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A B S T R A C T

Multistable systems present rich dynamical behaviors of interfaces between the different equilibria. Close to
the disappearance of bistability, i.e., transition between a bistable to a monostable region, we show that the
speed of bistable fronts follows a square root law as a function of the bifurcation parameter. Analytically and
numerically, we show this law for different prototype models of bistable systems. Based on a liquid crystal light
valve experiment with optical feedback, we investigate the front speed close to the disappearance of bistability.
Our results apply both to systems that do or do not follow energy minimization principles. Experimental
findings show a quite fair agreement with the theoretical results.
1. Introduction

Macroscopic systems out-of-equilibrium are characterized by the
coexistence of different equilibria, multistability [1–3]. Depending on
the initial conditions, one can observe the different states or solutions
composed of these equilibria. Such solutions are characterized by the
interface propagation between these domains, which are usually called
domain walls, nonlinear wavefronts, or fronts depending on the phys-
ical context under study [1–6]. Front dynamics have been observed
in diverse fields, such as walls separating magnetic domains, liquid
crystal phases, fluidized granular states, chemical reactions, solidifica-
tion and combustion processes, and populations dynamics, to mention
a few. Indeed, fronts propagation is a robust phenomenon ranging
from chemistry and biology to physics. In one-dimensional systems,
propagative fronts can be regarded as particle-type solutions, i.e., they
can be characterized by a set of continuous parameters such as position,
core width, and so forth. These dynamical behaviors correspond to
nonlinear waves, i.e., the superposition principle is no longer valid,
and for different initial conditions, the front propagates with the same
shape (profile) and speed [1,6]. Indeed, the propagation and dynamics
of fronts depend on the nature of the states (domains) that are being
connected. For instance, in the case of a front connecting a stable
equilibrium with an unstable one, the stable state usually invades the
unstable one [2,5], usually termed FKPP fronts. The combustion, spread
of permanent contagious diseases, and freezing of supercooled water
are enthralling example of this type of fronts. These types of fronts
initially emerged in population dynamics and gene spreads [2]. The
wavefront speed is not unique; it depends on the initial conditions and
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can be determined by the linear dynamics around the unstable equilib-
rium (pulled fronts) or by the nonlinear saturation around the stable
equilibrium (pushed fronts) [5]. If the initial condition is bounded, the
system always spread with the minimum speed. Note that the invasion
of the unstable state into a stable one has also been reported [7].

The above scenario changes radically when considering fronts con-
necting two stable states, bistable fronts [1,6]. These fronts are char-
acterized by exhibiting a single propagation speed that, in fact, does
not depend on the initial conditions. In the case of one-dimensional
variational or gradient systems, propagation speed depends on the
energy difference between the two equilibria [8,9]. Hence, the more
stable state invades the less stable one. Then, one expects a point in the
parameter space where the relative energy between the two equilibria
is equal, the Maxwell point [10], at which the front is motionless.
In his pioneering work, Pomeau proposes a universal semi-implicit
formula for the front speed [8], which accounts for the energy dif-
ference between states. Analytical results are only accessible close to
the Maxwell point from this general expression. The front speed is
linear around the Maxwell point. In one-dimensional bistable non-
variational systems, fronts can be motionless at a point in the parameter
space, without the need for both equilibria to have equal energy [11],
which allows an extension of the Maxwell point concept for systems
without free energy. Even walls connecting two equivalent vectorial
fields through spontaneous symmetry breaking can spread according
to a given chirality of the vector field [12–14].

