturally arises in a variety of systems such as crystal lattices,
nonlinear oscillators, and Josephson junctions [12]. For large enough dissipation, a first-order equation can be written.
Thus, the generalized overdamped Frenkel-Kontorova model with nonreciprocal coupling reads

u̇i = sin ui + (D − α)(ui+1 − ui) − (D + α)(ui − ui−1). (2)

A physical example is depicted in Fig. 2(a), which represents a chain of pendula where the upside-down and upright
position corresponds to ui = 0 and ui = π , respectively. Note that the small cylinder illustrates a nonreciprocal
coupling element and, at the border of the chain, the colored pendulum has a fixed position slightly different from
zero. Moreover, note that we have swapped the usual equilibria for numerical convenience (commonly one finds in
the literature f (ui) = − sin ui, which is recovered with a linear transformation). Then, the mismatch boundary condition
can read u0 = ϵ, with ϵ the deviation from the unstable equilibrium value. Fig. 2(b) and 2(c) show the typical FKPP front
profile propagating to the left (into the unstable state) with speed v(D, α), corresponding to the absolute regime. Panel 2(d)
shows a critical situation when the speed of the front is zero, i.e., the system exhibits an absolute convective–instability
for a critical value of the nonreciprocal coupling parameter. Finally, panel 2(e) depicts the front in the convective regime,
i.e., when the front propagation direction is reversed, spreading the zero equilibrium into the non-null state. Similar
models to Eq. (2) can be found in the literature [21,24].

2.2. Nonreciprocal Fisher–Kolmogorov–Petrovskii–Piskunov model

When one considers f (ui) = ui(1 − ui) and α = 0, Eq. (1) is known as the Fisher–Kolmogorov–Petrovskii–Piskunov
model, originally written to describe combustion processes or the growth of a mutation in a population. It serves as
a general model for population growth and saturation, being capable of describing the number of animals, bacteria,
vegetation, and humans [22]. The generalization of the FKPP model that includes the nonreciprocal coupling is

u̇i = ui(1 − ui) + (D − α)(ui+1 − ui) − (D + α)(ui − ui−1). (3)

Similar equations can be found in [25–27], where nonreciprocal terms account for inhomogeneous food supply or
external flows driving population movements, such as tides or winds.

3. Mean velocity of FKPP fronts

The calculation of the front propagation speed has been addressed in several continuous or discrete physical examples
with various techniques [10,11]. The main difference between front propagation in continuous and discrete media is that
in the former, the front speed is constant, whereas, in the latter, it is characterized by having hopping dynamics [28]. Here,
we employ a similar method to determine the front mean velocity in discrete media following Refs. [10,21]. Considering
4
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Fig. 4. Giant boundary layers in discrete systems. Examples of giant boundary layers of non-reciprocally coupled discrete systems, parameters
D = 1.5 and α = 1.4 for both the overdamped Nonreciprocal Frenkel-Kontorova model Eq. (2) and the Fisher–Kolmogorov–Petrovskii–Piskunov
odel Eq. (3). Panels (a) and (c) show the initial and final state of ui . Panels (b) illustrate the spatiotemporal evolution of the system. (d) Phase
ortrait representation of the initial and final front profile.

Fig. 5. Giant Boundary layer size characterization. (a) Boundary layer size Nc as a function of the parameters (D, α) and the boundary condition
alue ϵ for model Eq. (2). (b) and (c) show the dependence of Nc in different planes of constant ϵ value, corresponding to log10 ϵ = −20 and

log10 ϵ = −300, respectively.

the ansatz un ∼ ek(n+⟨v⟩t) in Eq. (1)—where k and ⟨v⟩ correspond to the front steepness and mean velocity—after
straightforward calculations, one obtains

⟨v(k)⟩ =
f ′(0) − 2D

k
+ 2

(
D cosh k − α sinh k

k

)
, (4)

where f ′ accounts for the derivative of the f function. For bounded perturbations, the front velocity ⟨v(k)⟩ tends to its
minimum with respect to k, ⟨v⟩min [11]. Considering this ⟨v⟩min, one can determine the critical parameter αc for which
the front changes its propagation direction. Namely, it suffers an absolute-convective instability at [21]

