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Concentric ring patterns beyond Turing instability
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Various out-of-equilibrium physical systems exhibit concentric ring patterns. However, these patterns are
expected to be unstable due to the interaction of spatial modes. Here, we show that concentric ring patterns
are stable beyond Turing instability. Based on a prototype pattern forming model, we show that these solutions
are stable and identify the main ingredients for their stability: curvature, characteristic wavelength, and bista-
bility. We further characterize the propagation of stable concentric ring patterns. Experimentally, we observe
stable concentric ring patterns in an illuminated dye-doped liquid crystal cell with sufficiently high intensity.
The formation of the concentric rings is in agreement with our predicted theoretical findings.
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Physical systems, in thermodynamic equilibrium, are char-
acterized by presenting homogeneous equilibria that are
invariant by spatial and temporal translation. Nonequilibrium
processes often lead to the formation of dissipative struc-
tures in nature [1–4]. These processes are characterized by
permanently injecting and dissipating energy, momenta, and
particles. When the injection of energy is small compared to
the dissipation, equilibria are usually characterized by being
uniform and stationary, similar to those observed in thermo-
dynamic equilibrium. From a dynamical system point of view,
these equilibria correspond to attractors. Increasing the en-
ergy injection, the homogeneous states can become unstable
and develop a pattern formation through a spatial symmetry-
breaking instability [1–6]. The formation of patterns such
as mountains, dunes, plants, clouds, snowflakes, stalactites,
and skin of mammalians, insects, fish, and seashells has
drawn attention since the beginning of time [3–7]. Also,
spatiotemporal effects in patterns have motivated theoretical
and experimental studies in nonequilibrium physics [8–11].
The wavelength of the pattern is usually determined by two
mechanisms: (i) external, such as the geometric properties of
the system under study (width, thickness, etc.) [2–6], or (ii)
internal, such as different coupling properties (transport, dif-
fusion, diffraction, etc.) [2–6,12]. This last mechanism, of an
intrinsic length, was proposed by Turing [12], and it has been
a relevant topic of study in the nonlinear optics community
[6,13–17].

At the onset of spatial instability, a general strategy to
describe the dynamics of the pattern is achieved through an
amplitude equation approach [3,4,6,18], where the ampli-
tudes account for the critical modes that become unstable.
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As a result of the nonlinear terms, the linearly unstable crit-
ical modes become saturated. This balance can give rise to
stripe, hexagon, square, superlattice, labyrinthine, or qua-
sicrystal patterns near the instability [3–7,18–20]. The striped
patterns are understood, in isotropic systems, as the stable
equilibrium of a single mode [3–5,18]. The direction of
this pattern depends on the initial condition. Likewise, the
square, hexagonal, and superlattice patterns are understood
as stable equilibria between two, three, and several reso-
nant modes, respectively [3–5,18,21]. Labyrinthine patterns
are understood as a stable equilibrium of many disordered
phase critical modes with similar wave numbers and magni-
tude of the amplitude. The labyrinths are locally dominated
by a single mode [19]. Quasicrystals result from higher
codimensional instabilities that include modes of different
wavelengths [3–6,22]. Patterns with many coherent phase
modes with the same wavelength and amplitude can generate
concentric ring patterns (see Fig. 1). Patterns with concen-
tric rings are observed in vegetation [23], fluid convection
[24], molecular assembling [25], suspended liquid crystal
films [26], laser irradiation at the solid/liquid interface [27],
gas-discharge systems [28], bacteria colony formation [29],
optically pumped semiconductor amplifiers [30], electroex-
plosion in a needle iron metal plate [31], evaporation-assisted
formation of surface patterns [32], evaporation of colloidal
nanoparticles in a confined cell [33], the far field of a photore-
fractive oscillator [20], and the photoisomerization process
in liquid crystals [34]. Although concentric ring patterns are
observed in various physical systems, they are unstable from
the point of view of amplitude equations [35,36]. Therefore,
the mechanism of origin of these patterns and their properties
is not established.