Analytical formulas or general behaviors are usually not reachable
because to the nonlinear nature of fronts. Here, we reveal that near
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Fig. 1. Front propagation on a liquid crystal light valve (LCLV) with optical feedback close to the disappearance of bistability. (a) Schematic representation of LCLV with optical
feedback setup. HeNe accounts for a Helium–Neon laser, SLM stands for the spatial light modulator, this device selects a quasi-1D region under static and uniform illumination,
M are mirrors, PBS is the polarized beam splitter, 𝑉0 is the driven voltage applied to LCLV, O is an optical objective, FB is a fiber bundle, CCD is a Charge-Coupled Device to
monitor the LCLV evolution, and 𝐿 accounts for the free propagation length. Lower panels show temporal snapshots sequence of the front propagation exhibited in the LCLV close
to the disappearance of bistability. (b) Bifurcation diagram of the total intensity and front speed of the LCLV with optical feedback as a function of the voltage applied 𝑉0 by
𝐿 = 0.0 cm. The normal (▵) and inverted (▽) triangles account for the total intensity of light measured by raising and lowering the voltage. The region of bistability is painted.
𝑉 +
𝑠𝑛 accounts for the Fréedericksz voltage. The points with error bars account for the front speed between the different molecular orientations. Insets show a zoom of the front

speed versus voltage 𝑉0 near each bistability disappearance points. The continuous curves are the fits found for the front speeds, which have the form 𝑣 = 𝑣0 +𝐴
√

|𝑉0 − 𝑉 ±
𝑠𝑛 |, where

{𝑣0 = −183 μm∕s, 𝐴 = 475.6 𝑉 −1∕2
𝑟𝑚𝑠 μm∕s, 𝑉 −

𝑠𝑛 = 2.41 𝑉𝑟𝑚𝑠}, and {𝑣0 = 208.3 μm∕s, 𝐴 = −292.3 𝑉 −1∕2
𝑟𝑚𝑠 μm∕s, 𝑉 +

𝑠𝑛 = 3.069 𝑉𝑟𝑚𝑠}, for the left and right fit, respectively.
the disappearance of bistable fronts (transition between a bistable to
a monostable region), the front speed follows a square root law as a
function of the bifurcation parameter. Based on an experiment of a
liquid crystal light valve with optical feedback, we characterize the law
that describes the front speed near the disappearance of bistability. The-
oretically, we consider different bistable models and show analytically
and numerically that the front speed follows the aforementioned law.
Our results apply both to systems that do or do not follow energy mini-
mization principles. Experimental findings show a quite fair agreement
with the theoretical results.

2. Experimental setup and results

A flexible experimental setup that exhibits multi-stability, front
propagation, pattern formation, localized states, and spatiotemporal
chaos is the liquid crystal light valve (LCLV) with optical feedback (see
the review [15] and references therein). Fig. 1(a) shows a schematic
representation of the LCLV with optical feedback. The LCLV consists
of a nematic liquid crystal LC-654 (NIOPIK) with dielectric anisotropy
constant 𝜖𝑎 = 10.7 placed between two glass layers separated by a
distance 𝑑 = 15 μm. Transparent indium tin oxide (ITO) electrodes
and a photoconductive layer are deposed on the glasses to subject
the liquid crystal to a driven voltage. A dielectric Bragg mirror with
optimized reflectivity for 632.8 nm light is placed in the back layer
of the liquid crystal cell. The LCLV can be electrically addressed by
applying an oscillatory voltage 𝑉0 rms and frequency 𝑓0 = 1.0 kHz
across the liquid crystal layer. In addition, the system is optically forced
with a He–Ne laser (𝜆0 = 632.8 nm). The LCLV is placed in a 4𝑓
optical configuration (𝑓 = 25 cm), as indicated in Fig. 1(a). The optical
feedback circuit is closed with an optical fiber bundle (FB) placed
at a distance 4𝑓 from the LCLV front face. The optical fiber bundle
injects the light into the photoconductive layer, applying an additional
voltage to the liquid crystal material depending on the light intensity.
The feedback optical loop is designed so that light simultaneously
presents diffraction propagation (characterized by the length 𝐿) and
polarization interference induced by the polarizing beam splitter (PBS).
A spatial light modulator (SLM, Holoeye LC 2012) is considered to carry
out two-dimensional or one-dimensional experiments with different
geometry. The SLM operates in transmit configuration and is a light
amplitude modulator. In addition, the SLM can allow us to force the
system periodically [9,16] or spatiotemporally [17].

