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Effect of heterogeneous environmental conditions on labyrinthine vegetation patterns
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Self-organization is a ubiquitous phenomenon in Nature due to the permanent balance between injection and
dissipation of energy. The wavelength selection process is the main issue of pattern formation. Stripe, hexagon,
square, and labyrinthine patterns are observed in homogeneous conditions. In systems with heterogeneous
conditions, a single wavelength is not the rule. Large-scale self-organization of vegetation in arid environments
can be affected by heterogeneities, such as interannual precipitation fluctuations, fire occurrences, topographic
variations, grazing, soil depth distribution, and soil-moisture islands. Here, we investigate theoretically the
emergence and persistence of vegetation labyrinthine patterns in ecosystems under deterministic heterogeneous
conditions. Based on a simple local vegetation model with a space-varying parameter, we show evidence of
perfect and imperfect labyrinthine patterns, as well as disordered vegetation self-organization. The intensity level
and the correlation of the heterogeneities control the regularity of the labyrinthine self-organization. The phase
diagram and the transitions of the labyrinthine morphologies are described with the aid of their global spatial
features. We also investigate the local spatial structure of labyrinths. Our theoretical findings qualitatively agree
with satellite images data of arid ecosystems that show labyrinthinelike textures without a single wavelength.
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I. INTRODUCTION

Self-organization is a universal feature of out-of-
equilibrium systems and is of common occurrence in many
fields of nonlinear science [1–4]. The spontaneous emergence
of self-organized dissipative structures out of a homogeneous
state has been observed in many out-of-equilibrium systems,
including biology, chemical reaction-diffusion systems, fluid
mechanics, nonlinear optics, and laser physics [1–3]. On the
one hand, these systems are subjected to a balance between
a nonlinear effect and a transport or a spatial coupling pro-
cess. On the other hand, they are subjected to a continuous
injection and dissipation of energy. The balance between these
processes triggers the emergence of dissipative structures with
an intrinsic macroscopic scale [2,5,6], which corresponds to
a spontaneous symmetry-breaking instability. Over the past
decades, extensive research has been done to understand the
origins of simple patterns, such as stripes, hexagons, and
squares, from a theoretical point of view [2,7]. However,
nontrivial symmetry patterns, i.e., labyrinths, have gotten little
attention due to their complicated structure, rich in spatial
defects [8,9]. Recently, an attempt to characterize this ubiq-
uitous phenomenon has introduced a quantitative definition of
ideal labyrinthine patterns [10], which satisfy the following:
(i) the disordered patterns are characterized globally by a
powdered ring Fourier spectrum, and (ii) the spatial structures
are described locally by a single wave mode. The ideal adjec-
tive refers to labyrinths with a single dominant characteristic
wavelength, which are observed in controlled physical con-
texts, e.g., ferrofluids, chemical reactions, cholesteric liquid
crystals, block copolymers, metal nanosurfaces, and ferroelec-
tric thin films [11–16].

Self-organized structures arise in plant ecology, where
stressed vegetation biomass can self-organize when resources,
such as water or nutrients, are limited [17–24]. Under these
arid conditions, the plant community displays coherent distri-
butions, which are maintained by facilitative and competitive
processes involving plants and the environment [18]. These
distributions, whose wavelengths range from centimeter to
kilometer scales, are frequently referred to as vegetation pat-
terns. Starting from a uniform cover, as the aridity level is
increased, the first pattern that appears consists of a periodic
spatial distribution of gaps followed by labyrinths and then
spots. This generic sequence has been predicted using various
pattern-forming ecological models. The first paper that dis-
cusses the sequence was [19] in 1999. Later on, the sequence
was analyzed from reaction-diffusion models in 2001 [20] and
2002 [21]. The sequence gaps-stripes/labyrinths-spots as a
function of the aridity has been empirically studied in an arid
region of Sudan [24]. There, the term labyrinth was used to
describe disordered vegetation bands in a flat surface [20–25].
Besides periodic, other aperiodic and localized vegetation pat-
terns have been reported [26–31]. Well-documented localized
vegetation patterns are the fairy circles [32–39]. Localized
vegetation patterns can exhibit curvature instabilities leading
either to the self-replication phenomenon [40,41], or the for-
mation of arcs and spirals [42]. Other alternative hypotheses
for the spatial structure of vegetation self-organization have
been explored, such as random patterns and power-law distri-
butions of patch sizes [43,44].