This Letter aims to show that concentric ring patterns are
stable beyond Turing instability, in the sense that the phe-
nomenon occurs after (or before) a Turing instability, but
not at the onset. Based on a prototype mathematical model
of pattern formation, we show that these solutions are sta-
ble and identify the necessary ingredients for their stability.
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FIG. 1. Experimental observation of concentric ring patterns in
a dye-doped liquid crystal sample under the effect of two parallel
coherent beams. (a) Schematic representation of the experimental
setup. A dye-doped liquid crystal cell (DDLCC) is irradiated by a
445-nm blue laser (BL, probing light beam) and illuminated by a
532-nm green laser (GL, excitation light beam). L, M, DC, and P ac-
count for lens, mirrors, dichroic crystals, and polarizer, respectively.
DDLCC is monitored by a CMOS camera. (b) A horizontal cut of the
spatiotemporal evolution (bottom panel) of an illuminated dye-doped
liquid crystal cell. Panels show a temporal sequence of snapshots of
the DDLCC cell. (c) Horizontal profile of the equilibrium concentric
ring pattern.

Concentric ring patterns are observed in the region of bista-
bility between uniform states and patterns. Close to Turing
instability, when unstable concentric rings are forming, they
are characterized by spreading so that the outer concentric
rings aggregate. However, in the region where concentric
ring patterns are stable, propagation is characterized by rings
emerging from the center and pushing the ring structure.
Hence, the propagation mechanisms of the modulated front
are completely different. Notice that front propagation in both
cases is controlled by curvature. Experimentally, we observe
stable concentric ring patterns in an illuminated dye-doped
liquid crystal cell with sufficiently high intensity. The forma-
tion and spread of the concentric rings are consistent with our
theoretical findings.

Experimental setup and observations. Out-of-equilibrium
liquid crystals exhibit complex spatial textures [37]. Tradi-
tional methods to keep liquid crystals out of equilibrium are
the application of electric and magnetic fields, and thermal
gradients. Likewise, they can be kept out of equilibrium with
strong electromagnetic fields. In addition, a nonintense light
beam can be used to drive liquid crystals out of equilibrium.
To do this, liquid crystals can be doped with photosensitive
molecules [38], which can change their molecular structure
upon receiving a photon with a particular frequency (photoi-
somerization). In turn, the rotations of these light-sensitive
molecules cause the oriented molecules of the liquid crystal to
become disordered. Patterns induced by photoisomerization
have been observed in a dye-doped nematic liquid crystal
layer. This type of self-organization has been modeled by a
reaction-diffusion system [34,39,40].

To study concentric ring patterns, we consider a dye-doped
liquid crystal cell (DDLCC) under the effect of two parallel

coherent beams at room temperature (18 ◦C). The sample is
only photosensitive to one beam (excitation beam), and at the
same time, the other is harmless (probing beam). Figure 1
illustrates the experimental setup diagram. The DDLCC un-
dergoes a phototropic transition when it is irradiated by a light
source in the absorption band of the guest dye [38]. We used a
concentration of methyl red 0.5 wt % as the azo-dye guest
doping a commercially available E7 nematic liquid crystal
(host). The mixture was inserted into an antiparallel planar-
aligned liquid crystal cell with a thickness of 25 µm (Instec). A
532-nm Verdi V-2 (Coherent) and 445-nm Cobolt 90 mW po-
larized laser were used as an exciting and probing irradiation
light source to generate and observe a phototropic transition,
respectively. Note that the green laser wavelength was close
to the absorbance peak at 496 nm of the mixture, enabling
us to trigger the isomerization and increase the amount of
cis methyl red isomer. Two Kepler telescopes with a magni-
fication of 0.5× and 20× were used to change the waist of
the green and blue laser, respectively. A dichroic crystal (DC,
high and low bandpass) is used to separate both beams and
to monitor the DDLCC with a complementary metal-oxide-
semiconductor (CMOS) camera. Before the CMOS camera, a
polarizer was placed orthogonal to the polarization of the blue
laser.

