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A B S T R A C T

The propagation of interfaces between different equilibria exhibits a rich dynamics and morphology, where
stalactites and snowflakes are paradigmatic examples. Here, we study the stability features of flat fronts
within the framework of the subcritical Newell–Whitehead–Segel equation. This universal amplitude equation
accounts for stripe formation near a weakly inverted bifurcation and front solutions between a uniform state
and a stripes pattern. We show that these domain walls are linearly unstable. The flat interface develops a
transversal pattern-like structure with a well defined wavelength, later on, the transversal structure becomes a
zigzag structure: This zigzag displays a coarsening dynamics, with the consequent growing of the wavelength.
We study the relation between this interface instability and those exhibited by the interface connecting a
stripes pattern with a uniform state in the theoretical framework of subcritical Swift–Hohenberg equation. A
transversally flat wall domain could be stabilized by the pinning effect, this dynamical behavior is lost in the
subcritical Newell–Whitehead–Segel approach. However, this flat interface is a metastable state and in the
presence of noise the system develops a similar behavior to the subcritical Newell–Whitehead–Segel equation.
1. Introduction

Non equilibrium processes often lead in nature to pattern formation
developing from a uniform state through a spontaneous symmetry-
breaking instability [1]. In the last decades, a lot of attention has
een devoted to the study of pattern formation (see reviews [2–7] and

the references therein) arising in systems such as chemical reactions,
gas discharge systems, CO2 lasers, liquid crystals, hydrodynamic or
electroconvective instabilities and granular matter, to mention a few. A
unified attempt to describe the dynamics of spatially periodic structures
developed at the onset of spatial bifurcation is achieved by means of
amplitude equations for critical modes [1]. Such a description is valid
in the case of weak nonlinearities and for a slow spatial and temporal
modulation of the base pattern [2,7]. As an example, the Newell–
Whitehead–Segel equation describes the dynamics of a stripes pattern
formed in two-dimensional isotropic systems [8].

Another ubiquitous phenomenon in nature is the interface dynamics
or fronts propagation or domain walls dynamics [7]. The concept of
front propagation, emerged in the field of population dynamics [9], has
gained growing interest in biology [10], chemistry [11], physics [2,12],
optics [13–16], and mathematics [17]. These interfaces connect two
extended states, such as uniform states, periodic cellular patterns,
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uniform oscillations, standing waves, spatiotemporal chaotic states,
and so forth. In one-dimensional systems, when one has an interface
connecting two uniform stable states [16], the most favorable state
(for instance, energetically) invades the other one with a constant
speed. This speed is zero, that is the front is motionless, for a single
value of the system parameters, which is well-known as the Maxwell
point [18]. The above picture changes drastically when one considers
an interface connecting a periodic cellular pattern state with a uniform
one (or two different periodic patterns). Due to the breaking of the
spatial translation symmetry, the interface is motionless in a range
of parameters, the pinning range [18–22]. Even if one of the extended
states is more favorable (in an energetically sense, for example), the
front remains at rest. Experimentally, the pinning–depinning transition
of fronts between pattern states was characterized based on a liquid
crystal light valve with optical feedback [23]. However, this pinning
effect is missed in the amplitude equations approach to the patterns
forming processes [18]. The reason for that is related with the request
of weak nonlinearities. Namely, if the nonlinearities scale with the
bifurcation parameter 𝜀 (0 < 𝜀 ≪ 1), the amplitude equations method
assumes that one can expand the system variables in a power series of
𝜀 or 𝜀1∕𝑚 (𝑚 is an integer). The asymptotic amplitude equations itself
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Fig. 1. (a) Bifurcation diagram of the uniform solutions of model (1), the solid and
dashed lines stand for stable and unstable solutions, respectively. (b) Front solution
(2), 𝐴+

𝐹 with 𝑃 = 𝜃 = 0.

is the lowest order in this expansion, that is, the dominate dynamic.
Nevertheless, it has been shown that the pinning range is exponentially
small in this scaling, i.e. scales as exp (−𝜀−𝑛) with 𝑛 > 0 [24]. Then,
the pinning phenomenon is missed in all the orders of the expansion.
A notorious effort, to correct it, has been performed via amended
amplitude equations [25,26].

