
RESEARCH ARTICLE APPLIED PHYSICAL SCIENCES

Emergence of disordered branching patterns in confined chiral
nematic liquid crystals
Sebastián Echeverría-Alara,b,1 ID , Marcel G. Clerca,b ID , and Ignacio Bordeua ID

Edited by Tom Lubensky, University of Pennsylvania, Philadelphia, PA; received December 9, 2022; accepted March 6, 2023

Spatial branching processes are ubiquitous in nature, yet the mechanisms that drive
their growth may vary significantly from one system to another. In soft matter physics,
chiral nematic liquid crystals provide a controlled setting to study the emergence
and growth dynamic of disordered branching patterns. Via an appropriate forcing, a
cholesteric phase may nucleate in a chiral nematic liquid crystal, which self-organizes
into an extended branching pattern. It is known that branching events take place
when the rounded tips of cholesteric fingers swell, become unstable, and split into two
new cholesteric tips. The origin of this interfacial instability and the mechanisms that
drive the large-scale spatial organization of these cholesteric patterns remain unclear.
In this work, we investigate experimentally the spatial and temporal organization of
thermally driven branching patterns in chiral nematic liquid crystal cells. We describe
the observations through a mean-field model and find that chirality is responsible
for the creation of fingers, regulates their interactions, and controls the tip-splitting
process. Furthermore, we show that the complex dynamics of the cholesteric pattern
behaves as a probabilistic process of branching and inhibition of chiral tips that drives
the large-scale topological organization. Our theoretical findings are in good agreement
with the experimental observations.

liquid crystals | chirality | interface dynamics | branching process

Branching processes are responsible for the formation of a vast number of ramified
structures observed in geology, chemistry, biology, and physics (1). In soft matter physics,
fingering instability, whereby a flat interface becomes unstable, giving rise to tip splitting,
is a well-known mechanism of spatial branching (2–4). Several macroscopic models have
been formulated to describe the context-dependent mechanisms of branching (1, 5–7).
However, it remains a challenging task to identify the key ingredients that lead to the
large-scale branching self-organized patterns in each case.

The rich phenomenology of chiral nematic liquid crystals (CNLCs) renders them an
ideal system to study pattern formation and branching (8–11). CNLCs can be created
by doping a nematic liquid crystal, characterized by a long-range orientational order, but
not a positional one, with chiral molecules (12–14). The addition of chiral dopants can
induce a spontaneous twist deformation in the nematic phase, creating a helical structure
(12, 13, 15). The main feature of this phase is the characteristic length of the helix,
known as cholesteric pitch p, which corresponds to the distance required for one full
rotation of the nematic director vector En(Er), where Er = (x, y, z) is a position vector. The
pitch is the mesoscopic manifestation of the molecular chirality (16), while the director
vector field accounts for the local average orientation of liquid crystal molecules (17, 18).
When subjected to homeotropic anchoring in a cell of thickness d , the helical phase gets
frustrated, so that given a critical degree of frustration, which is measured in terms of the
ratio d/p, the system transitions to an unwound (nematic) metastable state. This state
is purely geometric and is sustained by the competition between the pitch, geometric
effects introduced by the cell thickness, and elasticity (13, 19, 20). The twisted or winded
structure can be recovered by applying a voltage, a temperature difference, or changing
the thickness to the cell in the unwound state (13). In general, the reappearance of the
twisted phase is in the form of a translationally invariant configuration (TIC) or in the
form of cholesteric fingers of type 1 (CF1). The TIC phase is characterized by a twist along
the cell thickness En(z) (SI Appendix, Fig. S1) and the CF1 by a director field of the general
form En(x, y, z) (Fig. 1 A–C and SI Appendix, Fig. S1). In directional growth experiments
with voltage, other types of cholesteric fingers (CF2, CF3, and CF4) have been observed
(21). The recovery of the twisted structure can be described by the minimization of the
Frank–Oseen free energy with an additional chiral term (SI Appendix) (12). This type of
noncentrosymmetric interaction is also modeled in chiral magnets and in particle physics
(22, 23).
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Fig. 1. Emergence of branching patterns in cholesteric liquid crystal cells. (A–D) and (J–M) display the schematic representation of the director field of the CNLC
in the midplane of the cell z = d/2. The angles � and � correspond to the tilt angle of En from the z-axis and the angle between the x-axis and the projection of En
in the plane of the cell, respectively. (A) shows the CF1 director field on the plane, characterized by a good twist across its (B) body and (C) rounded tip and a
localized bad twist at its (D) pointed tip. (E) Schematic representation of the experimental setup. (F ), Steady-state cholesteric branching pattern reached after
the tip-splitting dynamics. Evolution of branching patterns through the fingering instability of a cholesteric interface starting at t1 = 0.00 s, which is triggered
at (G), cholesteric fingers (t2 = 5.27 s; t3 = 5.83 s, t4 = 6.63 s) of type I, (H) chiral bubbles (t2 = 2.62 s; t3 = 3.20 s, t4 = 3.41 s), and (I), glass beads (t2 = 0.88 s;
t3 = 1.28 s, t4 = 1.63 s). The initial conditions from where the cholesteric interfaces were created are (G) impurities in the nematic phase, (H) closed loop of CF1,
and (I) glass bead. The branching patterns (t4) are observed at (G), 51.7 ◦C, (H) 51.3 ◦C, and (I) 51.7 ◦C. The green (purple) arrows in (G) illustrate the elongation
of the rounded (pointed) tips of CF1. (J) depicts the director field of a chiral bubble on the plane, exhibiting a radial (K ) �-twist from its center to the interface
(skyrmion-like). (L–M) show a schematic representation of the director field build-up around a glass bead on the plane.

The winding/unwinding transition of chiral nematic liquid
crystals has been widely studied from experimental and theoreti-
cal perspectives (10, 24–29). Near this transition, the distinctive
CF1 appear (Fig. 1 A–I ) (30). These elongated chiral textures
nucleate from the unwound background and may elongate in
arbitrary orientations from both ends. (Fig. 1A and SI Appendix,
Fig. S1 for the schematic director fields in the midplane of the
cell and in a cross-section along d , respectively.) The CF1 are
dissipative soliton-like structures with a well-defined width that
is regulated by an in-plane good twist of the nematic director
(Fig. 1B) (25, 31). The elongation of fingers introduces the
good twist in the frustrated sample. Fingers are asymmetric
and exhibit two different tips, a rounded and a pointy one.
The difference in morphology is associated with the handedness
of the nematic director near the tips: The good twist gives
rise to rounded tips (Fig. 1C ), while the bad twist produces
pointy ones (Fig. 1D) (25). In these frustrated CNLCs, above
a critical forcing—of temperature, voltage, or confinement—
fingers invade all the system through a branching dynamic. Pointy
tips propagate in a straight line, nucleating rounded tips through
a side-branching mechanism, and rounded tips become unstable,
undergoing tip splitting as they propagate (11, 25, 32). Pointy
tips, unlike rounded tips, are not generated during branching

events and quickly reconnect with the cholesteric pattern or
merge with impurities in the system (25). A combination of
side branching and reconnection of pointy tips gives rise to
closed loops of CF1. Closed loops can transform into localized
twisted objects (29, 33, 34). These localized structures have
been termed elementary torons, in particular, triple-twist toron-1
(35, 36). They exhibit a skyrmion-like structure in the midplane
director field (36, 37) (cf. Fig. 1 J and K ). Here, we refer
to these elementary torons as chiral bubbles, which have also
been termed spherulites (13). While more complex cholesteric
textures can arise to alleviate frustration (34–36, 38), in our
study, we focus only on CF1 and in the interface of chiral bubbles.
Similar to glass beads, chiral bubbles can act as nucleation sites
for CF1 avoiding the creation of pointy tips (29, 31), which
are energetically unfavorable. Hence, the long-term dynamic of
growth is governed by the continuous elongation and splitting of
rounded tips, resulting in a disordered branching cover. Despite
all the work conducted in frustrated CNLCs, the mechanisms
that drive the tip splitting of rounded tips of CF1 and the
self-organization of disordered ramified patterns have not yet
been studied in detail. In this work, we study how the tip-
slipping instability develops at cholesteric interfaces and which
are the interaction rules that ultimately give rise to the large-scale
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cholesteric branching pattern. For this, we focus on temperature-
tuned chiral nematic liquid crystal experiments that allow us
to control the transition toward branching and the formation
of ramified patterns by heating the system. Using an adequate
order parameter and its minimal model, which is derived from
first principles, we demonstrate the role of chirality in the
tip-splitting mechanism and the emergence of the disordered
branching pattern with a velocity–curvature equation for the
cholesteric interface. We show that during the growth of the
chiral fingers, there is a selection principle in the morphology
and speed of the rounded tip, which depends on the forcing of
the system. From these analyses, we deduce a small number of
crucial interactions that regulate the growth process and show
that the topological features of the large-scale pattern emerge
from stochastic branching and termination events.