The camera displays a dark cell due to the polarizer when
the DDLCC is illuminated with a blue probing light. When
illuminating with the green laser with a power of the order
of 300 mW (a waist of 0.56 mm), we initially observe a
lightened circular area [see Fig. 1(b) at 1 s], which is later
accompanied by a central circular dark spot that afterward
becomes a dark propagating ring [see Fig. 1(b) at 5 s]. Then,
a second spot appears in the center, which in turn becomes
in another propagative ring. This process continues until four
dark rings are established [see Fig. 1(b) at 150 s, and the
video in the Supplemental Material [41]]. The lower panel
of Fig. 1(b) summarizes the spatiotemporal evolution of the
observed photoisomerization dynamics. Because the illumi-
nated area is a Gaussian region, the ring patterns eventually
stop, giving rise to a bull’s-eye shape [cf. Fig. 1(b) at 150 s].
Figure 1(c) shows the horizontal profile of the equilibrium
concentric ring pattern.

Theoretical descriptions. A prototype model of pattern
formation is the Swift-Hohenberg equation [42], which is
an isotropic, reflection symmetry, and real order parameter
nonlinear equation deduced originally to describe the pattern
formation on Rayleigh-Bénard convection [42]. This equa-
tion applies to a wide range of systems that undergo a spatial
symmetry-breaking instability—often called Turing instabil-
ity [2–4]—close to a second-order critical point marking the
onset of a hysteresis loop, which corresponds to a Lifshitz
point [4]. The Swift-Hohenberg equation reads

∂t u = εu − u3 − ν∇2u − ∇4u, (1)

where u = u(x, y, t ) is a real scalar field, x and y are spa-
tial coordinates, and t is time. Depending on the context in
which this equation has been derived, the physical meaning
of the scalar field u = u(x, y, t ) could be the electric field,
deviation of molecular orientations, phytomass density, or
chemical concentration, among others. The control or bifur-
cation parameter ε measures the input field amplitude, the
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aridity parameter, or the chemical concentration. The param-
eter ν stands for the diffusion coefficient (ν < 0); when this
parameter is positive (ν > 0), it induces an antidiffusion pro-
cess, which is characterized by the emergence of patterns with
a characteristic wavelength.

For sufficiently negative ε, the only stable state of this
model Eq. (1) is the zero solution u = 0. When ε is increased
or exceeds the critical value εc1 = −ν2/4, it exhibits a su-
percritical spatial instability (Turing instability) [3,4], which
gives rise to stable stripe patterns with a

√
ν/2 wave number.

The zero unstable state presents a secondary instability for
ε = 0, giving rise to two new homogeneous uniform states
±√

ε, which stabilize for ε = εc2 ≡ ν2/8. Then, for ε > εc2,
the system presents bistability between the uniform solutions
±√

ε and the pattern states. Figure 2(e) depicts the bifurcation
diagram of the Swift-Hohenberg equation (1). Numerically,
we have considered the uniform state −√

ε, and we have
perturbed it locally with a Gaussian [with a width of the
pattern wavelength—see Fig. 2(d)]. Depending on ε, we ob-
serve different behaviors. In the region where uniform states
are unstable (εc1 � ε � 0), we observe the propagation of
unstable concentric rings [cf. Fig. 2(a)] [24]. This propagation
is characterized by the appearance of outer rings that are
attached. When ε is increased, the previous scenario changes.
We observe similar propagation, but of stable concentric ring
patterns. In Fig. 2(e), we have characterized the parameter
space where this behavior is observed and called it out-
side ringing. Further increasing ε, and the system being in
the bistability region, propagation is characterized by rings
emerging from the center and pushing the concentric ring
structure [see Fig. 2(b)]. We have termed this region inside
ringing. When ε is increased even more, the system does not
exhibit the formation of a concentric ring pattern, but rather
the propagation of one homogeneous state over the other.
We have named this region inflation [cf. Fig. 2(c)]. Further
increasing ε, the initial perturbation stabilizes in a localized
structure [see Fig. 2(d)]. In addition, we have considered
numerical simulations in a circular geometry to avoid edge
effects, and study the stability of concentric ring patterns.
The lower panels (I) and (II) of Fig. 2(e) show stable con-
centric ring patterns. Note that stable concentric ring patterns
are observed beyond Turing instability (ε > εc1, ε < εc2, and
ε > εc2). This could be related to a shift of the Turing bound-
ary due to the axisymmetric (radial) restriction on the initial
condition. Numerical simulations were conducted with the
Runge-Kutta fourth-order algorithm for time integration and
a finite-difference scheme for spatial discretization.