When the cell is illuminated, the voltage applied to the liquid crystal
cell 𝑉 is modified. In addition, as a consequence of optical feedback,
2

0

the system exhibits a subcritical bifurcation characterized by two dif-
ferent molecular orientation states [15,18]. The Fréedericksz voltage
characterizes the reorientation transition (see 𝑉 +

𝑠𝑛 in Fig. 1b). Because
of these molecular orientations have different refractive indices, each
equilibrium has a different intensity (see snapshots in Fig. 1a). Using
the SLM, we can induce different domain walls and study the fronts
propagation (see the video in Supplementary material [19]). Most
precisely, fronts are usually triggered by the edges of the area under
study, quasi 1D channel induced by the SLM, or by local perturbations
generated by SLM that increases or decreases the illumination inside the
channel. The bistability region is bounded by {𝑉 −

𝑠𝑛 , 𝑉
+
𝑠𝑛}, where 𝑉 ±

𝑠𝑛 ac-
count for the disappearance of the bistability points. We have measured
the front speed between two stable states close to the disappearance
of bistability. Fig. 1(b) summarizes the results found. From this chart,
we conclude that the front speed close to the bistability disappearance
exhibits a law of the form

𝑣 = 𝑣0 + 𝐴
√

|𝑉0 − 𝑉 ±
𝑠𝑛 |, (1)

where 𝑣𝑜 is the front speed at the fold points. The main origin of the
error bars and the initial propagation of front are the inherent fluctua-
tions of the system (noise) and the heterogeneities of the experimental
setup. To shed light on the origin of this law, we will now consider
different bistability models and analyze the front propagation.

3. Front propagation in prototype bistable models

A simple model that accounts for the transition from disordered
to oriented molecules state (nematic-isotropic transition) was proposed
by De Gennes [20], which has the dimensionless form (the Landau-De
Gennes model)

𝜕𝑡𝑢 = 𝜇𝑢 + 𝛼𝑢2 − 𝑢3 + 𝜕𝑥𝑥𝑢, (2)

where 𝑢(𝑥, 𝑡) is an order parameter, 𝜇 is the bifurcation parameter, 𝛼
accounts for the nonlinear response. The last term accounts for elastic
coupling, where 𝜕𝑥𝑥 is the Laplacian operator. The model Eq. (2) has
also been used to describe hard colloidal rods [21], and anisotropic
superfluid [22]. Eq. (2) has three trivial equilibria 𝑢 = 𝑢0 ≡ 0 and
𝑢 = 𝑢± ≡ (𝛼 ±

√

𝛼2 + 4𝜇)∕2. Fig. 2 shows the bifurcation diagram of
Eq. (2). For 𝜇 < 0, the 𝑢0 state is stable, and for 𝜇 = 𝜇𝑇 ≡ 0, the system
exhibits a transcritical instability, which generates that 𝑢+ and 𝑢− state
are stable ones. The system is monostable when 𝜇 < 𝜇𝑠𝑛 ≡ −𝛼2∕4, where
the only stable equilibrium is 𝑢0. The system is bistable for 𝜇 ⩾ 𝜇𝑠𝑛
(cf. Fig. 2). Namely, the system exhibits a transition from a bistable to
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Fig. 2. Bifurcation diagram of Eq. (2). Equilibria 𝑢 (𝑢0, 𝑢−, and 𝑢+) as a function of
𝜇. The hard and dashed curves account for stable and unstable states respectively. The
painted region stands for the bistable zone. The thick curve 𝑣 stands for the front speed
𝑣 =

√

2(𝛼 −3𝜇∕𝑢+)∕2 between 𝑢0 and 𝑢+ state. 𝜇𝑀 accounts for the Maxwell point. The
nset stands for a front profile.