D =
f ′(0)
4

+
α2
c

f ′(0)
. (5)

Note that for the models considered here, f ′(0) = 1. Additionally, replacing the continuous limit approximations D =

Ddiff/l20 and α = αadv/2l0 in the previous formula, one recovers the usual absolute–convective instability threshold in the
continuous limit αadv = 2

√
Ddifff ′(0) [29], corresponding exactly to the speed of FKPP fronts in the continuum limit [30].

. Numerical observations

Numerical simulations of Eqs. (2) and (3) were conducted using a Runge–Kutta of fourth order algorithm, with the
forementioned boundary conditions (u0 = ϵ and uN+1 = uN−1). Simulations are initialized with the initial condition

ui = 0 for i = (2, 3, . . . ,N) and u1 = 0.1, corresponding to a small bounded perturbation near the left flank edge of
the system. Surprisingly, the FKPP fronts propagation is frustrated due to the left boundary condition and the discrete
nature of the system. Fig. 4 shows the failure for models Eqs. (2) and (3). We can see that the front propagates with a
constant average speed and abruptly stops, frustrating its propagation. Let us denote the position where the front stops as
Nc (the equilibrium front position), which corresponds to the boundary layer size. Note that the final profile of the front,
i.e., its profile when the propagation stops, is different from the one it has while is propagating, see Figs. 4(d). A similar
phenomenon is observed in the phase propagation of parametrically driven systems [31].

For N > Nc , the boundary layer size Nc is determined numerically by direct simulation of the dynamical system.
Fig. 5(a) shows the boundary layer size in the parameter space (D, α, ϵ). Panels 5(b) and 5(c) show the (D, α) dependence
5
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Fig. 6. Convective instability of FKPP fronts and boundary layer size. (a) and (b) exhibit the Nc dependence on parameters close to the convective
instability of FKPP fronts characterized by D = 1/4+ α2

c . Insets show a horizontal cut where a change in behavior is observed at the instability. For
(a), log10 ϵ = −10. For (b), log10 ϵ = −320.

or fixed values of ϵ corresponding to log10 ϵ = −20 and log10 ϵ = −300. Note that the phenomenon cannot be observed
f N < Nc because the boundary layer size would be greater than the system size, remaining unnoticeable.

We further study the region near the absolute-convective instability curve given by Eq. (5). One can observe that this
ifurcation separates regions of small and large boundary layers depending on the boundary condition value, as seen in
ig. 6. The effect of the absolute-convective instability on boundary layer size is amplified when the boundary condition
alue ϵ goes to zero approaching the equilibrium value, as seen when comparing the insets of Figs. 6(a) and 6(b).

. Equilibrium position of front-like solutions

To shed light on the steady states of the model Eq. (1), we use a method similar to the one used in Ref. [32]. This
orresponds to solving the recurrence relation or map when one imposes the equilibrium condition u̇i = 0 and the
boundary conditions. In our case, u0 = ϵ is the initial condition for the map, and its recurrence relation reads

0 = f (ui) + (D − α)(ui+1 − ui) − (D + α)(ui − ui−1). (6)

Note that the above equation corresponds to a bi-dimensional map [33]. In the case of D = α, the map simplifies because
equation (6) becomes a one-dimensional map. This corresponds to a unidirectional type of coupling, with only backward
feedback being applied in the chain. Despite the particular parameter values, this limit illustrates in a simple way the
equilibrium front position calculation Nc . In the unidirectional coupling limit, the map recurrence reads

ui = ui+1 −
f (ui+1)
2D

≡ g(ui+1),

u0 = ϵ. (7)

The value of Nc can be found iterating the map (7), and seeking the iteration step i∗ in which the function |ui∗ | − a/2
changes its sign, where a corresponds to the non zero equilibrium value (cf. Section 2). As Nc rarely coincides with an
element position of the discrete chain; we interpolate linearly |ui∗ | − a/2 between i∗ and i∗ + 1, then, one can find a
continuous value of Nc looking for the zero of the interpolated function.