In ecological systems, the presence of spatial and/or tem-
poral heterogeneities may influence the self-organization of
plant communities. The causes of heterogeneities are fre-
quently related to variations in interannual precipitation,
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FIG. 1. Satellite images of vegetation labyrinths. Self-organization of vegetation observed in (a)(i) Niger (12◦27′50.58′′ N 3◦18′30.76′′E)
and (b)(i) Sudan (11◦18′26.07′′ N 27◦57′58.62′′E). The (ii) insets display a zoom of images in (i) and are characterized by their Fourier
transform |F (k)|2. The (iii) and (iv) insets are local regions of the images in (ii) accompanied by their local Fourier transforms |F (k̃)|2. The
(v) insets correspond to elevation profiles along the green dotted lines in (i). The value of � indicates the difference between the maximum
and the minimum height. The vegetation snapshots and elevation profiles were retrieved from Google Earth Pro software.

occurrences of fire, topographic changes, grazing, soil depth
distribution, and soil-moisture islands [22,45–49]. It makes
sense to infer that one or more of the aforementioned het-
erogeneities control the irregularities in vegetation patterns
(see the labyrinthinelike structures in Fig. 1). In the majority
of the ecological mathematical models, these heterogeneous
effects are not included, resulting in far too ideal vege-
tation patterns, or are approached by stochastic processes
in time [46,47,49,50] or space [51]. To our knowledge,
the role of deterministic heterogeneities in forming differ-
ent labyrinthinelike vegetation patterns and controlling their
possible transitions has not been addressed. Understanding
the conditions under which heterogeneous labyrinths arise is

relevant from an ecological perspective as it sheds light on the
self-organization of vegetation in isotropic real ecosystems
(Fig. 1). Furthermore, the study of these types of vegetation
self-organization can contribute to the discussion on how het-
erogeneities in arid or semiarid systems can avoid catastrophic
shifts [27,51,52], which corresponds to abrupt transitions
between a vegetated cover and bare soil, by establishing ir-
regular vegetation mosaics.

In this article, we investigate theoretically the role of deter-
ministic heterogeneities in shaping labyrinthinelike vegetation
patterns as equilibria in arid and semiarid landscapes. For
this purpose, we use a well-established model for vegetation
biomass, where the effects of heterogeneities are modeled
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as spatial variations around a mean aridity parameter. The
heterogeneities are controlled by their intensity and degree
of correlation. Different equilibria are numerically observed
after the temporal evolution of the biomass. These vegetation
patterns are characterized by their structure factor and their
spatial Fourier transform at a global and local scale. These
tools allow us to differentiate between perfect and imper-
fect labyrinths, and disordered self-organization. We construct
a phase diagram and show that a minimum intensity level
and/or degree of correlation are needed to observe imperfect
labyrinthine patterns. This equilibrium qualitatively resem-
bles the labyrinthinelike patterns observed in nature (Fig. 1).
Finally, we discuss a possible implementation of our classifi-
cation in natural landscapes.