monostable region for 𝜇 = 𝜇𝑠𝑛 (disappearance of bistability). Then,
he model presents a bistability region for −𝛼2∕4 ⩽ 𝜇 ⩽ 0. Within this

interval, the model Eq. (2) has fronts between 𝑢0 and 𝑢+ state, which
as the form

𝐹 (𝑥, 𝑡) =
𝑢+
2

[

1 + tanh

(

𝑢+(𝑥 − 𝑣𝑡)

2
√

2

)]

, (3)

where 𝑣 = (𝛼−3𝑢+∕2)∕
√

2. This is one of a few examples where the front
peed is known in the entire parameter space. Close to disappearance
f bistability, 𝜇 = −𝛼2∕4 + 𝛥𝜇 where 𝛥𝜇 is a small parameter (𝛥𝜇 ≪ 1)
nd 𝑢+ ∼ 𝛼∕2+

√

𝛥𝜇, the front speed between to stable states takes the
orm 𝑣 = 𝑣0 + 𝐴

√

𝛥𝜇 with 𝑣0 ≡ 𝛼∕4
√

2 and 𝐴 ≡ −3∕2
√

2.

. Generic variational reaction–diffusion model

In one-dimension dynamical systems, a general description of a
istable system is given by the reaction–diffusion equation, which
eads

𝑡𝑢 = − 𝜕𝑉
𝜕𝑢

+ 𝜕𝑥𝑥𝑢, (4)

here 𝑢(𝑥, 𝑡) is a variable that describes the system under study and
(𝑢) is a bistable potential. In the case that the potential describes
symmetric system (Allen–Cahn equation [23]), the above model

escribes the domain walls dynamics. Assuming that the system has
wo equilibria,  and , that is, 𝜕𝑉 ()∕𝜕𝑢 = 𝜕𝑉 ()∕𝜕𝑢 = 0. One

expects the system to exhibit propagative fronts between these two
equilibria of the form 𝑢(𝑥, 𝑡) = 𝑢𝐹 (𝑥−𝑣𝑡). Introducing this ansatz into the
diffusion–reaction Eq. (4), multiplying by 𝜕𝑥𝑢 and integrating over the
whole space, after straightforward calculations, one obtains the speed
of bistable fronts [8]

𝑣 =
𝑉 () − 𝑉 ()
∫ (𝜕𝑥𝑢)2𝑑𝑥

. (5)

s we have mentioned, in case both states have the same energy,
() = 𝑉 (), the speed is zero.

Let us consider that equilibrium  is close to a saddle–node bifurca-
ion (bistability disappearance), controlled by the bifurcation parame-
er 𝛥 (𝛥 ≪ 1). Then  ≈ 𝑠𝑛+1

√

𝛥 where 𝑠𝑛 is the equilibrium value
at the bifurcation point. Since the front solution is proportional to the
difference between equilibria, we can use 𝑢(𝑥, 𝑡) = ( − )𝐻(𝑥 − 𝑣𝑡).
Using the above ansatz in formula (5), expanding in the Taylor series,
one gets the universal law of front speed

𝑣 ≈
𝑉 (𝑠𝑛) − 𝑉 ()

(𝑠𝑛 −)2 ∫ (𝜕𝑥𝐻0)2𝑑𝑥

(

1 −
21

√

𝛥
𝑠𝑛 −

)

, (6)

≈ 𝑣 + 𝐴
√

𝛥, (7)
3

0

Fig. 3. Front propagation on the reaction–diffusion model (4) with cubic–quintic
nonlinearity, 𝑉 (𝑢) = −𝜇𝑢2∕2 − 𝛽𝑢3∕3 − 𝛿𝑢4∕4 + 𝑢6∕6. (a) Bifurcation diagram, ‖𝑢‖ =
√