In bidimensional dynamical systems, flat fronts connecting patterns
and uniform states have an extra degree of freedom, the transversal
direction. In the case of a front that links stripes pattern with a uniform
state, it has been shown that a very rich transversal dynamics could
emerge [27–32]. For example, a depinning process has been reported in
context of the supercritical Swift–Hohenberg equation, which is related
to a transversal instability that leads to the formation of a labyrinth pat-
tern [27]. In the case of subcritical Swift–Hohenberg model a quite rich
variety of pattern-like transversal structures have been reported [28–
31]. In this context, it has been also suggested the possibility of a zigzag
coarsening process [29], this phenomenon with be discussed in detail
in this work. Furthermore, beyond the prototypical Swift–Hohenberg
model, this kind of phenomena seem to be relevant in several pattern-
forming processes, such as vibrated granular layers [33], copolymer
thin films [34], molecular electronics [35,36], convectons in the con-
text of fluid dynamics [37–39], or vegetation population dynamics
in semiarid zones [40,41], where the instability of circularly shaped
interfaces allow the repopulation of territories devoid of vegetation
due to a self-replication of the biomass (for front dynamics and self-
replication in population dynamics, it might be also seen Refs. [42–
48]). Moreover, nonlinear optics has been another fruitful field to study
front dynamics [49], where, for instance, fingering instabilities in flat
and circularly shaped interfaces are well documented [50–52]. At this
point, it might sound pertinent to pay more attention to universal
descriptions of pattern formation, such as amplitude equations.

The aim of this work is to study interface dynamics in the frame-
work of subcritical Newell–Whitehead–Segel equation. In particular,
we analyze the dynamics of a flat interface and show that these
2

fronts are linearly unstable; that is, after an infinitesimal perturbation
the flat configuration, the interface initially develops a transversal
pattern-like structure with a well-defined wavelength; later on, the
transversal structure becomes a zigzag structure, which displays a
coarsening dynamics. Then, we study the relationship between this
interface instability and those exhibited by the interface connecting a
stripe pattern with a uniform state in the framework of the subcritical
Swift–Hohenberg equation. The model and the front solution at the
Maxwell point are presented in Section 2. In Section 3, it is shown
that this front is linearly unstable. In Section 4, we study the nonlinear
regime, where the interface becomes a zigzag structure which displays
a coarsening process. In Section 5, we analyze the phenomenology
exhibited by the domain wall out of the Maxwell point. As we men-
tioned above, since amplitude equations fail in describing the pinning
effect, its utility for the study of fronts involving spatially periodic
structures might be questionable. The pertinence between these results
and the description of pattern formation out of equilibrium is discussed
is Section 6. In connection with our previous work on the quintic Swift–
Hohenberg equation [29], it is shown that the pinning effect is able to
stabilize a transversally flat interface between stripes and a uniform
state (at least for the parameters reported in this work). However,
it is a metastable state, in presence of noise the system exhibits the
same dynamical behavior that the amplitude equation, namely, the
formation of a zigzag structure which displays a coarsening dynamics.
In Section 7, we present the conclusion and final remarks.

2. Subcritical Newell–Whitehead–Segel equation

Let us introduce the subcritical Newell–Whitehead–Segel equation
[8] (subcritical-NWS)

𝜕𝑡𝐴 = 𝜇𝐴 + |𝐴|2 𝐴 − |𝐴|4 𝐴 +
(

𝜕𝑥 − 𝑖𝜕𝑦𝑦
)2 𝐴, (1)

where 𝐴(𝑥, 𝑦, 𝑡) is a complex field, which accounts for the envelope
of the stripes pattern, and 𝜇 is the bifurcation parameter which is a
real free parameter. The sign of the cubic and quintic nonlinearities
have been chosen in order to have a subcritical bifurcation at 𝜇 = 0.
The nonlinear and spatial coefficients have been normalized to one by
appropriately scaling the amplitude, time, and space. The {𝑥, 𝑦} are the
slow spatial variables that stand for the orthogonal and the transversal
directions with respect to stripes pattern. The asymmetrical dependence
of spatial derivatives is a consequence of the fact that the original
pattern breaks the isotropy symmetry. The afore dynamical system has
the Lyapunov functional,


[

𝐴,𝐴∗] = ∫

{

|

|

|

(

𝜕𝑥 − 𝑖𝜕𝑦𝑦
)

𝐴||
|

2
+ 𝑈 (|𝐴|)

}

𝑑𝑥𝑑𝑦,

here

(|𝐴|) =
( 1
3
|𝐴|4 − 1

2
|𝐴|2 − 𝜇

)

|𝐴|2 .

herefore, the temporal evolution of amplitude Eq. (1) minimizes this
unctional (𝑑 [𝐴,𝐴∗]∕𝑑𝑡 ≤ 0, during the system evolution).