II. LABYRINTHINELIKE PATTERNS IN ECOSYSTEMS

It is crucial to identify whether plants have structures
resembling labyrinths to assess if they fulfill the definition
of a labyrinth proposed recently [10]. Figures 1(a i) and
1(b i) show two examples of labyrinthinelike self-organized
structures in Niger and Sudan, respectively. These vegeta-
tion images can be characterized by their Fourier spectrum
at different scales as shown in insets (ii), (iii), and (iv) of
Fig. 1. The insets (ii) exhibit the disordered feature of the
self-organization at a global scale. The Fourier transform is
nearly isotropic and highly scattered, involving several wave
vectors (powderlike ring spectrum). The insets (iii) and (iv)
of Fig. 1 show the spatial behavior at a local scale. The local
Fourier transforms do not show a dominant single wave vector
pair structure. Specifically, two diametrally opposed peaks are
not visible in the local two-dimensional Fourier transform,
and more complex structures are exhibited. As a result, neither
the landscapes of Niger nor of Sudan meet the criteria for a
perfect labyrinthine pattern [10]. We attribute the departure
from the ideal pattern to the presence of heterogeneities in
the regions shown in Fig. 1. The insets (v) in Figs. 1(a) and
1(b) display the topographic variations of the terrain in Niger
and Sudan, respectively. Indeed, the topography is a source of
spatial heterogeneity for the vegetation local self-organization
[53–55]. In the following, we suppose that these topographic
fluctuations affect the resource distribution on the Niger and
Sudan landscapes.

III. THEORETICAL MODELING APPROACH

We choose to model the emergence of vegetation patterns
from the perspective of symmetry-breaking instabilities of
homogeneous covers in arid or semiarid environments [18].
Particularly, we use an interaction-redistribution approach for
plant community behavior, where the biomass density c =
c(r, t ) at space point r = (x, y) and time t evolves following
a logistic equation that includes nonlocal interactions of the
biomass [33]:

∂t c = c(1 − c)M f (r) − μcMc(r) + DMd (r). (1)

The first term on the right-hand side (rhs) of Eq. (1) models
the rate at which biomass increases and eventually saturates.
The nonlocal function M f (r) = exp[χ f

∫
dr′φ f (r′, L f )c(r +

r′)] accounts for interactions facilitating growth, regulated by

FIG. 2. Equilibrium patterns of Eq. (2) in a square domain of
size L = 240 (arb. units) with κ = 0.6, ν = 0.011, γ = 0.5, and α =
0.125. The temporal evolutions of the spatially averaged biomass
〈b〉 are displayed for the (a) homogeneous case 
 = 0, and the
inhomogeneous cases 
 �= 0 considering both (b) noncorrelated and
(c),(d) correlated heterogeneities. The insets show the respective
equilibria. (e) Bifurcation diagram of Eq. (2). The black lines cor-
respond to the bare state and the blue curves account for the uniform
vegetated state in the homogeneous case 
 = 0. The continuous
(broken) lines indicate that these analytical solutions are stable (un-
stable). In the shaded region, limited by ηl and ηr , the labyrinthine
patterns in homogeneous conditions are stable. In this subfigure, 〈b〉
is the mean value over 30 random initial conditions around b+.

an intensity χ f . These effects are controlled by the kernel
function φ f , whose range of influence is of the order of
the plant’s aerial structure L f . The second term on the rhs
of Eq. (1) represents the biomass death processes. Mc(r) =
exp[χc

∫
dr′φc(r′, Lc)c(r + r′)] accounts for interactions en-

hancing biomass decay with an intensity χc. The parameter
μ is a measure of the mortality-to-growth rate ratio of plants
in the absence of interaction with others, which can be seen
as resource scarcity or aridity [18,56]. This negative feed-
back acts over distances of the order of the root length Lc

with an intensity χc and is controlled by the kernel function
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φc. A cooperative measure of the ecological system can be
introduced as χ f − χc. The last term in Eq. (1) incorpo-
rates seeds dispersion with a diffusion parameter D, where
Md (r) = ∫

dr′φd (r′)[c(r + r′) − c(r)], and φd (r′) accounts
for the biomass transport between positions r and r′.