To shed light on concentric ring patterns, we consider a
one-dimensional model that contains the necessary ingredi-
ents (curvature, bistability, and a characteristic wavelength) to
observe these patterns and their dynamics. Considering that
patterns are rotation invariant, we can propose the following
ansatz u(x, y, t ) = u(r, t ), where r is the radial coordinate.
Thus, Eq. (1) reads

∂t u = εu − u3 − ν

(
∂rr + ∂r

r

)
u

−
(
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FIG. 2. Numerical observations of concentric ring patterns in
the Swift-Hohenberg Eq. (1) for ν = 1. Different concentric ring
patterns are observed considering the homogeneous state −√

ε and
perturbing it with a small Gaussian. (a) Outside ringing: The pattern
propagation is characterized by the appearance of attached outer
rings. (b) Inside ringing: The pattern propagation is characterized
by rings emerging from the center and pushing the concentric ring
structure. (c) Inflation: Front propagation of one homogeneous state
over the other. (d) Stable localized structures. The right panels
illustrate the spatiotemporal evolution of the middle line in the two-
dimensional simulations (segmented red line). The left panels depict
the surface plots obtained at the instant represented by the black
dashed line on the spatiotemporal diagram. (e) Bifurcation diagram
of the Swift-Hohenberg Eq. (1): Maximum value of u vs ε. The green
line corresponds to the uniform state

√
ε (HSS, homogeneous steady

state), the blue curve stands for stripe patterns (SP), and the black
line represents the zero solution. Segmented and solid lines indicate
that the corresponding state is unstable and stable, respectively. The
lower panels (I) and (II), which correspond to the red solid circles,
show stable concentric ring patterns.

which is a one-dimensional Swift-Hohenberg model with cur-
vature corrections inherent to two dimensions. The curvature
effects are controlled by the terms proportional to the inverse
of a power of r in Eq. (2). This model has uniform solu-
tions μ = {0,±√

ε} and one-dimensional patterns. Note that
these patterns correspond to concentric ring states. ε = εc1 =
−ν2/4 accounts for the Turing instability (supercritical spatial
instability) for Eq. (2) [3,4]. In the case when one ignores the
curvature effects (standard one-dimensional Swift-Hohenberg
model), patterns propagate through the emergence of spatial
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FIG. 3. Domain walls and localized structures of the one-
dimensional Swift-Hohenberg Eq. (2) for ν = 1, and without
curvature corrections. (a) Domain wall profile and spatiotemporal
evolution between symmetrical uniform states u = ±√

ε for ε =
{0.2, 0.3}. (b) Profiles of localized structures and spatiotemporal evo-
lution (ε = 0.2). (c) Pattern propagation from a domain wall solution
(ε = 0.15) or a (d) localized structure (ε = 0.15). The red lines on
the spatiotemporal diagram show the instant where the profiles are
obtained. The dashed horizontal lines account for the homogeneous
equilibria. The domain of integration is from r = −25 to r = 25.