The envelope Eq. (1) models the spatiotemporal evolution of the
mplitude of stripes that are orthogonal to the 𝑥-direction, more pre-
isely, a pattern with a profile Re

[

𝐴𝑒𝑖𝑞𝑥
]

, where 𝑞 is the wavenumber
f the pattern. Notice 𝑞 has been removed from Eq. (1) by a spatial re-
cale. Hence, the nonzero uniform states of Eq. (1) represent spatially
xtended stripes. While, the trivial solution 𝐴 = 0 represents a genuine
niform state. This trivial state 𝐴 = 0 is stable when 𝜇 < 0 and unstable
hen 𝜇 ≥ 0. Besides, the system has the nonzero amplitude solutions

± =
√

1
2

(

1 ±
√

1 + 4𝜇
)

𝑒𝑖𝜃 ,

ith 𝜃 an arbitrary constant, due to the translational invariance of
he original pattern forming system. These nonzero solutions appear
y saddle–node bifurcation at 𝜇𝑠 ≡ −1∕4, 𝐴− is an unstable state and

merges with 𝐴 = 0 at 𝜇 = 𝜇 ≡ 0, while 𝐴 remains stable for all
0 +
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Fig. 2. Density plots of |𝐴| (up), Re [𝐴] (middle) and Im [𝐴] (down) of the model Eq. (1). The horizontal and vertical direction corresponds to 𝑥 (𝑥 ∈ [0, 199]) and 𝑦 (𝑦 ∈ [0, 199])
coordinate, respectively. Time grows up from left to right, the first states corresponds to 𝑡 = 0 (the initial condition), the second one to 𝑡 = 3300 and the last one to 𝑡 = 3800.
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Fig. 3. Numerical computation of the 𝜆 (𝑘)-spectrum (growth rate) as a function of
avenumber 𝑘.

> 𝜇𝑠. Fig. 1(a) shows the bifurcation diagram of the uniform states
f the subcritical-NWS equation. Therefore, a stable nonzero (pattern)
oexists with a zero amplitude state (uniform state) within the range
𝑠 < 𝜇 < 𝜇0, that is, in this region of parameters the system exhibits
istability.

We are interested to find a flat interface between these states, that
s, to reach a domain wall parallel to the orientation of stripes. For the
odel Eq. (1), such spatial connection is motionless only at the Maxwell

point 𝜇 = 𝜇𝑀 ≡ −3∕16, and has the form

±
𝐹 (𝑥) =

√

3∕4

1 + 𝑒±
√

3(𝑥−𝑃 )∕2
𝑒𝑖𝜃 , (2)

here 𝜃 and 𝑃 are arbitrary constants. The shape of this interface is
hown in Fig. 1(b). Both, 𝜃 and 𝑃 , are independent free parameters of
he solution (2), that are related with the translational invariance of
he underline pattern forming system. The parameter 𝑃 is related with
ranslation of the pattern envelop, while 𝜃 is related with the phase
nvariance, i.e. translation of the spatial oscillations.
3

. Linear stability of a transversally flat interface

To investigate the stability of the front solution (2), we have per-
ormed numerical simulations of the model (1), using a finite difference
ethod and a fourth order Runge–Kutta method for the time evolution.

urthermore, we have considered null flux boundary conditions in the
-direction and periodic boundary condition in the 𝑦-direction, in all
he numerical simulations of the model Eq. (1).

We have taken as initial condition the front solution (2) with 𝜃 = 0,
.e. a real field (without lost of generality due to the phase invariance),
ith a small stochastic perturbation. If the front (2) is stable, we expect

that the initial condition evolves to a flat front, with a little translation
of the free parameters of the non perturbed flat interface, that is,
𝜃 → 𝜃 + 𝛿𝜃 and 𝑃 → 𝑃 + 𝛿𝑃 . However, independent of the smallness
of the initial noisy perturbation, we have observed that the imaginary
part of 𝐴 increases systematically at the interface when time evolves.
It is worthy to note that the imaginary part of 𝐴 is a measure of the
phase dynamics.

Fig. 2 shows the destabilization process; note that, the phase exci-
tation occurs around a well defined wavelength (modulated by a long
wavelength). As the excitation develops, the front position begins to
move in a longitudinal inhomogeneous way, inducing the formation
of a transversal structure with the same well-defined wavelength. The
amplitude of this pattern-like structure grows at the early time of the
system evolution.

To grasp the behavior of the longest transversal wavelength of the
instability, we perform the following analysis: we prepare an initial
condition from the front solution (2), promoting its position to a
unction of 𝑦 coordinate, i.e. 𝑃 → 𝑃 (𝑦) = 𝑃0 + 𝛿𝑃 (𝑦), where 𝛿𝑃 (𝑦) is a
mall profile with Gaussian shape. Then, the system is allowed to evolve
or a short time, during this evolution we measure the front position
(𝑦, 𝑡), and its Fourier transform 𝑃𝑘 (𝑡). If the time of evolution is short

nough, then the system stays in the linear regime, which is defined by
he criterion