To iterate map (7) from an initial condition, one generally needs to numerically invert the relation to obtain the map
ui+1 = g−1(ui). To illustrate the method, we use the nonreciprocal FKPP model Eq. (3). In this case, one can obtain the
recurrence relation analytically

ui+1 =
1 − 2D +

√
(1 − 2D)2 + 8Dui

. (8)

2

6



D. Pinto-Ramos, K. Alfaro-Bittner, M.G. Clerc et al. Communications in Nonlinear Science and Numerical Simulation 125 (2023) 107391

u
f
i

c
i
i
t
(
s
d
i

6

t
s
o

T
a
r

R

T

Fig. 7. Map iteration representation. Iterations of the resulting recurrence relation for the stationary solutions of the Nonreciprocal Fisher–
Kolmogorov–Petrovski–Piskunov model (3). (a) Bi-dimensional map for D = 0.6 and α = 2. (b) Unidirectional coupling case for D = α = 0.6.
0 value is the initial condition of the map, which corresponds to the boundary condition of the discrete equation. (c) Boundary layer size as a
unction of the mismatch ϵ for the unidirectional coupling case D = α for different values of D. Dots are the boundary layer size after equilibrium
s reached in the numerical simulation of Eq. (3). Dashed lines are obtained from iterating map (8).

Fig. 7 shows the iteration of map (6) for the FKPP model, that is, f (ui) = ui(1 − ui). In particular, Fig. 7(a) shows the
ase when α ̸= D, corresponding to the bi-dimensional map where the dots exemplify a starting point (uk, uk−1) and
ts resulting value uk+1. Fig. 7(b) illustrates the map iteration when α = D. The unidirectional coupling case perfectly
llustrates the fact that the heteroclinic orbit requires an infinite number of iterations, as predicted for ϵ = 0 and,
herefore, in agreement with the convective regime. For any other value of ϵ, the number of iterations to reach ui = 0.5
a/2 = 0.5 for FKPP model Eq. (3)) is finite, and can be determined numerically avoiding the singularity in the number of
teps as one approaches fixed points. Finally, one can compare the results obtained for the boundary layer size Nc using
irect numerical integration of the motion equations versus the map iteration approach, showing a perfect agreement as
llustrated in Fig. 7(c).

. Analytical approximation for Nc

A naive treatment of the problem suggests that (supported by its local linear dynamics and dimensional analysis) the
ime in which a perturbation u = ϵ reaches a O(1) value corresponds to τ ∼ − log(ϵ). This, together with a characteristic
peed v(D, α) gives a characteristic length Lc ∼ −v(D, α) log(ϵ). Indeed, for α > αc one can fit the boundary layer size
btained by direct numerical simulations with the formula

Nc(D, α, ϵ) = c(D, α) − K (D, α) log(ϵ). (9)

he previous Eq. (9) is found by solving the linear dynamics of the map Eq. (6). To achieve this, one can define pi = ui−ui−1
nd solve equation (6) for ui+1. Remind that most steps of the iteration occur around the fixed point u = 0 and, for this
eason, we linearize the dynamics around this point, obtaining

pi = ui − ui−1, (10)

ui+1 =
−f ′(0)ui + (D + α)pi

D − α
+ ui. (11)

eplacing pi = Abi, ui = Aqbi, and imposing u0 = ϵ, one finds

ui = ϵbi ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ϵ

(
D−1/2
D−α

−

√(
D−1/2
D−α

)2
−

D+α
D−α

)i

if αc < α < D,

ϵ

(
D−1/2
D−α

+

√(
D−1/2
D−α

)2
−

D+α
D−α

)i

if α > D.