The integrodifferential equation (1), close to the double
limit of nascent bistability (between uniform vegetation cover
and bare soil) and the symmetry-breaking instability of the
uniform cover, can be reduced to a partial differential equa-
tion. The reduced model reads [19,33]

∂t b = −ηb + κb2 − b3 + (ν − γ b)∇2b − αb∇4b, (2)

where b = b(r, t ) is the state variable associated to the
biomass density close to nascent bistability. The parameters
η and κ are the deviations of the aridity and cooperativ-
ity critical parameters, respectively. ν and γ are linear and
nonlinear diffusion coefficients, respectively. The last term is
a nonlinear hyperdiffusion controlled by α. The parameters
{ν, γ , α} depend on the strength of the competitive feed-
back, the seed’s diffusion, and the shape of the kernels φ f ,
φc, and φd [30]. The model equation (2) has three homoge-
neous states: the bare state b = 0 [black line in Fig. 2(d)]
and b± = (κ ±

√
κ2 − 4η)/2 [blue line in Fig. 2(d)]. The

b± equilibria are connected by a saddle-node bifurcation at
ηsn = κ2/4 with κ positive. The uniform solution b− is always
unstable. For small aridity, the vegetated state b+ is stable.
When the aridity is increased the uniform cover suffers a
spatial instability. This spatial instability with critical wave-
length λc = 2π

√
2α/(γ − ν/bc) occurs at η ≡ ηc, where ηc

satisfies the implicit condition 4αb2
c(2bc − κ ) = (γ bc − ν)2

with bc ≡ b+(ηc). Hence, the homogeneous cover b+ is unsta-
ble to patterns within the range ηc � η � ηsn [see Fig. 2(d)].
By fixing the parameters {κ, ν, γ , α} in Eq. (2), labyrinthine
patterns are stable within the aridity range [ηl , ηr] as shown in
Fig. 2(d).

To model the effect of heterogeneities in the labyrinths
of Eq. (2), in principle, we must promote all parameters
to be spatially dependent; that is, one should consider five
functions [η(r), κ (r), α(r), ν(r), γ (r)], which makes the the-
oretical and numerical studies cumbersome. To shed light on
the effect of heterogeneities in the labyrinthine patterns, we
promote the aridity parameter to be spatially dependent η(r)
and keep the other parameters homogeneous. Hence, in the
following analysis, we focus on the model equation (2) with
heterogeneous aridity η(r) = η + √


ξ (r), where η accounts
for the mean aridity. This average value is inside the aridity
range [ηl , ηr]. ξ (r) models the spatial variations with zero
mean value 〈ξ (r)〉 = 0 and intensity level 
. The hetero-
geneities ξ (r) can be spatially independent (delta correlated)
or correlated. To obtain a spatially correlated function ξ (r)
characterized by a correlation length d , we consider a relax-
ation diffusive process with a random initial condition, which
evolves until a given time [57]. Note that the results presented
below are qualitatively similar if all parameters are spatially
dependent.

IV. RESULTS

Let us introduce the spatially averaged biomass 〈b〉 ≡∫ L
0

∫ L
0 b(r, t )dx dy/L2, where L2 is the system size. The charts

in the left panel of Fig. 2 show the temporal evolution to
equilibrium for 〈b〉 according to Eq. (2) starting from the vege-
tated state b+ in the symmetry-breaking regime ηc � η � ηsn.
Figure 2(a) corresponds to the homogeneous case, 
 = 0,
exhibiting an ideal labyrinthine pattern. Figure 2(b) represents
the noncorrelated spatial variations, while Figs. 2(c) and 2(d)
show the spatially correlated cases. In these cases, the striped
structure of the labyrinthine pattern becomes locally distorted.
Figure 2(e) shows the bifurcation diagram of Eq. (2). The
labyrinthinelike patterns (dotted plots) are characterized by
their averaged biomass 〈b〉. The green dotted curve indicates
a branch of an ideal labyrinthine pattern when 
 = 0, which
is stable in the range ηl � η � ηr . By increasing the aridity
level, the labyrinth exhibits a transition to a mosaic of local-
ized spots at η > ηr . When decreasing the aridity parameter,
the labyrinthine pattern becomes clusters of hexagonal gaps
at η < ηl [31]. The blue dotted curve represents the stable
branch of a vegetation pattern when 
 �= 0 and ξ is noncorre-
lated. The red and black dotted curves are the stable branches
of labyrinthinelike patterns under correlated heterogeneous
conditions. We note that the impact of heterogeneities in the
averaged biomass is not always strong [see red and blue dots
in Fig. 2(e)]. Thus, other types of spatial tools are needed to
understand and differentiate the labyrinthinelike equilibria of
Eq. (2).