̂ 𝑡 ≅ 𝑃 0 exp 𝜆 𝑘 𝑡 ,
𝑘 ( ) 𝑘 ( ) [ ( ) ]
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Fig. 4. Density plots of |𝐴| (up), Re [𝐴] (middle) and Im [𝐴] (down) of the model Eq. (1). The horizontal direction corresponds to 𝑥 (𝑥 ∈ [4400, 5000], and the simulation has been
erformed in the domain 𝑥 ∈ [0, 9999]) and the vertical one to 𝑦 (𝑦 ∈ [0, 200], and the simulation has been performed in the domain 𝑦 ∈ [0, 299]). Time grows up from left to right,
f the initial condition correspond to 𝑡 = 0, the first state corresponds to 𝑡 = 77130, the second one to 𝑡 = 217530 and the last one to 𝑡 = 553110.
Fig. 5. Cubic spline of the: (a) interface position 𝑃 (𝑦, 𝑡); and (b) its first derivative
𝑄 (𝑦, 𝑡) ≡ 𝜕𝑃 (𝑦, 𝑡) ∕𝜕𝑦 at given time.

where 𝜆 (𝑘) is constant for a fixed 𝑘. This growth rate, or 𝜆 (𝑘)-spectrum,
is displayed in Fig. 3 as a function of the wavenumber 𝑘. The 𝜆 (𝑘)-
pectrum allows us to conclude that the front (2) is linearly unstable;

its maximum corresponds to the characteristic wavenumber exhibited
by the system during the development of the instability. The modes
4

Fig. 6. Numerical computation of ⟨𝐿⟩ (𝑡) from the average of two simulations (solid
line). A power law fitting ⟨𝐿⟩ (𝑡) ≈ 1.19𝑡0.23 (dashed line).

Fig. 7. Numerical computation of the area of the nonzero solution |

|

𝐴+
|

|

as function of
time 𝑎 (𝑡).
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Fig. 8. Numerical computation of: (a) ⟨𝐿⟩ (𝑡) (solid line), and the power law fitting
⟨𝐿⟩ (𝑡) ≈ 1.12𝑡0.23 (dashed line); and (b) 𝑎 (𝑡). For 𝑦 ∈ [0, 499].

with the shortest wavelength are stable, while the modes with the
longest ones are unstable. Note that 𝜆 (0) = 0, as it is expected from
the translational invariance.

The 𝜆 (𝑘)-spectrum evokes us the classical Cahn–Hilliard equation
spectrum [53,54], namely, 𝜆 (𝑘) ∝ 𝛼𝑘2 − 𝑘4. Since the modes with the
ongest wavelength are never stabilized, we expect that the character-
stic length of the interface profile increases monotonically with time,
.e. developing a coarsening process, in a similar way to the Cahn–
illiard model [54]. It is important to remark a difference with the
ahn–Hilliard equation spectrum: the 𝜆 (𝑘)-spectrum, which is shown

n Fig. 3, seems to be flat at small 𝑘.

. Nonlinear regime: zigzag structure and coarsening dynamics

After the linear regime, the interface shows a zigzag structure (see
ig. 4). Namely, the interface is composed of line pieces with an
pparently well-defined slope, zig-facet or zag-facet, turned with well-
efined angles. Two adjacent facets, whose orientations are opposite,
re connected by a region of strong curvature, that we term corner.
ig. 5 illustrates the interface position 𝑃 (𝑦, 𝑡) and its first derivative
(𝑦, 𝑡) ≡ 𝜕𝑃 (𝑦, 𝑡) ∕𝜕𝑦 at a given time, which corresponds to a cubic

pline interpolation of data that comes from a direct numerical sim-
lation of model (1). From the 𝑄-shape it is possible to infer that
he facets have approximatively the same slope, with opposite signs,
lus a small curvature. This curvature is smaller when the domain
ize in some facets increases. At the corners, the behavior of 𝑄 is
ot monotonic, which is a reminiscence of convective effects in the
ahn–Hilliard equation [55]. In the convective Cahn–Hilliard model,
he absence of monotonicity is observed only at the transition from

negative slope to a positive slope, due to adjusting of the system
nduced by the asymmetry of a single kink solution [56]. In our case,

the non-monotonicity is observed in both transitions.
5

The dynamics shown by the interface consists then in reassembling
domains of even orientation, i.e. a coarsening dynamics. This process
occurs due to annihilations of corners (see the temporal sequence in
Fig. 4) and without a characteristic length scale. Actually, the averaged
size of the domain with a well defined slope increases regularly in time.
Fig. 6 shows the measure of the temporal evolution of the averaged size
of these domains, which we term ⟨𝐿⟩ (𝑡). It comes from the result of
two numerical simulations with a different initial noisy perturbation.
We compute ⟨𝐿⟩ for both simulations each 𝛥𝑡 = 10 time step. The
solid line in Fig. 6 is the average of these two values of ⟨𝐿⟩. Note
hat, for moderated time the averaged size seems to grow with the
ower law ⟨𝐿⟩ ∼ 𝑡0.23 (dashed line), later on (after 𝑡𝑐 ≈ 2.8 × 105),
𝐿⟩ exhibits a change of its growing speed. Since, the non-monotonic
ehavior of 𝑄, at the corners, evokes us the convective effect in the
ahn–Hilliard model, we expect to observe, even at the Maxwell point,
ome propagation of one uniform state over the other. In fact, in Fig. 7
e display the area of the nonzero solution (the amplitude of pattern
𝐴+