(12)

Then, replacing i = Nc and uNc = 1 in Eq. (12) and solving for Nc (taking into account both signs of the different intervals),
one obtains

Nc = −
log ϵ

log b
≡ −K (D, α) log ϵ. (13)

he previous relation allows obtaining the main features of Nc , that is, the logarithmic relation with ϵ and the constant
of proportionality K (D, α). From here, one can deduce that the constant c(D, α) of Eq. (9) accounts for corrections to the
linearized map approximation and the election of uNc . One can see from Fig. 8 that for α > αc the value of c(D, α) is a
small constant. A perfect agreement between the predicted and numerically obtained values for K (D, α) is also seen.
7
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Fig. 8. Giant boundary layer analytic characterization. Values of the fitting constants K and c for the boundary layer size Nc from formula (9).
Panels (a) and (b) show K and c as a function of α, respectively. Dots correspond to the numerically obtained values. Dashed lines are the analytical
prediction of Eq. (13). The vertical gray lines highlight the value of αc (D).

7. Contrast with boundary layers in reciprocally coupled systems

The theory developed in the previous sections predicts the boundary layer size of nonreciprocally coupled nonlinear
systems for α > αc =

√
f ′(0)D − f ′2(0)/4. Moreover, it is depicted how these boundary layers diverge in size in the limit

s ϵ → 0, a phenomenon not observed in systems with reciprocal coupling. These systems exhibit boundary layers of
inite size independently of the mismatch value ϵ. For ϵ ≪ 1, the effect of the mismatch is negligible, and the boundary
ayer size is mainly determined by the reciprocal coupling coefficient D. As mentioned earlier, in the continuum limit,
he dependence of the boundary layer size on Ddiff is a square root function, that is, Lc ∼

√
Ddiff. Then, considering that

c = Nc l0 and Ddiff = Dl20, it is straightforward to obtain that N reciprocal
c ∼

√
D. To deduce the previous relationship

analytically, we consider the continuum limit of Eq. (2) in the steady-state regime

0 = sin u + Ddiff∂xxu, (14)

hich is a Newton-type equation for a fictitious particle of equivalent mass Ddiff, and it has a closed-form solution u(x)
ven if we change the force-like term, sin u, by another well-behaved function. Imposing the boundary condition u(0) = ϵ
nd, after straightforward calculations, the solution to Eq. (14) is

Λ(u) − Λ(ϵ) =

√
2

Ddiff
x, (15)

here Λ(u) =
√
2arctanh [sin(u/2)]. Defining the position of the boundary layer following the previous section,

.e., u(Lc) = 1 and replacing it in Eq. (15), one immediately obtains Lc =
√
Ddiff[Λ(1)−Λ(ϵ)]/

√
2. Note that this expression

escribes fairly well the boundary layer size Nc , despite it was calculated in the continuum limit. Hence, the ratio between
he size of the boundary layers when α > αc and α = 0 is

S ≡
Nc(α,D, ϵ)

N reciprocal
c (D, ϵ)

=
√
2

K (α,D) log ϵ−1

√
D[Λ(1) − Λ(ϵ)]

. (16)

ote that Λ(1) is a constant of order one that changes for each model (different reaction functions f ). It is easy to check
that as ϵ → 0, then S → ∞, i.e., there is a giant boundary layer. Additionally, S only grows with α because K (α,D)
monotonically increases as function of it, see Fig. 8(a). Fig. 9 illustrates the dependence of N reciprocal

c (D, ϵ) obtained by
direct numerical simulations of Eq. (2). In particular, panel (a) shows the dependence N reciprocal

c ∼
√
D and panel (b)

exhibits that the dependence on ϵ is negligible. Additionally, panels (c), (d), and (e) show boundary layers, with α = 0,
α < αc , and α > αc , respectively, in a chain of coupled pendula obtained numerically from Eq. (2). From this chart, one
can see that for α < αc , the boundary layer is composed of a few pendulums, contrasted with the case α > αc in which
a counter-intuitively large number of pendulums form a giant boundary layer.