To characterize labyrinthine equilibria under homogeneous
(
 = 0) and heterogeneous (
 �= 0) conditions, we consider
first the aridity distributions depicted in Fig. 3, and next
we concentrate on the biomass densities beq(r) shown in
Fig. 4. We analyze the spatial structure of these aridities
and biomass equilibria employing the Fourier transform am-
plitude |F (k)|2 = | ∫ g(r)eik·rdx dy|2 and the structure factor
S(k) = ∫ π

−π
|F (k)|k dθ , where k = (k cos θ, k sin θ ), and g(r)

can be either beq(r) or η(r). The homogeneous and noncorre-
lated heterogeneous aridity distributions are characterized by
a delta and a noisy flat |F (k)|2, respectively [see Figs. 3(a) and
3(b)]. The spatially correlated aridities have a nontrivial S(k)
shape associated with their coherent distribution [cf. Figs. 3(c)
and 3(d)].

Let us now have a look at the biomass densities beq(r)
displayed in the top panels of Fig. 4. These equilibria are
obtained by numerical simulations of the model equation (2)
in square boxes. The spatial profiles of the aridity η(r) used
in these numerical simulations are the same as those in Fig. 3.
Under homogeneous conditions, the biomass density exhibits
a perfect labyrinthine pattern. The corresponding spectrum
and the structure factor are shown in Fig. 4(a). From this
figure, we see that the spectrum has a powdered ringlike
shape and the structure factor presents a well-defined peak
at k = kc [see Fig. 4(a)]. The finite width in the structure
factor is attributed to the defects size and local variations of
the wavevector [9]. The powdered ringlike shape indicates
no preferred direction since the system is isotropic in the
(x, y) plane. The full width at half maximum of S(k) for the
labyrinth in Fig. 4(a) is w ≈ 0.15kc. It is obtained by fitting
a Lorentzian squared curve to the structure factor [58,59].
We define wh = kc ± w/2 as the characteristic wavevector
range of the perfect labyrinthine pattern, which emerges from
a symmetry-breaking instability in Eq. (2). Figure 4(b) shows
an equilibrium in the case of 
 �= 0 and delta-correlated ξ (r).
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FIG. 3. Spatial distributions of the aridity parameters η(r) = η +√

ξ (r) with η = 0.075. In the top panels, the aridity distributions

are shown. The insets correspond to an arbitrary one-directional
cut represented by dashed pink lines. The lower panels illustrate
the spatial structure of the distributions by their Fourier transform
amplitude |F (k)|2 or structure factor S(k). Other parameters are
(a) 
 = 0; (b)

√

 = 0.2, d/L = 0; (c)

√

 = 0.2, d/L = 0.08; and

(d)
√


 = 0.5, d/L = 0.1.

In this case, the labyrinth does not exhibit long fingers as in
the homogeneous case due to the proliferation of local spots.
Indeed, the heterogeneities introduce local disturbances in the
wavevector reflected in the widening of S(k) [cf. blue curve
and inset in the bottom panel of Fig. 4(b)]. When the hetero-
geneities are sufficiently intense (

√

 = 0.2) and correlated

(d/L = 0.08), the perfect labyrinthine pattern loses its struc-
ture and blobs of vegetation or bare soil emerge [see Fig. 4(c)].
In this aridity level, the maximum of the structure factor k̂ lies
outside wh [cf. blue curve in the bottom panel of Fig. 4(c)].
We define this shift in k̂ as a transition from perfect labyrinths
(|k̂ − kc| < wh) to imperfect labyrinthine patterns (|k̂ − kc| >

wh). When further increasing the correlation and the intensity
level of the heterogeneities (