|

|

) as a function of time 𝑎 (𝑡), from the same data that we used to
ompute ⟨𝐿⟩, namely, 𝑎 is the averaged area of two simulations. 𝑎 (𝑡)
ncreases monotonically on time, i.e. the stripes invades the uniform
olution. Note that, after 𝑡𝑐 ≈ 2.8×105 the propagation speed of the area
lso exhibits a qualitatively change of its dynamical behavior. Namely,
fter 𝑡𝑐 the propagation speed increases, giving the impression that the
igzag interface is pushed.

Since the behavior exhibited by the interface seems to be similar
o the faceting of a growing crystal surface modeled by the convective
ahn–Hilliard equation, one might expect to deduce a Cahn–Hilliard-

ike equation, in the form 𝜕𝑡𝑄 = 𝐹
(

𝑄, 𝜕𝑦𝑄, 𝜕𝑦𝑦𝑄,…
)

. However, this is
ot possible. The reason becomes evident from Fig. 4: at the linear
egime, the phase excitation takes place around the interface, i.e. at
he region 𝑥 ∼ 𝑃 (𝑦), however, this excitation begins to propagate far
rom the interface, due to the phase diffusion process undergone by
he phase (see the review [2] for a discussion of phase diffusion in
mplitude equations). Hence, the coarsening dynamic is always affected
y processes that occur far from the interface, and it is not possible to
educe to an effective one-dimensional dynamics (the 𝑦-dimension), as
t is necessary for the Cahn–Hilliard type approach [54].

Therefore, transversal variations at the interface play the role of
source of phase; the phase created by the source increases the

ransversal variations, i.e., the source of phase is amplified by the
hase that it creates. Then, there is a feedback interaction between phase
nd interface, which is responsible for the observed dynamics. The
reated phase diffuses far from the interface; however, the diffusion in
he transversal direction affects the coarsening at the interfaces. This
xplains the efficiency of the process, even for large ⟨𝐿⟩, in contrast
ith the convective Cahn–Hilliard equation which has a logarithmic

rossover for large time. In this sense, the coarsening process is non-
ocal and is affected by the domain of the system. That is, it is not
ossible to make an effective one-dimension reduction of the dynamics
round the interface.

The change exhibited by the growing speed of ⟨𝐿⟩ at 𝑡𝑐 , could be
nduced by the border of the system, even if the interface is far from
he border, the phase excitation is close to it (see Fig. 4, lower panel,
m[𝐴]). In order to verify this hypothesis, we have done numerical
imulations increasing the transversal size of the system—we consider
transversal domain 0 ≤ 𝑦 ≤ 499. As we see in Fig. 8 no change in the

rowing speed of ⟨𝐿⟩ or 𝑎 (𝑡) is observed until 𝑡 = 5.1 × 105. This is a
lear evidence that the existence of a 𝑡𝑐 is a boundary effect.

Note that, the responsible of the interaction between phase and
nterface is the imaginary part of the Newell–Whitehead–Segel spatial
perator

m
[

(

𝜕𝑥 − 𝑖𝜕𝑦𝑦
)2
]

= −2𝜕𝑥𝑦𝑦,

hich is related with the isotropy of the underlying pattern forming
ystem. The amplitude Eq. (1) preserve the fact that stripes formation
s a spontaneous breaking of the rotational symmetry. Therefore, the
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Fig. 9. Numerical simulations of model (1) for: (a) 𝜇 = −0.15; and (b) 𝜇 = −0.22. (left) A density plot of |𝐴| and (right) the transversal profile of the interface 𝑃 (𝑦).
o

𝑢

instability seems to be related to the isotropy of the underlying pattern-
forming system, indeed, for a strong anisotropic system (where the
stripes only can be formed in a privileged direction) this differential
operator must be replaced by an isotropic (completely real) Laplace
operator [57]. In this last case, one does not observe these kinds of
transversal instabilities [58].

5. Phenomenology out of the Maxwell point

In the parameter space out of the Maxwell point 𝜇 ≠ 𝜇𝑀 = −3∕16,
there is not a static domain wall that links the two uniform states. Due
to the process of minimization of the Lyapunov potential of the model
(1), one of the uniform states invades the other one. Then, the interface
now has another propagation mechanism which is not related to the
transversal deformation of the flat interface.

