Vegetation covers phase separation in inhomogeneous environments

D. Pinto-Ramos a,*,1, S. Echeverría-Alar a,1, M.G. Clerc a,1, M. Tlidi b,1

a Departamento de Física and Millennium Institute for Research in Optics, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago, Chile
b Faculté des Sciences, Université libre de Bruxelles (ULB), CP. 231, 1050 Brussels, Belgium

A B S T R A C T

Vegetation patterns in arid and semi-arid ecosystems as a self-organized response to resource scarcity is a well-documented issue. Their formation is often attributed to the symmetry-breaking type of instability. In this contribution, we focus on a regime far from any symmetry-breaking instability and consider a bistable regime involving uniformly vegetated covers and a bare state. We show that vegetation populations exhibit non-random two-phase structures where high biomass density regions are separated by sparsely covered areas or even bare soil. These structures are referred to as phase separation vegetation covers. We provide observations of this phenomenon in Gabon, Angola, Argentina, and Mexico. The inhomogeneities in environmental conditions are crucial to explain the origin of phase separation vegetation covers. We derive a simple equation from ecologically relevant models to explain various field observations. The bifurcation diagrams obtained from this model allow us to prove that inhomogeneity in the aridity parameter is a source of resilience for vegetation covers, avoiding collapsing towards a bare state. We characterize the natural observations and the equilibria from the model by using Fourier transform technique, spatial autocorrelation analysis, and size distribution of patches analysis.

1. Introduction

The fragmentation of landscapes and loss of biological production in drylands, which leads to desertification as a result of climate change and longer drought periods, is one of the world’s most pressing environmental challenges. This fragmentation is typically accompanied by a non-equilibrium symmetry breaking instability, even when the topology of the landscapes is flat [1,2]. The patterns that emerge from the symmetry-breaking instability is generically called vegetation patterns. The ‘tiger bush’ is a well-known example that was first seen in the early 1940s thanks to the development of aerial photography [3]. Since this discovery, several modeling approaches have been proposed to explain the origin of these patterns, ranging from cellular-automata models [4], integrodifferential equations [1], reaction–diffusion equations [5–8], to spatially stochastic models [9,10]. The later approach focuses on how environmental randomness can be used to create symmetry-breaking transitions that lead to the formation of vegetation patterns. Besides tiger bush other spatially periodic vegetation patterns have been reported such as hexagons [1,2,11,12], and labyrinths [2,12].

Vegetation patterns are not always periodic. They can be localized in space [13–17], found close to the symmetry-breaking instability. In [18,19], it is established how two well separated isolated patches interact in one- and two-dimensions. As one moves out from the patch center, the patch tail monotonically decays, whereas localized gaps have a damped oscillatory tail. Depending on how far apart the gaps are, the interaction can be either attractive or repulsive [20]. Localized patches may exhibit a curvature instability that causes the self-replication phenomenon [21,22] or the emergence of arcs and spirals [23].

Non-periodic vegetation patterns in a regime far from any symmetry-breaking instability can be observed in nature. These structures emerge spontaneously from random perturbations of the unstable homogeneous steady state that separates the two stable states forming a bistable system. This phenomenon is referred as phase separation. Growth of spatial domains of different phases whose dynamics is governed by power law in systems with conserved and nonconserved order parameters is a well documented issue [24–26]. This phenomenon has been studied in a variety of out-of-equilibrium systems, including polymer chemistry [27,28], material science [29], optical systems [30–33] and cell biology [34]. However, the topic of phase separation in ecosystems caused by environmental inhomogeneity has received little attention.

Examples of phase separation in ecosystems are shown in Fig. 1. These are satellite photos, retrieved from Google Earth software, of vegetation coverage in different regions. Near the African coast, the landscapes of Gabon (see Fig. 1a) and Angola (see Fig. 1b) show distinct patches of bare soil and planted areas of various sizes and forms. Scattered vegetated and non-vegetated areas are seen in the hilly regions of Argentina (see Fig. 1c) and Mexico (see Fig. 1d). It is seen that the vegetation distribution in all these places is inhomogeneous. Modeling
approaches in vegetation ecosystems do not exhibit heterogeneous non-periodic self-organization as equilibrium. The spatial characterization of such vegetation states and the transitions between them have not been explored.

We propose a unified description for non-homogeneous and non-periodic vegetation covers, vegetation pattern phase separation. We show that the inhomogeneous vegetation covers are equilibrium states of the ecosystem under inhomogeneous environment. We demonstrate how the inclusion of inhomogeneities in the parameters plays a crucial part in explaining the wide range of distinct observed equilibria. We observe that the vegetation spatial organization is characterized by a power-law distribution in Fourier space and an exponential decay in the spatial correlation. Finally, a power law for the early temporal evolution of the total biomass is numerically inferred.

Following an introduction, Section 2 shows the characterization of the spatial self-organization of the satellite images in Fig. 1. In Section 3, we present a straightforward Fisher–Kolmogorov–Petrovskii–Piskunov (FKPP) type model with inhomogeneous environmental conditions and explore the dynamics of phase separation vegetation covers. The study of equilibria and the coarsening dynamics of homogeneous states are discussed in Sections 4 and 5, respectively. In Section 5.2, we examine how the coarsening dynamics are impacted by an inhomogeneous environment by avoiding collapse to the bare state. The paper is concluded in Section 6. A detailed derivation of the FKPP equation from the generic interaction redistribution model and the reaction–diffusion water and biomass model is included in the Appendix section.