Results

Emergence of Disordered Branching Patterns. To explore the
growth of cholesteric branching patterns experimentally (Fig. 1
and SI Appendix, Movie S1), we consider two chiral–nematic
liquid crystal cells, composed of mixtures of a commercial
nematic liquid crystal E7 (Merck) and chiral molecules EOS12
(39), under thermal forcing. The cholesteric pitch p in each
sample depends on the EOS12 concentration and on the tem-
perature within the cell (14). The samples were introduced into
a thermal chamber and then placed between crossed polarizers
(Fig. 1E). In this setup, dark regions correspond to the unwound
phase, while birefringent regions (shades of blue) correspond
to the cholesteric phase (Fig. 1F ). To trigger the emergence
of the cholesteric phase, we initialize the experiments at room
temperature (20 ◦C), where the CNLC is in the unwinding
state, and increase the temperature at a rate of 0.35 ◦C min−1

until reaching a winding phase. Fig. 1F (cell #1; T = 51.3 ◦C,
p = 3.4 μm, d/p<58.8; Materials and Methods for details) shows a
steady-state of the system, which corresponds to a disordered self-
organized labyrinthine pattern (40). This pattern develops mainly
from the elongation and splitting of rounded tips that leads
to a ramified texture, constituted locally by various connected
CF1 pointing in arbitrary directions. The cholesteric fingers may
be initially nucleated from impurities in the unwound phase
as shown in Fig. 1G (cell #2; T = 51.7 ◦C, p = 12.9 μm,
d/p=0.7) or at the cholesteric interface of a chiral bubble, which
is created by cooling a closed loop of CF1 (29) (see cell #1
in Fig. 1H ), or at the interface of glass beads, as depicted in
Fig. 1I (cell #2), where molecular deformations are enhanced
(31, 41). Under the experimental conditions considered here, the
winding/unwinding transition is characterized by the emergence
of CF1 (Fig. 1), instead of the TIC phase, when d/p ≈0.7 and
the transition temperature (Tc) is around 50 ◦C. In previous
experiments, the TIC phase emerged subcritically in a mixture
of E7 with EOS12 at 3 wt% with d/p = 0.4 and Tc ≈61.3 ◦C
(29). The texture selection and type of transition are governed by
the elastic constants of the CNLC mixture E7-EOS12 and the
confinement ratio in the cell (SI Appendix) (13). In consequence,
in the current experimental setup, CF1 are more stable than the
TIC phase.

In cells #1 and #2, the system generally avoids the creation of
pointy tips by nucleating rounded tips of CF1 from chiral bubbles
or glass beads instead. Therefore, the merging process of pointy
tips described in the Introduction section can be neglected. We
illustrate schematically the in-plane director field of the chiral
bubble (Fig. 1 J–K ) and around the glass bead (Fig. 1 L–M )
to highlight the similarity between both interfaces and rounded
tips (Fig. 1A). In the following, we focus our attention on the

growth of fingers and their rounded tips, which can destabilize
and undergo branching.

Before introducing a model to describe the rounded tip
dynamic and the subsequent patterning process, we explored
whether further qualitative insight into the growth process could
be extracted from the spatial organization of the labyrinthine
pattern (cell #2 in Fig. 2A). Analysis of the power spectrum of
the spatial patterns (Fig. 2B) revealed a characteristic wavelength
of λc = 14.9 μm and powder-like ring spectrum with local
order, proper of labyrinthine patterns (Fig. 2 B, Inset) (40).
Furthermore, the distribution of segment lengths (defined as
the distance between two branching points along the cholesteric
phase) was well fitted by a gamma distribution (data in Fig. 2C ),
whose exponential tail suggests that the timing between consec-
utive branching events is uncorrelated (7). The typical segment
length (observed as a kink for short fingers) indicates a short-term
memory or maturation process between consecutive branching
events of a tip. From the temporal evolution of the branching
pattern, we noted that branching events could be inhibited by the
neighboring pattern (green arrowheads in Fig. 2D), with some
newly formed tips receding in favor of the growth of other, more
developed tips (white arrowheads in Fig. 2D). These interactions
lead to remodeling of the patterns, further contributing to the
disordered self-organization of the patterns.

Altogether, these observations suggest that the dynamic of
growth, branching, and inhibition of rounded tips controls
the self-organization of the chiral labyrinthine patterns. To
understand how these mechanisms arise in the context of CNLCs,
in the following, we introduce a Ginzburg–Landau-type model
that allows us to relate the interaction mechanisms to the chiral
nature of the liquid crystal.

The Chiral–Anisotropic Ginzburg–Landau (CAGL) Model. Close
to the winding/unwinding transition and in the long-pitch limit
of the chiral nematic liquid crystal, the following model can be
derived (SI Appendix for details)

∂tA = µA + β|A|2A− |A|4A + ∂η∂η̄A

+ δ∂η∂ηĀ + iχ
(
A∂η̄A+Ā∂ηA

)
, [1]

where A(x, y, t) = αeiθ is the complex order parameter close to
the transition (26), ∂η = ∂x + i∂y is the Wirtinger derivative,
and Ā is the complex conjugate of A. Here, µ is the bifurcation
parameter describing the winding/unwinding transition, while
the parameter β = β(K12, K32, d/p) controls the type of
bifurcation, which is subcritical (β > 0) for the experiments
considered here (29). The elastic coupling, characterized by the
parameter δ = (K12 − 1)/2(K12 + 1) (42), considers both
isotropic and anisotropic effects. The last term breaks the mirror
symmetry in the plane of the cell and is controlled by the
parameter χ = χ(K12, K32, d/p). K12 = K1/K2, K32 = K3/K2,
where the parameters {K1, K2, K3} are the elastic constants of
the CNLC (12). The model (1) is variational, i.e., ∂tA =
−δF [A, Ā]/δĀ, where

F =
∫ ∫

dxdy

[
− µ |A|2 − β

|A|4

2
+
|A|6

3
+ |∇A|2

+ 2δRe
{
(∂ηĀ)2}

− iχ |A|2 (∂η̄A−∂ηĀ)

]
, [2]

is the free energy of the system, which is minimized during the
dynamics of Eq. 1.
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Fig. 2. Tip-branching drives the formation of a cholesteric labyrinthine pattern. (A), Time lapse of the destabilization of multiple cholesteric interfaces around
glass beads (cell #2 with d/p = 0.7) and formation of an extended labyrinthine pattern, at times t1 = 3.3 s, t2 = 7.8 s, t3 = 12.2 s, and t4 = 16.7 s. (B), Circular
average of the 2D power spectrum (Inset Top) of the extended pattern in panel (A) at t4, showing a characteristic wavelength of the cholesteric pattern of
�c = 14.9 microns and (Inset Bottom) local Fourier transform characterizing the local order in the pattern. (C), segment length distribution of the experimental
labyrinthine patterns (markers, with errors obtained from 7 independent realizations) and a gamma distribution fit (solid line, for scale and shape parameters),
together with the distribution obtained from numerical integration of Eq. 1 at three different times, rescaled by the ratio of the experimental and model
wavelengths �c/�CAGL ≈ 2.3. (D), Two time points (t1 < t2) of the experiment, showing remodeling of the patterns, where short fingers are inhibited (green
arrowheads) allowing other fingers to continue elongating (white arrowheads).

The CAGL Eq. 1 exhibits the same equilibria observed in
CNLC experiments: a homeotropic phase Ao = 0 (region I in
Fig. 3A); a translationally invariant configuration (TIC) phase
AT (region II in Fig. 3A); a modulated TIC (starting in region
II and crossing the green curve into region V or VI in Fig. 3A),
chiral finger states (region IV in Fig. 3A); chiral bubbles (region
III in Fig. 3A); and cholesteric labyrinths (starting in region IV
and crossing the blue curve into region V in Fig. 3A) (13, 29).
Additionally, the model (1) has a region of bistability of states Ao
and AT (µlb ≤ µ ≤ µub) that contains a Maxwell point µMP ,
where both states are energetically equivalent F [Ao] = F [AT ]
(43). The model also exhibits fingers and tip splitting (Right
panels of Fig. 3A), where fingers nucleate from the homeotropic
phase or from a chiral bubble and invade the system through
elongation (region IV of Fig. 3A) or branching of their rounded
tips (region V of Fig. 3A). Note that the fingers emerge at
µ < µMP (region V in Fig. 3A), where the state Ao is more
stable than AT . In brief, the appearance of a finger with a given
width is not explained by a modulational instability, as in the
case of the modulated TIC phase (13).

To understand the emergence of the chiral fingers from an
energy minimization perspective, we first study the properties
of an infinite finger in the CAGL Eq. 1. In the top panel of
Fig. 3B, the polarized fieldψ(x, y) ≡ Re(A)Im(A) of the infinite
finger solution is shown, together with the horizontal profile of

its modulus R and phase gradient ∂xφ, where we use the polar
representation A(x, y) = Reiφ . The profiles show bell-shaped
soliton structures, which are characterized by their heights (R̄
and 8̄) and widths (w and wφ), and can be approximated by
R ≈ R̄sech(x/w) and ∂xφ ≈ −8̄sech(x/wφ), respectively.
Introducing these ansatz into the free energy (2), we obtain
(SI Appendix)

Ffinger = Fow +
2(1 + δ)

3w
R̄2 + (1 + δ)R̄28̄2I5(w, wφ)

+ 2χ R̄3I6(w, wφ , 8̄)− 2χ R̄38̄I7(w, wφ , 8̄), [3]

where Fo = −2µR̄2
− 2βR̄4/3 + 16R̄6/45, and I5, I6, I7 are

integrals, which depend on the coupling between R, φ, and ∂xφ.
The finger solution is supported by the homogenous state

(F [Ao] = 0) if Ffinger < 0. The energy term Fo is bounded
from below Fo ≥ (1.68

√
|µ| − 0.67)R̄4, which is positive for

µ < µMP . Hence, the only energetic contribution that stabilizes
the finger solution is the chirality, proportional to χ in Eq. 3,
while all the other terms in Eq. 3 act as a nucleation barrier. To
find the optimal finger width, we minimize the free energy Eq. 3
with respect to w in the limit w/L � 1, wφ/L � 1, where
L is the length of the finger in the y-direction. As a result of
the dependence on the integrals in Eq. 3, we can only find

4 of 9 https://doi.org/10.1073/pnas.2221000120 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 S
eb

as
tia

n 
E

ch
ev

er
rÃ

­a
-A

la
r 

on
 A

pr
il 

7,
 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

18
6.