oscillations at the end of the pattern. Figure 3 illustrates pat-
tern propagation in the absence of curvature, by integrating
Eq. (2) in the whole spatial range (negative and positive values
of r). This behavior is similar to that observed in concen-
tric ring patterns in two dimensions in the outside ringing
region; see Fig. 2(e). We consider ε in the region of bista-
bility between uniform and pattern states. In this parameter
region, the system has a domain wall solution that connects
two symmetric states [see Fig. 3(a)]. The damped spatial
oscillation amplitudes increase with ε. Likewise, the model
Eq. (2), without curvature effects, has localized structures,
for higher values of ε, supported by homogeneous states [see
Fig. 3(b)]. For lower values of ε, the pattern state becomes
more stable than the homogeneous one. Then, the pattern
begins to propagate from the domain wall center or from the
localized structure [see the bottom panels of Figs. 3(c) and
3(d), respectively].

The above scenario changes radically when one consid-
ers the curvature effects. Starting from a localized structure
in the center of the numerical integration domain, for ε in
the outside ringing region, we observe pattern propagation
through the emergence of spatial oscillations outside the pat-
tern [see Fig. 4(a)], as in the case without curvature effects.
However, by increasing ε (inside ringing region), the prop-
agation changes drastically. Now, spatial oscillations created
in the center of the integration domain drive the propagation,
which propagates outward, and subsequently gives rise to new

FIG. 4. Pattern propagation and profiles from a localized struc-
ture of the one-dimensional Swift-Hohenberg model Eq. (2) for
ν = 1. (a) Pattern propagation for ε = 0.1 by including spatial os-
cillations in the outer part of the pattern. (b) Pattern propagation for
ε = 0.2 characterized by spatial oscillations that emerge from the
center and push the pattern structure outward. (c) Front propagation
of one homogeneous state over the other, for ε = 0.5. (d) Stable
localized structures for ε = 0.9. The red lines on the spatiotempo-
ral diagrams show the instant where the profiles are obtained. The
dashed horizontal lines account for the homogeneous equilibria. The
domain of integration is from r = 0 to r = 25, and then reflected at
r = 0.

oscillations in the center [cf. Fig. 4(b)]. This type of prop-
agation is similar to the one observed experimentally [see
Fig. 1(b)]. When ε is increased even more, we observe, as
a consequence of the curvature, that one homogeneous state
invades the other as illustrated in Fig. 4(c). Notice that the
speed of the fronts is constantly decelerating. This observed
dynamical behavior is consistent with what we have called
the inflation region in Fig. 2(e). By further increasing ε, the
localized structure is stable, and propagation of patterns or ho-
mogenous states is not observed [see Fig. 4(d)]. The solutions
of Eq. (2) shown in Fig. 4 were numerically integrated for r >

0, and then reflected at r = 0. In brief, the effects of curvature
and bistability (uniform and pattern state) control and stabi-
lize the propagation mechanisms of concentric ring patterns.
The transition between the inflation mode and a stationary
localized structure has been reported in a previous work [43].
There, a Swift-Hohenberg model was used to explore the
phase domain dynamics. By a minimization principle, a local
velocity-curvature relationship was proposed. Note that in the
cases of inside and outside ringing [cf. Fig. 2(e)], the local
approximation is invalid, and the ring dynamics is governed
by nonlocal interactions.

In conclusion, we have shown that concentric ring pat-
terns are stable beyond Turing instability. To observe these
concentric ring patterns, the bistability of patterns and homo-
geneous states in an isotropic medium is required. Based on
a prototype model, the Swift-Hohenberg equation, we show
that these solutions are stable and identify the ingredients for
their stability. Close to the Turing instability, the concentric
rings are unstable due to the interaction of spatial modes.
Then, beyond the Turing instability, the concentric ring
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patterns can be stabilized. We propose a mechanism of pattern
formation, inside ringing, which is triggered by curvature.
Experimentally, we observed stable concentric ring patterns in
an illuminated dye-doped liquid crystal cell with sufficiently
high intensity. The formation of the concentric ring patterns is
in agreement with our theoretical findings in the inside ringing
region.
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