8. Discussion and perspectives

The results obtained in this work describe a phenomenon that is unavoidable numerically and experimentally. The
observation of giant boundary layers arises when a system has the following three ingredients: individual (local) nonlinear
8
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Fig. 9. Characterization of boundary layers in the reciprocal case and visual comparison with giant boundary layers. (a) and (b) illustrate the
dependence of the boundary layer size in the reciprocal case on the parameters, Nc (α = 0,D, ϵ) ≡ N reciprocal

c (D, ϵ). (c), (d), and (e) show a visual
representation of the boundary layers in a chain of pendulums with data obtained from direct numerical integration of Eq. (2) with D = 1, ϵ = 10−3 .
α values are α = 0, α = 0.5, and α = 2, respectively.

dynamics, nonreciprocal coupling, and boundary conditions. In particular, nonlinear dynamics and nonreciprocal coupling
allow for front propagation and the absolute-convective instability. The latter generates counter-intuitive dynamics when
α > αc , allowing the propagation of upside-down pendulums over their intuitively rest state due to gravity. Moreover, if
one considers particular boundary conditions, the giant boundary layer naturally arises.

Boundary conditions may be hard to handle in real-life situations. Furthermore, experiments are generally subjected to
fluctuating drivers that may be stochastic or deterministic. These fluctuations can also be responsible for the formation of
giant boundary layers even if a perfect match at the boundary is considered (ϵ = 0). In this case, the boundary layer size
is dynamic, i.e., it fluctuates around a mean value. The characterization of giant boundary layers subjected to fluctuations
is a work in progress. Boundary layers are affected by the fluctuations, and also other downstream states generated by
the nonreciprocal coupling, such as patterns [21].

Another aspect to have in mind is that, similar to what happens in experiments, boundary conditions can be challenging
to handle in numerical simulations. Both experiments and simulations have finite accuracy in the relevant variables of
the problem under study. Throughout this work, we highlight the numerical difficulties that can arise when handling
arbitrarily small numbers (due to the finite representation of real numbers in computers). Moreover, the limit ϵ → 0
is not accessible, and its application to numerical simulation leads to wrong results (a finite-size giant boundary layer),
where only the analytical theory enlightens the correct solution (an infinite-size boundary layer, or equivalently, the
observation of the convective instability).

Finally, the implications that giant boundary layers could have in real systems are variable and difficult to visualize. The
giant boundary layer composes a region in which the equilibrium states of the nonlinear systems are virtually swapped.
The true equilibrium of the system is reached for the individual elements ui only for i > Nc . For example, in the chain of
pendulums, inside the giant boundary layer, there is stored potential energy that would release once the nonreciprocity is
turned off; in the case of arrays of coupled Josephson junctions, the giant boundary layer would produce a steady current
peaking at the boundary layer position. Finally, in the propagation of populations, the giant boundary layer connects
large regions of negligible population with regions at full capacity. If the population modeled is a disease, a large portion
of healthy individuals could be held inside the giant boundary layer thanks to nonreciprocity. Further development of
nonreciprocal elements will unveil the impact of the naturally arising giant boundary layers.

9. Conclusions

Based on a theoretical and numerical study, we predict how ‘‘imperfections" in the value of boundary conditions induce

the frustration of absolute-convective instability. This establishes a boundary layer whose size is determined with the map

9
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iteration of the resulting equation for the equilibrium. These boundary layers are observed to use almost all of the space,
even for small imperfections; thus, we call them giant boundary layers. The method proposed allows us to determine
the giant boundary layer size or the mismatch in the boundary condition. Our findings show that this mismatch in the
boundary condition for nonreciprocally coupled systems is relevant in controlling the boundary layer size. Moreover, the
results are expected to hold for a great variety of discrete systems exhibiting FKPP fronts with broken spatial reflection
ymmetry.
We highlight that the difficulty of using computers to perform a numerical calculation is the finite resolution. The

aps describing the equilibria of the systems cannot reach all the values in the real axis, making truncation errors. In
ther words, even if one initializes the system without mismatch at the boundary, in a finite number of steps, a boundary
ayer will appear in numerical simulations.
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