11
.3

1.
24

4.

https://www.pnas.org/lookup/doi/10.1073/pnas.2221000120#supplementary-materials


D

BA

C

Fig. 3. Local ingredients for the appearance of cholesteric labyrinths. (A), Phase diagram of Eq. 1 with � = 0.05 and � = 1. �lb = −1/4 and �ub = 0 are the
boundaries of the bistability region between Ao (I) and AT (II). �MP = −3/16 is the Maxwell point. �o is the critical chirality, where chiral bubbles appear. The
dark yellow line marks the saddle-node transition of chiral bubbles. The light green curve delimits the emergence of chiral fingers. The blue line represents the
tip-splitting instability. Region III is the stable zone of chiral bubbles. In region IV, fingers enlarge from their tips. Rounded tips of chiral fingers are unstable in
region V. Regions V and VI exhibit modulated TIC. Right panels show temporal snapshots for three different initial conditions with � = −0.4, in the regions IV
(� = 2.31) and V (� = 2.70). (B) shows (top) the profiles of the modulus |A| and the gradient of the phase (�) in the x-direction ∂x� of an infinite chiral finger,
with � = 2.4 and � = −0.4, and (Bottom) shows the variation of the finger width w with respect to � (red line) in the one-dimensional case, with �b = 2.3 when
� = −0.4; the yellow line shows the change in free energy Ffinger . The insets show the polarized field of chiral fingers with � = 2.2 < �b and � = 2.4 > �b,
exhibiting shrinking and elongation, respectively. (C), Different morphologies of chiral fingers were observed experimentally in cell #2 with d/p ≈0.68 (Left
panel) and numerically (Right panel) with � = −0.4. In the experimental case, the graph shows the speed of the rounded tip against the shape factor wtip/w
for different temperatures (the variations of the pitch with temperature in SI Appendix, Fig. S2). wtip is the biggest diameter within the rounded tip of the chiral
finger, and w is the width of the finger far from the rounded tip. The insets show the morphologies associated with 49.7 ◦C (pink asterisk) and 50.4 ◦C (light
blue asterisk). Dots are the average of five fingers moving inside a cell of CNLC. The vertical and horizontal bars are the SD of the speed and the shape factor,
respectively. In model Eq. 1, the different morphologies are obtained by varying the � parameter. The insets display the finger shapes in the case of � = 2.31
(green asterisk) and � = 2.45 (orange asterisk). The tip-splitting regime is shown for both cases (50.5 ◦C and � = 2.46). Three snapshots (t1 = 0.0 s, t2 = 0.25 s,
and t3 = 0.4 s) of the chiral fingers interface are shown, demonstrating the advance, flattening, and modulation of the rounded tips. All speeds are normalized
to the average speed previous to tip-splitting vts . In the experiment, vts = 27.4 μm s−1. (D), (Top) Evolution of the distance xo(t) in the repulsion between two
infinite fingers for � = −0.4 and � = 2.5. Black dots were obtained from direct simulations, and the solid line corresponds to the integration of Eq. 5. The Bottom
panels display two instants, t1 and t2, of the repulsive dynamics.

a relationship between the optimal parameters of the finger
solution; w3

≈ 3π3χw3
φ R̄38̄/4Fo (SI Appendix). Therefore, the

nontrivial phase structure plays a fundamental role in defining the
width, and Fo must be positive to observe stable finger solutions,
i.e., the most stable homogenous state needs to be Ao. Note that
a similar energy dependence is obtained in bistable reaction–
diffusion systems (6).

The bottom panel of Fig. 3B shows the variation of the one-
dimensional finger width w as a function of the chirality χ (red
curve), which has a maximum at χ = χb. When χ > χb, the
free energy Ffinger (Eq. 3) becomes negative (yellow line in the
Bottom panel of Fig. 3B) and the system favors the propagation
of fingers by elongation of the two tips (Bottom Right panels of
Fig. 3B). Conversely, when χ < χb, the chiral finger shrinks and
eventually disappears due to the merging of both tips.

When chiral fingers emerge, they propagate and cover the
whole system. In the experiment of CNLCs, the temperature
specifies the pitch and finger width and fixes the propagation
speed of CF1, v. We note that the chiral finger growth has
a selection mechanism similar to that observed in dendritic
growth (44, 45), where the propagation speed is controlled by
the curvature of the tip. By increasing the temperature, fingers
propagate faster, and the tip swells, as shown in Fig. 3C .

CF1 may be characterized morphologically by the shape factor
wtip/w, where wtip is the diameter of the rounded tip and w is the
finger width (cell #2 in the left panel of Fig. 3C ). At the critical
speed vts and corresponding critical shape factor, propagating
tips become unstable, swelling and undergoing tip splitting.
This branching process may be interpreted as a more efficient
dissipation mechanism to develop chirality than simple tip
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propagation. The tip-splitting dynamics is characterized by the
inflation, flattening, and interfacial modulation of the rounded
tip (see the snapshots t1 − t3 in the Left panel of Fig. 3C ).
The Right panel of Fig. 3C shows the change in morphology in
numerical integrations of Eq. 1 for different values of the chiral
parameter χ . Remarkably, the relation between speed and shape
obtained through numerical simulations closely resembles the
experimental observations. The critical value of the shape factor
at which tip splitting takes place is close to its experimental value
wtip/w h 1.4, and in both cases, tips suffer the same curvature
and morphological changes during branching.

One way to understand the emergence of tip splitting is to
analyze it from the perspective of local interface dynamics (5, 6).
Recently, a local zero-dimensional interface equation was derived
from Eq. 1 near the critical point {µMP ,χo} for chiral bubbles
(29). There, it was shown that a balance between metastability,
a linear curvature term due to chirality, and a squared curvature
contribution defined the size of chiral bubbles. Here, to describe
the tip-splitting instability, one needs to account for the spatial
modulation along the interface and the proper stabilization
mechanism at small wavelengths. We model the interface of
the rounded tip as the interface of half of the chiral bubble in
model Eq. 1. The tip splitting is analogous then to a fourth
mode instability of the interface of a full cholesteric bubble
as shown in the Bottom Right panel of Fig. 3A. Therefore, to
extract the curvature dynamics of the interface, we perform a
nonlinear stability analysis around the interface of the chiral
bubble solution, Acb = Roeiφ in Eq. 1 and obtain the speed-
curvature or Gibbs–Thomson (46) relation

vN = −|µ1|A + Bχ1κ̃ + C κ̃3 + D∂SS κ̃ , [4]

where A, B, C , and D are constants (SI Appendix). A similar
version of Eq. 4 has been heuristically proposed to explore the
local behavior of interface dynamics (5), derived in the study
of growth laws of droplets (47) and bistable reaction–diffusion
systems (6) and also used in the framework of bacterial growth
(48). The constants A, B, and D are always positive above the dark
yellow line in the phase diagram of Fig. 3A. For large wavelength
perturbations, Eq. 4 has a modulational instability due to a
Mullins–Sekerka type of term (linear in curvature κ̃), which is
tuned by the chirality, i.e., growth is enhanced in curved regions
of the interface. At short wavelengths, the instability is saturated
by the last term in Eq. 4, which plays the role of line tension. The
cubic term in Eq. 4 is responsible for the tip splitting, where the
constant C is defined by a nontrivial balance between chirality,
diffusion, and energy differences between states, and it must
be positive to ensure that the curvature dynamics is variational
(SI Appendix). The relation between curvature and splitting
explains why a tip must swell before branching, a dynamic
that also explains the maturation (or refractory period) feature
observed earlier in the segment length distribution (Fig. 2C ).

Another key ingredient for the formation of the cholesteric
branching patterns is the repulsion between the chiral fingers
(25). To study the origin of the CF1 repulsion in our model,
Eq. 1, we consider two infinite cholesteric fingers. The Bottom
panels of Fig. 3D show two different instants of the interaction
between two cholesteric fingers, where a nontrivial structure in
the gradient of the phase is observed between the two fingers. As it
turns out, this structure is responsible for the repulsion between
fingers. Following this idea and the symmetry of the modulus
R and the phase gradient ∂xφ, we model the repulsion between
fingers as the interaction between a single finger, at a position
xo(t) from the origin, and half of the phase structure near x = 0,

that is, R(t) = R(x−xo(t)) and ∂xφ(t) = ∂xφ(x−xo(t))+θb(x),
where A(t) = R(t)eiφ(t) and θb represents the phase structure
near x = 0. Numerical observations show that the tail of θb decays
like e−bx/x for a positive constant b. Based on the variational
form of model Eq. 1, the dynamic of the position xo is given by
(SI Appendix)

∂txo = N (µ,χ)
e−bxo

xo
. [5]

The prefactor N (µ,χ) is positive in the range of parameters
where chiral fingers are observed (region IV and V of Fig. 3A).
Thus, the interaction between fingers is repulsive in order to
minimize the energy of the system. By integrating the repulsive
relationship, we get the semianalytical curve xo(t) shown in the
Top panel of Fig. 3D.