To analyze the transversal stability of these moving fronts, we
performed the same numerical experiments that in the Maxwell point,
with 𝜇 = −0.15 > 𝜇𝑀 and 𝜇 = −0.22 < 𝜇𝑀 , in order to study the
behavior of the interface when the-non zero uniform state is more
stable than the zero amplitude state and vice-versa. Numerically we
observe that in addition to the extra speed, the phenomenology is
the same. That is, the flat interface is transversally unstable and the
nonlinear regimen is characterized by a coarsening dynamics of a
zigzag structure. The main phenomenological difference is in the shape
of the zigzag structure. Fig. 9(a) depicts the front profile for 𝜇 = −0.15,
i.e when the uniform solution 𝐴 = 𝐴+ is energetically more convenient
than 𝐴 = 0 ( [𝐴+] <  [0]). In this case, the facets show a strong
curvature, which is probably induced by the tendency of the system to
propagate over the nonzero amplitude state. Analogously, we expect to
observe the opposite behavior when 𝜇 = −0.22 < 𝜇𝑀 , however, in this
case, the facets remain with a well-defined slope and the amplitude of
the zigzag is lower than the one at the Maxwell point, as it is illustrated
in Fig. 9(b).
6

6. Interface dynamics in subcritical-NWS versus subcritical Swift–
Hohenberg equation

Since the amplitude Eq. (1) loses the pinning effect, a natural
query is: What is the real meaning of these processes observed in
subcritical-NWS in pattern-forming systems? To answer this question,
we analyze a prototype mathematical model, the subcritical Swift–
Hohenberg equation [6], which exhibits coexistence between a stable
stripes pattern and a stable uniform state. This model reads

𝜕𝑡𝑢 = 𝜀𝑢 + 𝜈𝑢3 − 𝑢5 −
(

∇2 + 𝑞2
)2 𝑢, (3)

where 𝑢(𝑥, 𝑦, 𝑡) is a real field (the order parameter), 𝜀 is the control
parameter, 𝑞 is the characteristic wavenumber of the pattern and 𝜈 is a
parameter that controls the type of bifurcation, for positive (negative)
𝜈 the bifurcation is sub (super) critical. The uniform solution 𝑢 = 0
becomes unstable when 𝜀 > 0, and the model (3) exhibits the formation
of a stripes pattern. For 𝜈 > 0 there is a range of the control parameter
(with 𝜀 < 0) where the stripes pattern coexists with a stable uniform
state. Inside this coexistence region, one observes locked or motionless
fronts connecting the stripes pattern with the uniform state.

The model (3) can be approached by the amplitude Eq. (1) in the
weakly nonlinear limit 𝜈 ∼

√

|𝜀| ≪ 1, keeping 𝑞 ∼ (1). In this limit,
ne can approach the order parameter by

≈
√

6𝜈
5

Re
[

𝐴𝑒𝑖𝑞𝑥
]

+ 
(

𝜈5∕2
)

,

where the amplitude 𝐴 obeys Eq. (1), with 𝜇 ≡ 9𝜀∕10𝜈2, and introduc-
ing the slow spatiotemporal variables

9𝜈2𝑡
10

→ 𝑡, 3𝜈𝑥
√

→ 𝑥 and
√

3𝜈
√

𝑦 → 𝑦.

2𝑞 10 10
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Fig. 10. Localized stripes from a direct numerical simulation of the model (3), for
= −0.07, 𝜈 = 0.7 and 𝑞 = 0.5. (upper panel) Density plot of the order parameter;

lower panel) a 3D plot of the same structure.

Here, we report numerical simulations of the model (3) using a
seudo-spectral method. Since, this numerical method demands pe-
iodical boundary conditions, to study the transversal stability of a
lat interface between stripes and the uniform state, we considered
s initial condition localized stripes. This solution is formed by two
omain walls. In fact, fixing the parameters 𝑞 = 0.5 and 𝜈 = 0.7, we
erformed the following numerical simulations: we prepared localized
tructures from the one-dimensional version of model (3), and we
xtended it in the transversal dimension (𝑦-direction); then, we added
small noisy perturbation and considered this configuration as initial

ondition of the model Eq. (3). We always observe that the system
volves back to the transversally flat configuration and remain at rest
orever. These types of stable quasi-one-dimensional structures have
een earlier observed in Ref. [59]. Fig. 10 shows a typical localized

stripes pattern.
Hence, a flat front of prototype model (3) is transversally stable for

hese parameters, and does not develop the same instability that ex-
ibits the amplitude Eq. (1). It is possible to claim that, the parameters
hosen for the numerical analysis are far away to the weakly nonlinear
imit. However, if we decrease 𝜈, the system (3) displays another type of
nstability [29] (that we briefly comment below), which is not related
o the zigzag structure that exhibits model (1). However, the above

scenario changes drastically if we consider permanent stochastic fluc-
tuations, i.e. noise. We have performed numerical simulations adding
white noise to model (3), that is