√

 = 0.5 and d/L = 0.1), the

labyrinthine pattern is almost completely lost. A few vege-
tated fingers coexist with homogeneous islands of vegetation
and bare soil [see the top panel in Fig. 4(d)]. As seen in the
bottom panel of Fig. 4(d), the peak of the structure factor
exhibits a significant shift (from k̂ = 0.9kc to k̂ = 0.55kc) to-
ward the center of the spectrum. Moreover, the global Fourier
spectrum loses its powdered ring shape [see the inset in the
bottom panel of Fig. 4(d)]. In this regime, the spatial profiles

FIG. 4. Spatial characterization of the equilibria from Eq. (2)
with κ = 0.6, ν = 0.011, γ = 0.5, α = 0.125, and η = 0.075. The
top panels in each subfigure display the steady-state vegetated covers
from the model equation (2) considering the aridity profiles η(r)
depicted in Fig. 3, respectively. The blue and yellow curves of
the bottom panels indicate the normalized structure factor S̄(k) ≡
S(k)/Sh(kc ), and S̄h(k) ≡ Sh(k)/Sh(kc ), respectively. Sh(k) is the
structure factor in the homogeneous case. The insets in the bottom
panels correspond to the Fourier transform |F (k)|2 of the solutions
from Eq. (2). The wavevector k̂ illustrates the maximum of S̄(k) when
heterogeneities are present.

of the aridity and the biomass density are strongly correlated
[see the lower panels of Fig. 3(d) and Fig. 4(d), respec-
tively]. We have termed this spatial structure as disordered
self-organization.

A phase diagram is generated using numerical simulations
of Eq. (2), as shown in Fig. 5(a). The diagram depicts the
existence and stability domains of three types of vegetation
structures: perfect and imperfect labyrinths and disordered
self-organization. We can see that perfect labyrinthine patterns
can persist for different combinations of

√

 and d/L. Given

a minimum intensity level value
√


 or degree of correlation
d/L, the perfect labyrinths bifurcate to imperfect labyrinthine
patterns. When heterogeneities are strong enough, the sys-
tem exhibits disordered self-organization. We stress that the
transition between different labyrinthinelike textures can be
triggered solely by

√

 or d/L [cf. dashed arrows in Fig. 5(a)].

For example, Fig. 5(b) show the variation of k̂/kc by fixing
d/L = 0.08 and moving

√

. The insets (i)–(iii) along the

diagram illustrate the change in S̄(k) and k̂ as the biomass
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(i)

(ii)

(iii)

FIG. 5. Phase diagram of vegetation patterns in heterogeneous
environments. (a) Phase diagram of the global spatial structure of
Eq. (2) with κ = 0.6, ν = 0.011, γ = 0.5, α = 0.125, and η = 0.075
as a function of the intensity level

√

 and the degree of corre-

lation d/L. The different phases are perfect labyrinthine patterns
(k̂ ≈ kc), imperfect labyrinthine patterns (k̂ ≈ 0.9kc), and disordered
self-organizations (k̂ ≈ 0.55kc). The dashed gray arrows illustrate
possible transition paths between the equilibria. (b) Transition trig-
gered by changing the intensity of the heterogeneities

√

 given a

correlation d/L = 0.8 in the aridity distribution. The insets (i)–(iii)
show the normalized structure factor S̄(k) and its peak position k̂.
The yellow rectangle depicts the characteristic wavevector range wh

of the labyrinth with 
 = 0.

departures from the perfect labyrinths. The transition between
imperfect labyrinths and disordered self-organization [(ii) →
(iii)] resembles the disappearance of scurfy labyrinthine pat-
terns in a variational Swift-Hohenberg model [10].