Organization of the Large-Scale Chiral Branching Pattern. In
the previous section, we described how the local destabilization
of the nematic phase leads to the propagation of a chiral
(or cholesteric) phase, which organizes into a ramified pattern
that expands through the propagation of chiral tips. The
chirality drives the growth and splitting of tips as well as
the repulsion between fingers. From the propagation of the
branching pattern (experiment Fig. 2A and model Fig. 4A), we
note that actively elongating and branching tips localize entirely
at the periphery of the growing pattern, while tips submerged
within the labyrinthine structure arrest their growth due to steric
interactions with the surrounding pattern. The interactions that
give rise to the branching cholesteric pattern can be reduced
then to tip propagation and branching, repulsion (that results
in alignment of neighboring segments), and tip inhibition.
Moreover, the characteristic width of CF1 combined with the
energy minimization dynamics leads to a spatial pattern structure
with a well-defined wavelength, with a short-scale order but large-
scale disorder (Fig. 2B).

To study how the large-scale disorder emerges from the local
interaction rules, we first focused on the model (1), which
allowed us to study the topological properties of large-scale
patterns without the influence of additional structures (Fig. 4A).
From these patterns, we were able to extract the branching trees
(Fig. 4B), produced by reducing the pattern to a network of
vertices and edges, where each edge corresponds to a chiral
segment that connects vertices representing branching points.
Here, we were concerned solely with the topology of the network,
which is completely characterized by the levels (or generations)
of branching. The subtrees of the network, defined as sets of
branches with a last common ancestor node at level 2, showed a
high heterogeneity of sizes (number of segments) and persistence
(number of generations beyond level 2); see colored subtrees in
Fig. 4 A and B indicating a rather random organization of the
topology of the pattern as seen, for example, in biological tissues
(7, 49, 50). A heterogeneous organization of the branching tree
may arise from a stochastic process of branching and inhibition
of propagating chiral tips, which was also supported by the
exponential decay of segment lengths (Fig. 2C ). To test this
hypothesis, we computed the probability that tips at a given level
arrest their growth (Fig. 4C ). As time passes, tips that are not
constrained may continue branching, lowering the termination
probability. We then simulated a zero-dimensional birth–death
process, where particles either branched or became inhibited
with probabilities depending on their generations and given by
Fig. 4C (Methods for details). To compare the results of the
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Fig. 4. The large-scale organization emerges from probabilistic tip branching and inhibition events. (A), Numerical integration of the Eq. 1 showing the
destabilization of a chiral bubble-like initial condition (t = 0) into a branched pattern (t = 240 and t = 360, measured in arbitrary units). Subtrees of the
branching structure, defined as those trees that have a last common ancestor at branching level 2, are colored at different times to emphasize the variability
in the tree growth dynamics. (B), Branching tree representation of the pattern at time t = 360, shown in (A). (C) The probability that a tip terminates at a given
level in the tree at different time point obtained from n = 8 large-scale simulations of the model (1). (D and E) show the cumulative probability of (D) subtree
sizes and (E) subtree persistence obtained from large-scale simulations of the model (mean and SD from n = 8 realizations) and birth–death process when
supplied with the termination probabilities at each time point in (C), with mean (line) and SD (shaded) from n = 103 realizations. (F ), Branching tree resulting
from the birth–death process using as input the termination probabilities at t = 360 shown in (C). (G), Representative stationary state from experiments;
disconnected branching patterns are shown in different colors, and black-shaded patterns were not considered in the analysis as they cross the boundaries
of the observation window. (H), Average termination probability obtained from 39 disconnected branching patterns from 7 experimental realizations. (I and J)
show the cumulative probability of (D) tree sizes and (E) tree persistence (full trees were used due to their small size) obtained from experiments (mean and
SD) and birth–death process when using the termination probabilities in (G) as input.

model (1) and the stochastic birth–death process, we looked
at the distribution of subtree sizes and persistence, from which
we found excellent agreement (Fig. 4 C and D). These results
show that even though the system has well-defined interaction
rules, their large-scale organization emerges from random events
of branching and termination that are regulated locally, at the
single tip level (see the typical branching tree from the birth–
death process in Fig. 4F ).

To verify that these observations also apply to the experimental
branching patterns, we looked at 7 realizations of the experiments,
where multiple distinct patterns nucleated from the glass beads
in the sample (Figs. 1E and 4G). The final patterns had a range
of sizes and interacted as they developed, in some cases inhibiting
the growth of neighboring tips. By focusing on trees with more
than one branching event, we reconstructed the termination
probability (Fig. 4H ) and used it as input in the stochastic birth–
death process. These resulted, again, in good agreement between
experiments and the stochastic process (Fig. 4 I and J , where full
trees were analyzed due to their small size), strongly supported the

conclusion that the large-scale topology of the chiral branching
patterns is regulated locally by statistical rules of branching and
termination, resulting in the disordered patterns observed.

In summary, we have investigated experimentally and the-
oretically the spatial and temporal organization of thermally
induced branching patterns in chiral nematic liquid crystal cells.
By using the Ginzburg–Landau-type description of CNLCs, we
established the role of chirality in the formation of disordered
branching patterns. Here, the (de)stabilization of chiral fingers
arises from an energy minimization process, which also leads to
tip splitting and causes repulsive interactions between fingers.
We extracted a minimal set of local rules that regulate the pattern
growth—tip elongation, branching, repulsion, and inhibition—
and showed that the large-scale organization of the branch-
ing pattern described a stochastic birth–death process, where
branching and termination events are probabilistic in nature.
The large-scale organization of the chiral phase emerges then
from local interactions at the single tip level, which minimizes
energy efficiently through branching.
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Our analyzes show that even though the liquid crystal structure
is inherently 3D, the dynamics of growth of the branching
phase follows simple local rules that take place on the 2D mid-
plane, resulting in branching and inhibition of tips. Therefore,
neglecting the three-dimensional liquid crystal structure is a
good approximation for studying the formation of disordered
branching patterns resulting from CF1 destabilization. An
interesting future direction of research is to explore other finger
structures, such as CF2, CF3, and CF4 (21) and investigate their
space-filling dynamics. Additionally, in the broader context, it
will be interesting to explore possible branching processes of
stripe phases in chiral magnets (51).

Materials and Methods
Materials and Experimental Setup. We consider a chiral liquid crystal
composedofamixtureofacommercialmulticomponentnematic liquidcrystalE7
(pure components: 4-cyano-4’-n-pentyl-1,1’- biphenyl (5CB-51\%); 4-cyano-4’-
n-heptyl-1,1’- biphenyl (7CB-25\%); 4-cyano-4’-n-octyloxy-1,1’- biphenyl (8OCB-
16\%); 4-cyano-4”-n-pentyl- 1,1’ ,1” -terphenyl (5CT-8\%)) from Merck with chiral
molecules EOS-12 (4-(5-dodecylthio-1,3,4-oxadiazole-2-yl)phenyl 4’-(1”-methyl
heptyl-oxy)benzoate) at 25 wt% and 7 wt%. The cholesteric pitchpassociated with
each chiral–nematic mixture is measured with the Grandjean–Cano technique
at the temperatures of observation, by using a planoconvex cylindrical lens of
radius 10.3 mm (Thorlabs) as thickness modulation. Two cell preparations were
implemented. In the first one, a chiral liquid crystal droplet (with EOS-12 at
25 wt%) is deposited over a soda-lime glass sheet using a microcapillary tube
and covered with another sheet of the same characteristics (2.5 cm×2.5 cm
area and 4 mm thickness). This type of glass induces a homeotropic anchoring
on the liquid crystal sample. The squeezed disk-shaped droplet reaches an
equilibrium diameter of approximately 1 cm. The cell obtained with this method
is cell #1 with d = 200 μm. The cell thickness was obtained with a Mitutoyo
digital micrometer with an accuracy of 1 μm. We note that to increase the
resolution of the images of chiral bubbles, we used a 50x objective with a small
working distance (Leica, HC PL APO 50x/0,90). Then, in our experimental setup,
it was unavoidable to squeeze cell #1 with the objective, thus pushing the cell
thickness to an effective value d <200 μm. For this reason, this cell was used
exclusively for observational purposes (Fig. 1 F andH). The second method is by
filling chiral nematic liquid crystals (with EOS-12 at 7 wt%), by capillary action
at 70 ◦C, into a fabricated cell (SG025T090uT180 manufactured by Instec) of
thickness d = 9 μm, which is chemically treated to give homeotropic boundary
conditions, and its thickness is fixed by glass beads. This cell, #2, was used in the
experimental measurements discussed in the text (Figs. 2, 3C, and 4 G–J) and
in the observations shown in Fig. 1 G and I. The prepared cells are introduced
into a LinkamT95-PE hot stage and placed between crossed polarizers in a Leica
DM2700P microscope with 5x, 10x, and 50x objectives. A CMOS camera records
the branching dynamics.