∫ 𝑢2𝑑𝑥 as a function of the bifurcation parameter 𝜇 with 𝛽 = 0.5 and 𝛿 = 0.8 .
The solid and dashed red curves are the analytical curve obtained by multiplying the
equilibria by the length of the system. The insets show the potential in different regions
of parameter space. The points show the results obtained numerically. (b) Front speed as
a function of the bifurcation parameter 𝜇. The diamonds (⋄) are the numerical results,
and the continuous curve is the fit curve, formula (1), with 𝑣0 = −0.383, 𝐴 = 1.971,
and 𝜇𝑠𝑛 = 0.45. Inset shows a typical profile of a front solution.

where 𝑣0 is the front speed at the bistability disappearance point and
𝐻0 = 𝐻(𝑥 − 𝑣0𝑡). Hence, any one-dimensional diffusion reaction-like
system near the bistability disappearance will exhibit a square root-law
front speed as a function of the bifurcation parameter. This is consistent
with the experimental (see Fig. 1) and theoretical observations (cf.
Fig. 2) discussed above.

To verify the validity of the universal formula (7), we consider the
bistable cubic–quintic model with the potential 𝑉 (𝑢) = −𝜇𝑢2∕2−𝛽𝑢3∕3−
𝛿𝑢4∕4 + 𝑢6∕6. This potential has been used to study the dynamics of
molecular reorientation of optical valves with spatially modulated op-
tical feedback [24]. Fig. 3 shows the bifurcation diagram of this model
with cubic–quintic nonlinearity and the front speed as a function of
the bifurcation parameter. Note that there is no analytical formula for
the front speed in this model. Unexpectedly, the universal formula (1)
describes the front speed quite well, even far from its validity region.

Fig. 4. Front propagation in the reaction–diffusion model (4) for a nascent bistability
potential, 𝑉 (𝑢) = −𝜂𝑢 − 𝜇𝑢2 + 𝑢4∕4. (a) Typical front profile. (b) Bifurcation diagram
(green points and curves) and the front speed (black stars) as a function of the
bifurcation parameter 𝜂 with 𝜇 = 0.2. The left and right vertical axes account for
quilibria (𝑢𝑒𝑞) and the front speed, respectively. The solid and dashed curves are
he stable (𝑢+ , 𝑢0) and unstable (𝑢−) states, respectively. The points show the results
btained numerically. The red solid (𝑣0 = 1.358, 𝐴 = −2.45, and 𝜂𝑠𝑛 = 0.3) and dashed
𝑣0 = −1.342, 𝐴 = 2.401, and 𝜂𝑠𝑛 = 0.3) curves are the fit curve formula (1). (c) The
otential in different points of parameter space with 𝜇 = 0.8. (For interpretation of
he references to color in this figure legend, the reader is referred to the web version
f this article.)
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Fig. 5. Bifurcation diagram and front speed in a LCLV with free diffraction 𝐿 = −1.0 cm and spatiotemporal optical feedback. This diagram is obtained using the same experimental
setup as in Fig. 1a, where the SLM now fulfills a dual role, selecting the quasi-one-dimensional region and spatiotemporally modulating the illumination on the optical liquid crystal
light valve. The diamonds and their respective error bars account for the front speed near the bistability disappearance. The solid line is obtained using fit (1) with 𝑣0 = 203.5
μm∕s, 𝐴 = −489.1 𝑉 −1∕2

𝑟𝑚𝑠 μm∕s, and 𝑉𝑠𝑛 = 2.517 𝑉𝑟𝑚𝑠. Insets account for a magnification of the front speed as a function of 𝑉0. Lower panels show temporal snapshots sequence of
the front propagation.
Another relevant bistable model used to describe the nascent of
bistability [25] or an imperfect pitchfork bifurcation, is the one gov-
erned by equation Eq. (4) with 𝑉 (𝑢) = −𝜂𝑢 − 𝜇𝑢2 + 𝑢4∕4. This type
of reaction-diffusion equation has been used to explain chemical reac-
tions, biological models, and optical systems [26,27]. Fig. 4 shows the
bifurcation diagram for this potential, its respective bistability zone,
the shape of the potential for different values of the 𝜂 parameter, the
profile of the observed fronts, and the front speed as a function of the
bifurcation parameter. In this case, the bistability region is bounded by
two critical points (saddle-node bifurcations). At each of these critical
points, we find the universal law for the front speed Eq. (1).