𝜕𝑡𝑢 = 𝜀𝑢 + 𝜈𝑢3 − 𝑢5 −
(

∇2 + 𝑞2
)2 𝑢 +

√

𝜂𝜉 (𝑥, 𝑦, 𝑡) , (4)

here 𝜂 is the noise intensity and 𝜉 (𝑥, 𝑦, 𝑡) is a Gaussian white noise,
ith zero mean value ⟨𝜉 (𝑥, 𝑦, 𝑡)⟩ = 0 and correlation
𝜉 𝑥, 𝑦, 𝑡 𝜉

(

𝑥′, 𝑦′, 𝑡′
)⟩

= 𝛿
(

𝑥 − 𝑥′
)

𝛿
(

𝑦 − 𝑦′
)

𝛿
(

𝑡 − 𝑡′
)

. This is a more
7

( ) i
ccurate description because all macroscopic non-equilibrium systems
epresented by order parameter equations, like model Eq. (3), exhibit

internal fluctuations such as thermal fluctuations [1].
Fig. 11 shows the result of a numerical simulation of the model (4),

the initial condition corresponds to the stable localized structure shown
in Fig. 10. Initially, the system exhibits a transversal spatial structure
at the interfaces with a characteristic size that corresponds to half of
the pattern wavelength. Later on, these spatial oscillations merge and
nucleate new oscillations. When this process evolves the interfaces form
a zigzag structure (cf. Fig. 11), which displays a coarsening dynamics,
n a similar way to those exhibited by the amplitude Eq. (1). Subse-
uently, as the zigzag evolves, the pattern phase is clearly modified
rom the interface, as it is depicted in Fig. 11. Note that, the pattern is
uickly propagating over the uniform state, then facets at the interface
volve a curvature for larger times. Hence, the dynamical behavior is
ore similar to the one observed in Eq. (1), for 𝜇 > 𝜇𝑀 (see Fig. 9(a)),

uggesting that the stripes pattern are energetically more convenient
han the uniform state for the parameters chosen. For 𝜀 < −0.07, inside
he pinning range, the interface evolves initially in a similar manner,
owever, the coarsening dynamics evolves slowly and the system seems
o be frozen in some zigzag profile.

In brief, a flat interface of the deterministic model (3) is linearly
table (at least for the parameters shown in Fig. 10), however in
resence of noise the interface develops a transversal zigzag structure,
hich displays a coarsening dynamic. Then, a flat interface is nonlinear

ransversally unstable, in the sense that the system seems to be trapped
n a metastable state. In presence of noise, the system is able to escape
rom this metastable state and develops a similar transversal instability
o the amplitude Eq. (1). This scenario is pictorially depicted in Fig. 12.
urthermore, if this scenario is correct, then, a strong perturbation
n the initial condition should trigger the instability. In fact, Fig. 13
isplays this situation, where a spot is located in the right-wall. As
consequence of this non-small perturbation, the system starts to

evelop a corner from the position of the spot, trigging the depinning
rocess. Note the strong distortion of the pattern phase, as well as the
trong curvature of the facets.

Probably, the mechanism responsible to lock the transversal dy-
amics of the flat interface is closely related to the pinning effect
bserved in one-dimension systems. In fact, both phenomena are lost
n the amplitude equations approach. This statement suggests that
oth phenomena come from the exponentially small corrections, which
re neglected in the weakly nonlinear limit that is considered in the
mplitude equation approach. Notice that a one-dimensional pinned in-
erface, between a periodic state and a uniform one, is also a metastable
tate. In presence of noise one state starts to propagate over the other
ne [22,59], as in the two-dimensional case reported here (cf. Fig. 11).
n one spatial dimension systems, the pinning effect can be understood
n terms of the spontaneous breaking of the translational symmetry that
mplies the formation of the periodical pattern. Indeed, to propagate
he cellular pattern or the uniform state, the system must nucleate or
liminate a pattern cell. That is, the front envelope should be moved
non-arbitrary finite length to pass to an equivalent state (a length

hat corresponds to half of the pattern wavelength, if the system has
he reflection symmetry 𝑢 → −𝑢). Hence, inside the pinning range,
he interface should cross a nucleation barrier to propagate one state
ver the other one. In the two-dimensional case, shown in Fig. 11,
t seems to be the same situation. In fact, the system initially leads
o nucleate a spatially transversal structure at the interfaces whose
haracteristic size corresponds to half of the pattern wavelength. When
he interface crosses the nucleation barrier, the pattern propagates to
he uniform state. Since, in the weakly nonlinear regimen – where the
mplitude Eq. (1) is deduced – the pattern wavelength is considered
s a fast spatial scale, what is a finite wavelength for model (3), it is

infinitesimal for Eq. (1). Therefore, the nucleation barrier is neglected

n the amplitude equation approach. However, when the system crosses
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n