Numerical Integrationof theChiral–AnisotropicGinzburg–LandauEqua-
tion. To solve model Eq. 1, we write the equation in terms of its real part u and
imaginary part v (A = u + iv). Then, we discretize the space by using a finite
difference scheme with a spatial step of 1x = 0.25 and a three-point stencil
using nonflux boundary conditions. The coupled equations for u and v are
numerically integrated in time with the Runge–Kutta 4 time integrator with
temporal step 1t = 0.01. The finger solutions shown in Fig. 3 were created
by perturbing the zero solution with a rectangular perturbation of width 2w
and amplitude (u, v) = (1.5, 0) in region IV of the phase diagram in Fig. 3A.
Depending on the proximity of the tips to the boundaries (with nonflux boundary
conditions), we can annihilate tips and create fingers only with rounded tips
(Fig. 3C) and without tips (Fig. 3B andD). The chiral bubble solutions are created
following the experiment. We start with a finger in region IV and sweep the

parameter χ or µ to access the branching region V of the phase diagram in
Fig. 3A. The pointy tip of a finger can merge with a side branch and create a CF1
loop solution (29). Then we change the parameters into region III and the CF1
loop solution collapses into the chiral bubble solution. This localized solution
is used as the initial condition in Figs. 3A and 4A (in the branching region V).
All the numerical results related to Fig. 3 are obtained in square grids of size
200x200. In the case of Fig. 4A, we used a square grid of size 1000x1000.

Shape Factor wtip/w and Speed of CF1. To characterize the morphology of
the chiral fingers, we introduced in the text the dimensionless shape factor
wtip/w. The width w of the fingers is calculated as the finite width at half-
maximum of the transversal profiles of the fingers from the binarized images
in the experiment and from the numerical solutions of Eq. 1. We determine
the diameter of the tip wtip as the diameter of the biggest circle that fits the
rounded tips of CF1. Once the biggest circle is fitted in the rounded tip of a CF1,
we track the position of the tip and measure its speed v. In the experimental
case, mixture of E7 and EOS-12 at 7 wt% within cell #2 with d/p ≈0.68, we
averaged the width, tip diameter, and speed of five fingers, which are seen under
crossed polarizers at different temperatures. Finally, the criteria to determine
the tip-splitting speed vts is when the far-most point of the rounded tip interface
has zero curvature (flat front).

Numerical Simulation of the Stochastic Birth–Death Process. The topol-
ogy and statistics of a branching tree depend on the growth dynamic and how tips
interact with the surrounding structures. In particular, the exponential decay of
segment lengthsinthechiralbranchingtree(Fig.2C)suggests that thebranching
and termination events are uncorrelated, thus following a Poisson-like process,
albeit with a short refractory period. With this in mind, we questioned whether
the large-scale topology of the branching tree could be fully characterized by
its branching (and terminating) probabilities. For this, we formulated a simple
birth–death model: a zero-dimensional branching process, where tip branching
and terminations follow a stochastic rule. In this birth–death model, which has
also been used to describe ramified biological tissues (49), tips are allowed
to branch and terminate with probabilities estimated from the data. These
probabilities are obtained from the termination probabilities qi (Fig. 4 C andH)
and depend exclusively on the generation in the branching tree. We note that if
the birth–death model was not able to recapitulate the branching topology of the
tree, then it would indicate that correlations and spatial considerations would
indeed be essential to the resulting large-scale chiral pattern. Numerically, the
birth–death model was implemented as a discrete-time process, where, at every
iteration, all active (tip) particles were allowed to either branch (with probability
pbranch = 1− qi) or become inactive (inhibited) with probability pinhib = qi,
depending on the generation i at which the particles are. For this, we initialized
the system with a number N ≥ 1 of particles to match the initial state observed
either in the model (1) or the experiments. For each realization, we kept track of
the history of all particles in order to reconstruct the branching trees (Fig. 4F).

Data, Materials, and Software Availability. The raw data used for this
study are available in Zenodo repository (DOI: https://doi.org/10.5281/
zenodo.7753119). All other study data are included in the article and/or
SI Appendix.
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Supporting Information Text

Derivation of the chiral-anisotropic Ginzburg-Landau (CAGL) model. The CAGL model can be derived from first principles,
based on the dissipative dynamics of the director field n⃗(r⃗, t), where r⃗ and t indicate spatial and temporal dependence,
respectively. This procedure gives a unique dependence of the parameters µ, β, δ, and χ with the elastic constants and the
confinement ratio d/p of chiral nematic liquid crystal (CNLC) cells. We are interested in the experimental situation where
a nematic phase n⃗ ≡ n⃗o, induced by the homeotropic anchoring of a cell with thickness d, is invaded by a cholesteric phase
n⃗ ≡ n⃗(r⃗) in the form of cholesteric fingers of type I (CF1) when energy is injected in the system. In our case, an increase in
temperature is the injection of energy, but it could also be an electric field (1).

The starting point is a continuum theory for the chiral nematic liquid crystal. We follow a simple approach and suppose that
in a weakly distorted regime, the local properties of the material are the ones of a uniaxial liquid crystal (2). This supposition
allows us to write the Frank-Oseen free energy

Fed =
∫ [

K1

2 (∇ · n⃗)2 + K2

2 (n⃗ · ∇ ∧ n⃗ + 2π/p)2 + K3

2 (n⃗ ∧ ∇ ∧ n⃗)2
]

dr⃗, [1]

where K1, K2, and K3 are the splay, twist, and bend elastic constants, respectively. The volumetric free energy Fed is valid in
the limit of strong anchoring where surface terms can be neglected. The cholesteric pitch p needs to be big, compared to a
molecular scale, so the supposition of uniaxiality remains valid (3). When energy is injected into the system, the molecules will
dissipate it following a minimization process that can be accounted by the evolution of the director n⃗(r⃗, t), while maintaining
its unitary norm (4)

γ
dn⃗

dt
= −δFed

δn⃗
+ n⃗

(
n⃗ · δFed

δn⃗

)
, [2]

where γ is a rotational viscosity constant. Then, introducing the free energy Eq. (1) into Eq. (2), one obtains (5)

(3)
γ

dn⃗

dt
= K3[∇2n⃗ − n⃗(n⃗ · ∇2n⃗)] + (K3 − K1)[n⃗(n⃗ · ∇)(∇ · n⃗) − ∇(∇ · n⃗)]

+ (K2 − K3)[2(n⃗ · ∇ ∧ n⃗){n⃗(n⃗ · ∇ ∧ n⃗) − ∇ ∧ n⃗} + n⃗ ∧ ∇(n⃗ · ∇ ∧ n⃗)] + 4πK2

p
[−∇ ∧ n⃗ + n⃗(n⃗ · ∇ ∧ n⃗)],

with the homeotropic boundary conditions, n⃗(x, y, z = 0) = n⃗(x, y, z = d) = ẑ. Note that the last term accounts for the torque
induced by chiral effects.

We perform a linear stability analysis of the homeotropic nematic phase n⃗o = (0, 0, 1) against small perturbations to find
the critical confinement ratio d/p, at which the winding/unwinding transition is developed. Then, we replace the perturbative
ansatz n⃗ = (n1, n2,

√
1 − n2

1 − n2
2) into Eq. (3) and retain only linear terms in n1 and n2, which leads to the coupled equations

γ
∂n1

∂t
= K3∂zzn1 + 4πK2

p
∂zn2, [4]

γ
∂n2

∂t
= K3∂zzn2 − 4πK2

p
∂zn1. [5]

Note that the third component of the perturbation was restrained to higher order corrections in n1 and n2 due to the norm
conservation |n⃗|= 1. The next step is to find the condition at which the first unstable winding mode grows, that is, we
consider an ansatz of the form n1 = αo cos(fz) sin(πz/d)eσt and n2 = αo sin(fz) sin(πz/d)eσt. These components satisfy the
homeotropic boundary conditions at z = 0 and z = d (see Fig. S1a) and correspond to a helicoidal rotation at rate f within the
cell. The linear growth rate is σ and ao is a constant. The rotation of the director components in the z-axis is motivated by the
translationally invariant configuration (TIC) phase (see Fig. S1b). We incorporate the ansatz n1(z, t) and n2(z, t) in Eqs. (4)
and (5), and set the marginal stability condition σ = 0 to obtain the critical rate fc = 2π/pK32 and the critical confinement
dc/p = K32/2, where K32 = K3/K2. Indeed the helical structure of the chiral nematic liquid crystal will be recovered when a
critical confinement ratio is surpassed (1, 6).