In what follows, we further numerically characterize the
labyrinthinelike equilibria using local Fourier transforms.
This statistical tool allows us to investigate the self-
organization process at small spatial scales. Ideal labyrinthine
patterns, for instance, are characterized by their local striped
behavior. This feature can be extracted through the averaged

FIG. 6. Phase diagram of the local structure of labyrinthine pat-
terns from Eq. (2) with κ = 0.6, ν = 0.0113, γ = 0.5, α = 0.125,
and η = 0.075. (a) Colormap of the local two-mode fraction φ2 for
different intensity level 
 and correlation d/L of the heterogeneities
ξ (�r). The segmented yellow lines separate the three regions of Fig. 5:
(i) perfect labyrinthine patterns, (ii) imperfect labyrinthine patterns,
and (iii) disordered self-organization. (b) Spatial division of a steady-
state vegetation pattern, with

√

 = 0.4 and d/L = 0.04 ( ), in

windows of size 2.3λc. (c) Local Fourier transform |F (k̃)|2 of each
window. The orange borders in (b) and (c) indicate that the local
pattern fulfills the criteria of being dominantly a stripe.

windowed Fourier transform [10]. The procedure consists of
dividing the labyrinthine patterns into N windows of size s,
calculating each window’s Fourier transform, and then per-
forming a projective average in Fourier space. The result
is a single wave mode (stripe) local Fourier spectrum. The
critical step is to choose the adequate size s. It has to be small
enough to lose the pattern’s isotropy and sufficiently big to
account for the labyrinth wavelength. Then, the safe choice
is s ≈ 2λc. Here, we compute the local Fourier transform
of the patterns obtained from Eq. (2) in windows of size
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TABLE I. Summary of the sensitivity analysis. The sensitivity
indices Si(φ pi

2 ) and Si(φid
2 ) are associated to the transition fractions

φ
pi
2 and φid

2 , respectively.

η κ ν γ α s th

Original value 0.085 0.6 0.01 0.5 0.125 2.3λc 0.8
Si(φ pi

2 ) 0.10 0.09 0.11 0.07 0.14 0.16 0.26
Si(φid

2 ) 0.33 0.17 0.12 <0.01 0.23 0.11 0.21

s = 2.3λc because L/s is an integer number. As a consequence
of imperfect labyrinths and disordered self-organizations, the
projective average process is not a good approach. To amend
this, we introduce the three largest values of the local Fourier
transforms F1 � F2 � F3. We define a local window to be
dominantly a stripe if F1 = F2 (dominated by two peaks, i.e.,
a stripe) and F3 � 0.8F1. The threshold (th = 0.8), which
takes into account the defects of the labyrinths, is selected to
maximize the fraction φ2 = Ns/N of the labyrinthine pattern
under homogeneous conditions. Ns is the number of windows
exhibiting stripes.

Figure 6(a) shows the fraction φ2 for different combina-
tions of the intensity level 
 and degree of correlation d/L of
the heterogeneities. Additionally, the dashed yellow lines indi-
cate the transitions related to the global spatial structure of the
biomass density (see Fig. 5). We note that the transition from
perfect labyrinths to imperfect labyrinths is marked by φ

pi
2 =

0.61 ± 0.06. As well, imperfect labyrinths become disordered
self-organizations when φid

2 = 0.30 ± 0.02. Figures 6(b) and
6(c) illustrate the local structure and the windowed Fourier
transform of an imperfect labyrinthine pattern with Ns = 6 as
depicted by the orange squares. We note that the transitions
in the (

√

, d/L) parameter space depend on the choices

of [η, κ, γ , α, ν]. Hence, we highlight that a suitable model
parametrization is needed for extending our classifications to
natural landscapes.

To test the robustness of our predictions against modeling
decisions, we have performed a sensitivity analysis by chang-
ing in ±10% the original values of the parameters chosen
to observe labyrinths in Eq. (2), the window size s, and the
threshold th. When varying the window length, we use the
same number of windows N as in the original case by over-
lapping the windows or by not considering the boundaries of
the simulation boxes. To evaluate the sensitivity, the simple
sensitivity index Si(h) = |1 − hmin/hmax| is used, where hmin

and hmax are a model output when a parameter was decreased
or increased, respectively [60]. Values closer to 1 indicate
high sensitivity, while Si(h) < 0.01 means no sensitivity to
variations. We consider the averaged fractions φ

pi
2 and φid

2 as
model outputs with sensitivity indices Si(φpi

2 ) and Si(φid
2 ),

respectively (see Table I). The transitions from perfect to
imperfect labyrinths and imperfect labyrinths to disordered
self-organizations are always observed when varying the pa-
rameters in Table I.