Fig. 11. Density plots of the order parameter from a numerical simulation of model (4), for 𝜀 = −0.07, 𝜈 = 0.7, 𝑞 = 0.5 and 𝜂 = 0.1. Time grows from left to right, and up to down.
Fig. 12. Schematic representation of the transversal zigzag instability, in both sce-
arios: (left) the amplitude Eq. (1); and (right) the prototype pattern-forming system

(3).

the nucleation barrier, then it exhibits a similar dynamics with the
amplitude Eq. (1), that is, the zigzag dynamics.

Furthermore, as we mention above, decreasing 𝜈 the system displays
another kind of transversal instability, that leads to the formation of a
spatially periodic structure at the domain walls. The details about the
formation of such structures can be found in Refs. [28–30], Fig. 14(a)
shows one of them. Here, again, the configuration loses stability under
the presence of fluctuations (see Fig. 14(b)), and the system displays the
zigzag dynamics. Therefore, the robust dynamics, that this prototype
pattern-forming system performs, is the process depicted by Eq. (1),
and all the structures induced by the pinning effect are metastables.

The main ingredients of the prototype model (3) are: the formation
of stripes patterns from a uniform state through a subcritical bifur-
cation, homogeneity, isotropy, and reflection symmetry (𝑢 → −𝑢).
These are the only features necessary to deduce the amplitude Eq. (1),
in the weakly non-linear regimen. Hence, we expect to observe a
similar behavior – non-linear transversal zigzag instability – in different
frameworks that exhibit the same spatial bifurcation and the same
8

underlying symmetries.
7. Conclusions

The amplitude Eq. (1) models the spatiotemporal evolution of the
envelope of stripes pattern, which emerges through a subcritical bifur-
cation, in a weakly nonlinear regime, where the underlying pattern-
forming system is homogeneous and isotropic. Hence, the pattern for-
mation is a spontaneous breaking of the rotational and the translational
symmetries. Model (1) maintains the effect of breaking the rotational
symmetry in the anisotropy of its differential operator. However, this
model loses the information about the breaking of the translational
symmetry, because in the weakly nonlinear regimen the pattern wave-
length does not play any role. A flat interface that links the zero
amplitude solution (uniform state of the original system) with the stable
nonzero amplitude solution (pattern state of the original system) is
transversally unstable. Then, after an infinitesimal perturbation, the
flat interface initially develops a transversal structure with a well-
defined wavelength. Later on, this transversal structure becomes a
zigzag structure, which exhibits a coarsening dynamics.

The instability and the coarsening dynamics are consequences of
the feedback interaction between the pattern phase and the interface
position. Transversal variations of the interface induce excitation of the
pattern phase, which induces transversal variations of the interface. So,
the excitation of the pattern phase diffuses far from the interface; the
coarsening process is an intrinsically non-local phenomenon.

The above picture changes if we study the same phenomena in a
prototype model of pattern formation—the subcritical Swift–Hohenberg
Eq. (3). As a consequence of the pinning effect, a transversally flat inter-
face between stripes and a uniform state is stabilized. Since model (1)
loses the information about the translational breaking symmetry, then
this approach loses the pinning effect. However, in presence of noise,
model (3) exhibits the same dynamical behaviors as those exhibited by
the amplitude Eq. (1). So, the interface develops a transversal zigzag
profile, which shows a coarsening dynamics. Therefore, in connection
with our previous work [29], we are able to claim now that all
these structures are transient (which, depending on the intensity of
fluctuation, may have a long half-life), and the ultimate dynamics is
the zigzag that we are documented in this report. The main features
of the zigzag dynamics are contained in model (1). One of the main
ingredients, to observe these processes, is the isotropy of the underlying
pattern-forming system. Actually, for strong anisotropic systems, one
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Fig. 13. Density plots of the order parameter from a numerical simulation of model (3), for 𝜀 = −0.07, 𝜈 = 0.7 and 𝑞 = 0.5. Time grows from left to right, and up to down.
Fig. 14. Density plots of the order parameter from numerical simulations of: (a) model (3), for 𝜀 = −0.0417, 𝜈 = 0.5 and 𝑞 = 0.7. (b) model (4), for 𝜀 = −0.0417, 𝜈 = 0.5, 𝑞 = 0.7
and 𝜂 = 0.07, time grows from left to right, and up to down.
.

can have other kind of behaviors [58], which are not related to the
zigzag reported here. Due to ubiquitous of the stochastic fluctuations in
nature, we expect that the transversal structures described in this work
are robust. Furthermore, the zigzag dynamics might be also triggered
by an irregular initial condition.
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