Close to the critical confinement ratio, winding/unwinding transition, we perform a weakly nonlinear analysis to find the
slow spatiotemporal dynamics of the director n⃗ near this critical point and to saturate the instability revealed by the linear
analysis. In the nonlinear regime, we need to take into account the spatial variations of n1 and n2 in the plane x-y. Only with
this consideration, for example, we are able to observe CF1 (see Fig. S1c). A simple way to consider the spatial dependence
near the winding/unwinding transition is by introducing the following director field (7, 8)


n1

n2

n3

 ≈


cos (fcz + θ) sin

(
α sin

(
πz

dc

))
sin (fcz + θ) sin

(
α sin

(
πz

dc

))
cos

(
α sin

(
πz

dc

))

 , [6]
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where α = α(x, y, t) and θ = θ(x, y, t) correspond to the angle tilt of n⃗ from the z-axis, and the angle between the x-axis and
the projection of n⃗ in the plane of the cell, respectively (Fig. S1). Both α and θ vary slowly in space and time. Note that Eq. (6)
is the representation on the surface of the unit sphere S2 of the TIC texture plus a bidimensional modulation modeled by θ
(1, 7, 9). In the limit α ≪ 1, we may introduce the complex small order parameter A(x, y, t) ≡ αeiθ ≡ Re(A) + iIm(A) ≡ u + iv
to describe the behavior of CNLCs close to the winding/unwinding transition (7). Then, we write Eq. (6) in terms of u and v


n1

n2

n3

 ≈


u cos

(
πz

dc

)
sin

(
πz

dc

)
− v sin2

(
πz

dc

)
+ W

[3]
1 + W

[5]
1 + · · ·

v cos
(

πz

dc

)
sin

(
πz

dc

)
+ u sin2

(
πz

dc

)
+ W

[3]
2 + W

[5]
2 + · · ·

1 − n2
1

2 − n2
2

2 − n4
1

8 − n4
2

8 − n2
1n2

2
4 + · · ·

 , [7]

where W
[3]
1 , W

[5]
1 , W

[3]
2 , and W

[5]
2 are higher nonlinear corrections of order cubic and quintic in A, respectively. Now, we

substitute the previous ansatz into Eq. (3) and at order W⃗ [3] = (W [3]
1 , W

[3]
2 ), we obtain

γ∂tucs−γ∂tvs2 = −2π2

d2 K3us2 −2π2

d2 K3vc2 +K3∂zzW
[3]
1 +K3

π2

d2 (usc−vs2)(u2 +v2)+K3(∂xx +∂yy)ucs−K3(∂xx +∂yy)vs2 +

(K3−K1)π2

d2

{
−(ucsc2−vs2c2)(u2+v2)+ d2

π2 (−∂xxucs+∂xxvs2)+ d

π
[s2u∂xu+s2v∂xv+s2

2
2 u∂yu+c2s2

2 u∂yv−s2s2v∂yu−s2c2v∂yv+

s2c2

2 u∂xu − s2
2
2 u∂xv − s2c2v∂xu + s2s2v∂xv]

}
+(K1 − K2)

{
∂xyus2 + ∂xyvcs

}
+(K2 − K3)

{
∂yyucs − ∂yyvs2 − 2π2

d2

[
u3

2 s2s2c2 −

u2v

2 s2
2s2+ u2v

4 s2
2c2− uv2

4 s3
2−u2vs4c2+uv2s4s2− uv2

2 s2s2c2+ v3

2 s2s2
2+u3s2s4+u2vs2

2s2+ uv2

4 s3
2+u2vs4c2+uv2s2s2c2+ v3

4 c2s2
2+

u3

2 s3
2 + u2vs2

2c2 + uv2

2 s2c2
2 − u2vs2s2

2 − 2uv2s2s2c2 − v3s2c2
2 − u3s2s2c2 − u2vs2c2

2 + u2vs2s2
2 + uv2s2s2c2 − u2v

2 s2
2c2 − uv2

2 s2c2
2 +

uv2

2 s3
2 + v3

2 s2
2c2

]
− 2π

d

[
−s2s2u∂xu− s2

2
2 u∂xv+ s2

2
2 u∂yu−s2s2u∂yv−c2s2v∂xu− c2s2

2 v∂xv+ c2s2

2 v∂yu−c2s2v∂yv

]
+ π

d

[
s2

2
2 u∂yu

−s2s2u∂yv+ c2s2

2 v∂yu−c2s2v∂yv+s2s2u∂xu+s2c2u∂xv+ s2
2
2 v∂xu+ s2c2

2 v∂xv−2s2c2u∂yu+2s2s2u∂yv−s2c2v∂yu+s2
2v∂yv

+ s2
2
2 u∂yu + c2s2

2 u∂yv − s2s2v∂yu − c2s2v∂yv − c2s2u∂yu − c2s2

2 u∂yv + s2s2v∂yu + s2
2
2 v∂yv

]}
+4π2K2

dp
(us2 + vc2) + 4πK2

p
∂zW

[3]
2 + 4πK2

p

{
[u∂xu − v∂xv + u∂yv + v∂yu]s3c + [v∂yv + u∂xv]c2s2 + [u∂yu − v∂xu]s4

}
+4π2K2

dp

{
−s3

2
4 u3 + s2

2s2

2 u2v + s2c2s2

2 uv2 − c2s4v3 + s2c2s2

2 u3 − s3
2
4 uv2 − c2s4u2v + s2

2s2

2 v3
}

,

γ∂tus2 +γ∂tvcs = 2π2

d2 K3uc2 −2π2

d2 K3vs2 +K3∂zzW
[3]
2 +K3

π2

d2 (us2 +vcs)(u2 +v2)+K3(∂xx +∂yy)us2 +K3(∂xx +∂yy)vcs+

(K3 −K1)π2

d2

{
−(us2c2 +vcsc2)(u2 +v2)− d2

π2 (∂yyus2 +∂yyvcs)+ d

π
[s2u∂yu+v∂yv+s2c2u∂xu−s2s2u∂xv+ s2c2

2 v∂xu− s2
2
2 v∂xv+

s2s2u∂yu + s2c2u∂yv + s2
2
2 v∂yu + c2s2

2 v∂yv]
}

+(K1 − K2)
{

∂xyucs − ∂xyvs2
}

+(K2 − K3)
{

∂xxus2 + ∂xxvcs + 2π2

d2

[
u3

4 s2
2c2 −

u2v

4 s3
2 − u2vs2c2s2 + uv2s2

2s2 + uv2c2s4 − v3s4s2 + u3

2 s2
2s2 + u2v

4 s3
2 − u2vs2s4 − uv2

2 s2
2s2 + u2v

2 s2c2s2 + uv2

4 s2
2c2 − uv2c2s4 −

v3

2 c2s2s2 − u3s2c2
2 + 2u2vs2c2s2 − uv2s2s2

2 − u2v

2 s2c2
2 + uv2c2s2

2 − v3

2 s3
2 + u3

2 s2
2c2 + u2v

2 s2c2
2 − u2v

2 s3
2 − uv2

2 s2
2c2 − u2vs2s2c2 −

uv2s2c2
2 +uv2s2s2

2 +v3s2s2c2

]
− 2π

d

[
c2s2u∂xu+ c2s2

2 u∂xv − c2s2

2 u∂yu+c2s2u∂yv −s2s2v∂xu− s2
2
2 v∂xv + s2

2
2 v∂yu−s2s2v∂yv

]
+

π

d

[
− s2

2
2 u∂xu + s2s2u∂xv − c2s2

2 v∂xu + s2c2v∂xv − s2
2u∂xu − c2s2

2 u∂xv + 2s2s2v∂xu + 2c2s2v∂xv + s2c2

2 u∂yu − s2
2
2 u∂yv −

s2c2v∂yu + s2s2v∂yv + c2s2u∂xu + c2s2

2 u∂xv − s2s2v∂xu − s2
2
2 v∂xv + s2c2u∂xu − s2s2u∂xv + s2c2

2 v∂xu − s2
2
2 v∂xv

]}
+ 4π2K2

dp
(−uc2 + vs2) − 4πK2

p
∂zW

[3]
1 − 4πK2

p

{
[u∂yu − v∂yv − u∂xv − v∂xu]s3c + [v∂yu + u∂xu]c2s2 + [v∂xv − u∂yv]s4

}
+4π2K2

dp

{
−s2

2s2

2 u3 + c2s4uv2 − s2
2s2

2 uv2 + c2s4u3 − s3
2
4 u2v + s2c2s2

2 v3 + c2s2s2

2 u2v − s3
2
4 v3

}
.
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We have used the simplified notation d = dc, c = cos(πz/d), s = sin(πz/d), c2 = cos(2πz/d), and s2 = sin(2πz/d). The
above equations are an inhomogeneous linear problem on W⃗ [3] of the form LW⃗ [3] = b⃗, where

L =


K3∂zz

4πK2

p
∂z

−4πK2

p
∂z K3∂zz

 , [8]

and b⃗ = (b1, b2) is the collection of all the other terms. To solve the inhomogeneous problem LW⃗ [3] = b⃗, we must introduce
an inner product to apply a solvability condition, i.e., the linear inhomogeneous equation will have a solution if and only
if b⃗ is orthogonal to the Ker{L†}. Let us consider the canonical inner product ⟨g⃗|⃗h⟩ =

∫ d

0 g⃗ · h⃗dz, in order to be able to
project the dynamics (⃗b) in the elements of Ker{L†}. Note that L = L† is self-adjoint. The elements of the kernel are
Ker{L†} = {H1, H2} = {(cos(πz/d) sin(πz/d), sin2(πz/d)), (sin2(πz/d), − cos(πz/d) sin(πz/d))}. The next step is to apply
the solvability conditions, that is, ⟨H1 |⃗b⟩ = 0 and ⟨H2 |⃗b⟩ = 0. After straightforward calculations and combining the resulting
two equations using A = u + iv, we get

(9)
γ

2K2
∂tA = π2

d2 (2C − K32)A − π2

4d2 (3 + K12 − 6K32 + 6C)|A|2A + K12 + 1
4 ∇2A +

1 − K12

8 ∂η∂ηĀ + π

8d
(3 − 4K32 + K12 + 3C)(A∂η̄A − Ā∂ηA),

where ∂η = ∂x + i∂y, K12 = K1/K2, and C = d/p. The functional form of the solution of the inhomogeneous problem is
(W [3]

1 , W
[3]
2 ) = (G1(z)u|A|2+G2(z)v|A|2, −G2(z)u|A|2+G1(z)v|A|2). The functions G1 and G2 depend on the elastic constants

and in the confinement ratio.
Near the recovery of the twisted structure, C ≃ K32/2, the type of the bifurcation is imposed by the sign of b ≃ 3+K12 −3K32.