5. Non-variational systems

The experimental and theoretical results presented above are valid
for gradient or variational systems. Namely, the dynamics of these
systems minimize a given free energy. However, one can consider
nonvariational effects (such as nonlinear gradients or diffusions) and
study how the front propagation is modified [11]. Let us consider the
following prototype nonvariational bistable model [11,28]

𝜕𝑡𝑢 = 𝜂 + 𝜇𝑢 − 𝑢3 + 𝜕𝑥𝑥𝑢 + 𝑐(𝜕𝑥𝑢)2 + 𝑏𝑢𝜕𝑥𝑥𝑢,

= − 𝜕𝑉
𝜕𝑢

+ 𝜕𝑥𝑥𝑢 + 𝑐(𝜕𝑥𝑢)2 + 𝑏𝑢𝜕𝑥𝑥𝑢, (8)

where the last two terms account for nonlinear drift and diffusion.
A similar model with a spatial instability (anti-diffusion) has been
used to explain localized states with spatiotemporal chaos [29]. The
model Eq. (8) describes the LCLV with free diffraction (𝐿 ≠ 0) and
spatiotemporal modulated forcing [17]. This experiment is achieved
using the same setup shown in Fig. 1a, where the SLM now does a
double role, selecting the one-dimensional region and spatiotemporally
modulating the illumination in the optical liquid crystal light valve.
Indeed, 𝑐 = 𝑏 = 0 when the experimental setup does not have
free diffraction. Since the non-variational terms are proportional to
the spatial derivatives, they do not modify the equilibria. Hence, the
bifurcation diagram shown in Fig. 4 is still valid for the non-variational
model (8). Considering the non-variational terms as perturbative terms
(𝑐 ∼ 𝑏 ≪ 1), using the strategy presented in [11], we can calculate
how formula (6) is modified. Then, after straightforward calculations,
we obtain the front speed between stable states close to disappearance
of bistability

𝑣 ≈
𝑉 (𝑠𝑛) − 𝑉 ()

2 2

(

1 −
21

√

𝛥
)

+

4

(𝑠𝑛 −) ∫ (𝜕𝑥𝐻0) 𝑑𝑥 𝑠𝑛 −
( − 𝑠𝑛)
𝑐 ∫ (𝜕𝑥𝐻0)3𝑑𝑥 + 𝑏 ∫ (𝐻0𝜕𝑥𝐻0𝜕𝑥𝑥𝐻0)𝑑𝑥

∫ (𝜕𝑥𝐻0)2𝑑𝑥
. (9)

Therefore, in the variational case the front speed close to the
bistability disappearance point also follows formula (1). To verify the
validity of this result, experimentally, we introduce a standing wave
type spatiotemporal forcing in the LCLV with optical feedback [17].
Fig. 5 shows the bifurcation diagram and the front speed of the LCLV
in the presence of free diffraction and spatiotemporal optical feedback.
We observe a quite good agreement with the theoretical finding from
this chart. A video with the non-variational front propagation is shown
in the supplementary material.

6. Conclusion

In conclusion, close to the transition between a bistable to a monos-
table region, we have shown that the front speed between stable
states follows a square root law as a function of bifurcation parame-
ter, independently the system is variational or not. The experimental
findings show a fairly fair agreement with the theoretical results. In
the case of other steady-state instabilities, the front speed may exhibit
other critical exponents depending on the bifurcation parameters; for
example, in a transcritical bifurcation, a linear law governs the front
speed [30]. Because of the nonlinear nature of the fronts between
bistable states, there are generally no analytical formulas for the front
speed. Then the strategy of studying critical points or bifurcations (such
as the Maxwell point or point of disappearance of bistability) allows for
having universal behaviors for the front speed.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.chaos.2023.113241.
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