The sensibility analysis shows that φid
2 is sensible to the

mean aridity parameter η, which is related to the system being
near the boundaries ηl and ηr (see Fig. 2). Additionally, this
transition is highly affected by the spatial coupling parameter
α and could be related to changes in λc. Table I suggests that

both φ
pi
2 and φid

2 are sensible to the threshold th, which can be
attributed to a wrong counting of the Ns values.

V. DISCUSSION AND CONCLUSIONS

We have investigated the effect of heterogeneous condi-
tions on a pattern-forming ecological model of semiarid and
arid landscapes. We have considered a well-known model
based on the relationship between the vegetation biomass
and the facilitation-competition interactions operating within
plants. We have further simplified the analysis by focusing on
a reduced model, Eq. (2), and we have restricted our study
to a single species that accounts for most of the biomass.
Motivated by topographic variations along labyrinthinelike
self-organization in Niger and Sudan, we have modeled the
heterogeneities as a spatial-dependent aridity parameter. The
spatial fluctuations act around a mean aridity value with a
certain intensity level. These variations can be correlated with
a given correlation length.

By increasing the intensity level and the correlation
length of the aridity heterogeneities, we have shown ev-
idence of imperfect labyrinthine patterns and disordered
self-organizations. These equilibria of Eq. (2) qualitatively re-
semble the real labyrinthinelike vegetation patterns observed
in satellite images of arid and semiarid landscapes. Further-
more, we have found that perfect labyrinthine patterns are
persistent until a critical degree of heterogeneity is reached,
where they become imperfect labyrinths. Further increas-
ing the heterogeneities, the spatial structure of the imperfect
labyrinth is eventually lost to a disordered self-organization,
which is governed by the spatial distribution of the aridity.
Based on the peak’s position and width of the global structure
factor, we have characterized the transitions between equilib-
ria and built a phase diagram. A windowed Fourier transform
is used to measure the departure from perfect labyrinthine
patterns as a function of heterogeneities.

An interesting future research is the identification of
perfect labyrinths, imperfect labyrinths, and disordered self-
organizations in real ecosystems by applying the tools and
modeling introduced here. To achieve this natural classifica-
tion, on-site measurements in arid environments populated by
labyrinthinelike vegetation patterns will be needed to validate
the application of the reduced model, Eq. (2), and to verify if
the model parameters are realistic or not. It will be crucial to
determine the parameters η and α, as they significantly impact
the transitions between labyrinthinelike vegetation patterns.
For example, if the labyrinthinelike landscapes of Niger and
Sudan (Fig. 1) are well described by model equation (2) and
the parameters chosen are characteristic of these particular
places, our classification could be applied by extending the
local analysis presented here. In fact, our modeling can be
used to identify the threshold th for the Sudan and Niger
regions in Fig. 1. We hypothesize that these labyrinths are
imperfect; that is, they are sustained by a minimum level of
spatially correlated heterogeneity, and are the consequence
of a combination of a symmetry-breaking instability and
heterogeneous environmental conditions. Moreover, in situ
observations of topography and resource distribution could
reveal if a more complex way to incorporate heterogeneities
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is needed or if our straightforward approach, based on the
intensity level and degree of correlation, is sufficient and
reasonable.

Our theoretical findings can be used with other modeling
approaches to obtain more realistic labyrinthine patterns, such
as reaction-diffusion systems where water dynamics is in-
cluded explicitly [20,21]. Additionally, our classification can
also be applied in different scientific contexts where labyrinths
are experimentally observed. For example in fluid mechanics,
liquid crystals, optics, biology, and chemistry [61–65], where
the sources of heterogeneity are diverse (e.g., thermal fluc-
tuations, experimental imperfections, boundary conditions,
inhomogeneous forcing, material defects).
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