This elastic dependence on the winding/unwinding transition in chiral nematic liquid crystals is well known (1, 6, 8). In
particular, the system undergoes a supercritical bifurcation if b > 0; otherwise, the winding/unwinding bifurcation is subcritical.
In our case of interest, the mixture of E7 and EOS12, we have measured a first-order transition (subcritical bifurcation) between
the nematic phase and the TIC phase (10). Therefore, Eq. (9) is not enough to saturate the winding/unwinding instability in
our experiment. We fix this problem by considering the next nonlinear correction W⃗ [5] and |b|≪ 1. After applying the same
solvability conditions as before, we obtain

(10)
γ

2K2
∂tA = π2

d2 (2C − K32)A − π2

4d2 (3 + K12 − 6K32 + 6C)|A|2A + K12 + 1
4 ∇2A +

1 − K12

8 ∂η∂ηĀ + π

8d
(3 − 4K32 + K12 + 3C)(A∂η̄A − Ā∂ηA) − 5π2

16d2 (K32 − 7K12

40 − 1 − 16M
5 )|A|4A,

where M is the projection of the first nonlinear correction W⃗ [3] into the dynamics at order W⃗ [5] and is equal to

M = −K32

∫ 1

0
[(−G1s2

2 + 2G1s2c2 − s2c2∂zG1 + s2
2∂zG2)cs + (s2

2G2 − 2c2s2G2 − 2c2s2∂zG1 + 2s2s2∂zG2)s2]dz′

+ (K32 − K12)
∫ 1

0
[(−s2∂zz(csG1) + s2∂zz(s2G2) − 2c2G1)cs

2 + (−s2∂zz(csG1) + s2∂zz(s2G2) + c2G2)s2]dz′

+ 4C
∫ 1

0
[(s4

2
4 ∂zG2 − s2

2G1 + cs3∂zG1 − csc2G2 + c2s2G1)cs + (cs3∂zG2 − s2s2G1 + s4∂zG1 − 2c2s2G2 + 2csG2)s2]dz′

+ (1 − K32)
∫ 1

0
[(s2∂z(cs∂zG2) − s2∂z(s2G1) + s2∂z(s2∂zG1) − s2∂z(c2G2) + 2G2s2c2 − G2∂z(s2c2) + s2

2∂zG2]

− (1 − K32)
∫ 1

0
[2s2

2G1 + 2s2s2G1 − 2c2s2G2 + s2
2∂zG2 − 2c2s2∂zG2)cs + (−cs∂z(cs∂zG2) + cs∂z(s2G1) − cs∂z(s2∂zG1)]

+ (1 − K32)
∫ 1

0
cs∂z(c2G2) + 2s2c2G1 − G1∂z(s2c2) − s2c2∂zG2 + 2c2s2G1 − 2c2s2∂zG1 + 2c2

2G2)s2]dz′.

(11)

In the above equation, the change of variable z′ = z/d was employed. In the double limit C ≃ K32/2 and b ≃ 3 + K12 − 3K32,
the functions G1 and G2 are

(12)G1(z′) = −dz′

4 + sin(2πz′)
8 + sin(4πz′)

48 + 1
4K32

(dz′ − dz′ cos(2πz′) − sin(2πz′)),
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(13)G2(z′) = z′

4K32
sin(2πz′) + 1

96 cos(4πz′).

Thus, we obtain M = 0.11K12 + 0.65/K32 − 0.07K12/K32 − 0.68. Then, the sign of the quintic term in Eq. (10) is governed by
Q = K32 − 0.53K12 − 2.1/K32 + 0.22K12/K32 + 1.18, which is always positive. Finally, after rescaling time, space, and the
complex parameter A, we get the dimensionless equation

(14)∂tA = µA + β|A|2A − |A|4A + ∂η∂η̄A − δ∂η∂ηĀ + χ
(
A∂η̄A − Ā∂ηA

)
,

where µ is the bifurcation parameter describing the winding/unwinding transition, β = −π2(3 + K12 − 6K32 + 6C)/d2 controls
the type of the bifurcation, δ = (K12 − 1)/2(K12 + 1), and

(15)χ =
(

16
5Q

)1/4 3 − 4K32 + K12 + 3C
2
√

2
√

1 + K12
.

controls the two-dimensional chiral effects expressed by the term
(
A∂η̄A − Ā∂ηA

)
. This chiral term has been predicted by

symmetry arguments before (7, 10). Note that the rotational transformation A → Aeiπ/2 in Eq. (14) gives

(16)∂tA = µA + β|A|2A − |A|4A + ∂η∂η̄A + δ∂η∂ηĀ + iχ
(
A∂η̄A + Ā∂ηA

)
.

We have termed this model the chiral-anisotropic Ginzburg-Landau (CAGL) equation in the main text. Equation (16) is
variational, i.e., ∂tA = −δF [A, Ā]/δĀ, where

(17)F =
∫ ∫

dxdy

[
−µ |A|2 − β

|A|4

2 + |A|6

3 + |∇A|2 + 2δRe
{

(∂ηĀ)2}
− iχ |A|2 (∂η̄A − ∂ηĀ)

]
.

Free energy of a very long finger. To address the stabilization of a chiral finger as an energy minimization process, we consider
a finger solution A = Reiϕ of model Eq. (16) with longitudinal length L. The transversal profiles of the finger solution, in
amplitude and phase gradient, can be approximated by R ≈ R̄sech(x/w) and ∂xϕ ≈ −Φ̄sech(x/wϕ), respectively. We study a
very long finger on a square domain, i.e., w/L ≪ 1 and wϕ/L ≪ 1. Replacing the ansatz for the finger into the free energy
Eq. (17), we have F [R, ϕ] = LFfinger[R, ϕ], where

Ffinger[R, ϕ] = −µR̄2

L∫
−L

sech2(x/w)dx − βR̄4

2

L∫
−L

sech4(x/w)dx

+ R̄6

3

L∫
−L

sech6(x/w)dx + (1 + δ)R̄2

w2

L∫
−L

sech2(x/w) tanh2(x/w)dx + (1 + δ)ϕ̄2R̄2

L∫
−L

sech2(x/w)sech2(x/wϕ)dx

+ 2χR̄3

w

L∫
−L

sech3(x/w) tanh(x/w) sin(2wϕϕ̄ tan−1[tanh(x/2wϕ)])dx

− 2χR̄3ϕ̄

L∫
−L

sech3(x/w)sech(x/wϕ) cos(2wϕϕ̄ tan−1[tanh(x/2wϕ)])dx

≡ Fow + 2(1 + δ)
3w

R̄2 + (1 + δ)R̄2Φ̄2I5(w, wϕ) + 2χR̄3I6(w, wϕ, Φ̄) − 2χR̄3Φ̄I7(w, wϕ, Φ̄).

(18)

In the above equation, we have used the limit L/w ≫ 1 to calculate the first four integrals, and we defined Fo = −2µR̄2 −
2βR̄4/3 + 16R̄6/45. A numerical exploration of the five energy terms in Eq. (18) show that Fow ≈ (1 + δ)R̄2Φ̄2I5(w, wϕ)
when δ → 0, and that 2(1 + δ)R̄2/w is negligible. Therefore, the transversal energy of the finger can be simplified to
Ffinger[R, ϕ] ≈ 2Fow + 2χR̄3I6(w, wϕ, Φ̄)/w − 2χR̄3Φ̄I7(w, wϕ, Φ̄). We minimize Ffinger[R, ϕ] with respect to w, considering
the limit wϕ/w ≪ 1, and obtain at leading order w3 ≈ 3π3χw3

ϕR̄3Φ̄/4Fo. Note that ∂I6/∂w = 0 due to the odd symmetry of
the integrand.
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Local speed-curvature equation. To shed light on the interface dynamics of the cholesteric phase, at the rounded tips of CF1 or
at the interface of chiral bubbles, we perform a nonlinear analysis around the interface of the chiral bubble solution, that is
Acb = Roeiϕ in Eq. (16). Note that here we do not take into account the phase jump in ϕ (10), as we are interested in the
branching dynamics away from the center of the chiral bubble. Changing variables in Eq. (16), A = Reiϕ, and supposing that
the temporal evolution of the phase is negligible compared to the dynamics of the modulus, which is reasonable at the interface,
and that the phase only has a local linear dependence at the interface, the dynamics of the modulus R may be written in
curvilinear coordinates {n, s} and in the limit δ → 0 as

−vn∂nR = µR + βR3 − R5 + ∂nnR + κ∂nR − κ2R + χκR2 + ∂ssR, [19]

where κ is the curvature, s is the arclength, and vn = ∂tr · n̂ is the speed normal to the interface (described by a position
vector r). Equation (19) is the evolution of the modulus R = |A| in the sharp-interface limit κ ≪

√
3/4 (11). We have used

the local approximation ∂sϕ ≈ κ for the phase.
Near the Maxwell point µMP , the modulus of the interface of the chiral bubble can be approximated by the flat front

solution Ro = [3/4(1 + e
√

3/4n)]1/2 (10, 12). Now, we introduce curvature and chirality to the flat front by performing a weakly
nonlinear analysis near the critical point {µMP , χo}. We introduce the ansatz R(n, s, t) = Ro(n) + ϵ1/2R1 + ϵR2 + ϵ3/2R3,
µ = µMP + ϵ3/2µ1, χ = χo + ϵ1/2χ1, vn = ϵ3/2vN , ∂s = ϵ1/2∂S and κ = ϵ1/2κ̃ with ϵ ≪ 1 into Eq. (19), and solve at every order
in ϵ by applying solvability conditions (as we have elaborated already in this Supporting Information text). At order ϵ3/2, we
obtain the speed-curvature (or Gibbs-Thomson (13)) relation

vN = −|µ1|A + Bχ1κ̃ + Cκ̃3 + D∂SS κ̃, [20]

where

A = ⟨|∂nRo||Ro⟩
⟨∂nRo|∂nRo⟩ > 0, [21]

B = ⟨|∂nRo||R2
o⟩

⟨∂nRo|∂nRo⟩ > 0, [22]

D = ⟨|∂nRo||f(n)⟩
⟨∂nRo|∂nRo⟩ > 0, [23]

and

C = ⟨∂nRo|{−6Rof(n)g(n) − f(n)3 + 20R3
of(n)g(n) + 10R2

of(n)3 − ∂ng(n) + f(n) − χo(f(n)2 + Rog(n))}⟩
⟨∂nRo|∂nRo⟩ > 0. [24]

In the above equations, we have used the inner product ⟨q1|q2⟩ =
∫ ∞

−∞ q1q2dn. f(n) and g(n) are functions associated to the
corrections of the modulus R. The functional form of f(n) and g(n) can be obtained numerically and with it approximate the
coefficients C and D.

The interfacial equation (20) can be transformed into the reference-frame independent equations of motion (14)

˙̃κ = −(∂SS + κ̃2)U, [25]

ġ = 2gκ̃U, [26]

where g is the curve metric, and U = −|µ1|A + Bχ1κ̃ + Cκ̃3 + D∂SS κ̃. Considering the arclength S =
∫ σ

0

√
g(σ′)dσ′, where σ

is the variable parameterizing the interface, and introducing the full form of U in Eqs. (25) and (26), we get

˙̃κ = |µ1|Aκ̃2 − Bχ1κ̃3 − Cκ̃5 − Bχ1∂SS κ̃ − D∂SSSS κ̃ − Cκ̃(∂S κ̃)2 − (3C + D)κ̃2∂SS κ̃, [27]

Ṡ =
S′∫

0

(−|µ1|Aκ̃ + Bχ1κ̃2 + Cκ̃4 + Dκ̃∂SS κ̃)dS′. [28]

As the growth of the cholesteric interface must be variational, that is, introducing the good twist in the frustrated sample to
minimize the energy in the system, the restriction D=3C is needed. Indeed, both constants have the same sign. From Eqs. (27)
and (28), one can see that at a linear stage, a modulational instability with wavelength 2π

√
D/

√
Bχ1 can destabilize a flat

front (κ̃ = 0). The subsequent nonlinear dynamics at the cholesteric interface shape the morphologies of the rounded tips.
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Repulsion between two very long fingers. In numerical integrations of Eq. (16), we have seen that repulsion between two infinite
fingers (at x = ±xo(t)) is mediated by a non-trivial phase structure between them. Then, we decided to approximate this
interaction by taking into account only the effect at zeroth order of the phase structure near x = 0 in one finger (at x = xo(t)).
In terms of the complex field we have A = R(t)eiϕ(t), where R(t) = R(x − xo(t)) and ∂xϕ(t) = ∂xϕ(x − xo(t)) + θb(x). The
variable θb(x) represents the phase gradient shape near x = 0. Numerical observations show that the tail of θb behaves as
Coe−bx/x, where Co and b are positive constants. We approximate the transversal profiles of the finger by bell-shaped soliton
functions, R ≈ R̄sech(x/w) and ∂xϕ ≈ −Φ̄sech(x/wϕ). We rely on the variational form of our model to extract the key features
of the interaction (15). The chiral-anisotropic Ginzburg-Landau Equation is variational, ∂tA = −δF/δA∗, that is

∂tF = −
∫

|∂tA|2dxdy. [29]

Introducing the moving frame of reference A(x − xo), and considering the limit xo >> {w, wϕ}, into Eq. (17) we obtain the
temporal variation of the energy

(30)∂tF = −Lẋo

∫ ∞

0
dx

{
−2µR(∂zR) − 2R3(∂zR) + 2R5(∂zR) + 2(∂xR)(∂zxR) + 2R(∂zR)(∂xϕ)2 + 2R2(∂xϕ)(∂xzϕ)

+ 2R(∂zR)θ2
b + 4R(∂zR)(∂xϕ)θb + 2R2(∂zxϕ)θb + 6χR2(∂zR)(∂xϕ) + 2χR3(∂xzϕ) + 6χR2(∂zR)θb

}
,

where z = x − xo and L is the longitudinal length of the finger. Changing the integration variable from x to z, Eq. (30) reduces
to

(31)∂tF = −Lẋo

∫ ∞

−xo

dz
{

2R(∂zR)θb(z + xo)2 + 4R(∂zR)(∂zϕ)θb(z + xo) + 2R2(∂zzϕ)θb(z + xo) + 6χR2(∂zR)θb(z + xo)
}

.

Now, we take the limit xo → ∞ and introduce the tail behavior of θb, that is Co exp(−bx)/x. The first term in the integral
of Eq. (31) can be neglected, as we retain only to first order in exp(−bxo)/xo. Then, we have to analyze three terms

T1 = 4Co
R̄2Φ̄

w

e−bxo

xo

∫ ∞

−∞
sech2

(
z

w

)
tanh

(
z

w

)
sech

(
z

wϕ

)
e−bzdz, [32]

T2 = 2Co
R̄2Φ̄
wϕ

e−bxo

xo

∫ ∞

−∞
sech2

(
z

w

)
tanh

(
z

wϕ

)
sech

(
z

wϕ

)
e−bzdz, [33]

T3 = −6χCo
R̄3

w

e−axo

xo

∫ ∞

−∞
sech3

(
z

w

)
tanh

(
z

w

)
e−bzdz, [34]

where we have introduced the functional form proposed for the transversal profiles of the cholesteric finger. All the integrals
listed above are negative. This is because the exponential term makes smaller the positive side of the hyperbolic tangent
function. Hereafter, we name the absolute value of the integrals I1, I2, and I3. Replacing all into Equation (29) we obtain at
dominant order

ẋo =

(
−4 Φ̄

w
I1 − 2 Φ̄

wϕ
I2 + 6χR̄

I3

w

)
(

2
3w

+ 2Φ̄2
∫ ∞

−∞ sech2
(

z

w

)
sech2

(
z

wϕ

)
dz

)Co
e−bxo

xo
= N (χ, µ)e−bxo

xo
. [35]

We find numerically that the constant N (χ, µ) is positive in a range of χ values at fixed µ = −0.4 (Fig. S3). Therefore, the
interaction between cholesteric fingers is repulsive at zeroth order. We can integrate Eq. (35) to obtain the temporal dependence
of xo

xo = W ((C1 + N (χ, µ)t)/e) + 1
a

, [36]

where C1 is a constant, which depends on the initial conditions, e is the Euler number and W is the Lambert function.
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(d)
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Fig. S1. Schematic representation of nematic director within a cell of thickness d with homeotropic boundary conditions. a Representation of the nematic director n⃗ as tubes in
a spherical coordinate system. The angle α represents the tilt of n⃗ from the z-axis and θ corresponds to the angle between the x-axis and the projection of n⃗ in the plane
x − y. b Nematic phase induced by homeotropic anchoring. c Translationally invariant configuration (TIC) is characterized by a uniform twist parallel to the cell thickness. d
Director distribution of the cross-section of a cholesteric finger of type I far from its tips. In this case, spatial modulations of n⃗ are in z and in the plane x − y. This director
representation is adapted from (16).
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Fig. S2. Temperature dependence of the cholesteric pitch p of the mixture between E7 and EOS-12 at 7 wt% within the range 49.7◦C-50.5◦C.

Sebastián Echeverría-Alar, Marcel G. Clerc and Ignacio Bordeu 9 of 11



2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
0.4

0.45

0.5

0.55

0.6

0.65

0.7

Fig. S3. Numerical values of the constant N (χ, µ) with µ=-0.4, b =0.31.
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Movie S1. This movie shows an example of branching dynamics in chiral nematic liquid crystals under crossed
polarizers. It corresponds to cell #1 (T =51.3◦C, p=3.4 µm, d/p <58.8). The nucleation sites are chiral bubbles
created by cooling closed loops of CF1.
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