2. Spatial characterization of field observations

To characterize vegetation phase separation patterns shown in Fig. 1, we evaluate their Fourier spectrum and their spatial autocorrelation. The results are shown in Fig. 2, where the Fourier spectrum $|F(q)|^2$, as a function of the radial wavevector q, is depicted in Fig. 2(a). All satellite images taken from Gabon, Angola, Argentina, and Mexico unexpectedly possess a power-law decaying tail connecting a range of spatial scales in the wavevector space. In this figure, the linear fitting is indicated by red line. At the very least, this eliminates the possibility of a wavelength selection process leading to the formation of periodic vegetation patterns. Besides, each vegetation photograph in Fig. 1 shows a non-periodic behavior with an asymptotic value is reached. Up until great distances, the vegetation structures exhibit a power law for the early temporal evolution of the total biomass is numerically inferred.

Fig. 1. Vegetation pattern phase separation. Top views of (a) Gabon, Africa (2°44'08.42"S, 10°12'28.37"E), (b) Angola, Africa (6°19'39.10"S, 12°35'25.98"E), (c) Argentina, South America (40°58'17.21"S, 71°16'03.76"O), and (d) Mexico, North America (29°04'25.99"N, 110°11'19.27"O).

Fig. 2. Fourier spectra and spatial autocorrelations. The blue dots and the blue lines represent the real data from the vegetation images of Fig. 1. (a1, b1, c1, and d1) correspond to the Fourier spectrum of Gabon, Angola, Argentina, and Mexico vegetation patterns, respectively. The red line in the Fourier space illustrates the power-law behavior of the tail in the radial direction q. The exponents range from 2.0 to 3.4. The R^2 values of the linear fittings are (a_1) 0.79, (b_1) 0.77, (c_1) 0.69, and (d_1) 0.70, respectively. (a_2, b_2, c_2, and d_2) are autocorrelations corresponding to Gabon, Angola, Argentina, and Mexico vegetation patterns, respectively. The characteristic correlation lengths l are (a_2) 1 = 610.9 m, (b_2) 1 = 206.6 m, (c_2) 1 = 113.3 m, and (d_2) 1 = 72.4 m. They are obtained by fitting the exponential law $Be^{-r/l}$ to the real data, where B is a positive constant. The R^2 value of all the exponential fittings is 0.99. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 1 do not emerge spontaneously from symmetry-breaking instability but rather from phase separation mechanism. Independent of the region of the planet, and type of soil and vegetation (bushes, patches, shrubs, trees), we observe a power-law in Fourier space and an exponential decay of the autocorrelation function. In the next sections, we introduce a model and provide an explanation to the field observations.

3. Phase separation dynamics for biomass

We adopt a continuous time and space description of the biomass density \(b(x, y, t) \) at space coordinates \(x = (x, y) \) and time \(t \). Theory of vegetation patterns based on the non-local FKPP equation has been reported in [35–37]. In this contribution, we consider the paradigmatic local FKPP [38,39] model equation describing the population dynamics of individuals with the inclusion of small inhomogeneities in the growth parameter

\[
\eta \text{ in homogeneous environmental conditions where } \eta \text{ increases.}
\]

\[
\nu = \frac{\kappa b - b^3 - b^3 + DV^2}{b}. \tag{1}
\]

This simple model is derived from the nonlocal FKPP equation, and from reaction–diffusion water biomass model (see the Appendix). The parameter \(\eta \) measures the linear growth (\(\eta < 0 \)) or decay (\(\eta > 0 \)) of vegetation population. \(\eta \) increases as the aridity of the environment increases; \(\kappa \) measures the net effect of facilitative versus competitive interactions, and \(b^3 \) is the nonlinear saturation. The last term describes diffusion with coefficient \(D \) and \(V^2 = \partial_x^2 + \partial_y^2 \) is the bidimensional laplacian operator. The degree of aridity described by the parameter \(\eta \) of an environment is related with on-site evapotranspiration process [40]. A spatial distribution of this process can arise naturally due to different type of soil, diverse plant groups, and topographic variations [41]. The function \(\xi(r) \) models these environmental inhomogeneities and \(\Gamma \) measures the intensity of them.

Let us briefly recall that Eq. (1) can be stated in gradient form

\[
\frac{\partial b}{\partial t} = \frac{\delta F}{\delta b}, \quad F = \int d\mathbf{r} \left(\eta(\mathbf{r}) \frac{b^2}{2} - \frac{\kappa b^4}{3} + \frac{b^3}{4} + \frac{D}{2}(\nabla b)^2 \right). \tag{2}
\]

where \(\eta(\mathbf{r}) = \eta + \sqrt{\Gamma} \xi(\mathbf{r}) \). Then, it is well-known that the system Eq. (1) will reach an equilibrium minimizing the potential \(F \).

In what follows, we focus on the effects of independent inhomogeneities in space. In this case, the function \(\xi(r) \) is generated by a delta-correlated gaussian random process of zero mean. In the absence of inhomogeneities, i.e., \(\Gamma = 0 \), the model for vegetation Eq. (1) was derived from ecologically relevant models (see the Appendix).

It has also been derived from a variety of physical systems, including liquid crystals [42], flame combustion [43], fiber Kerr resonators [44], passive Kerr cavity [45], and electrical circuits [46], to mention a few.

Eq. (1) for \(\Gamma = 0 \) supports domain walls [47] (or bistable fronts) separating the two stable equilibrium states \(b_{\pm} = (\kappa + \sqrt{\kappa^2 - 4\eta})/2 \) and \(b_{0} = 0 \). One important aspect of equilibrium is that for positive values of \(\kappa \) there exist a tipping – or saddle node – point at \(b_{+} = \kappa/2 \) and \(\eta_{\pm} = \kappa^2/4 \). As one crosses the critical aridity \(\eta = \eta_{\pm} \), this bifurcation, which is defined by the annihilation of two equilibria, causes dramatic changes in the system [48], well documented as catastrophic shift in ecology.

The dynamics of Eq. (1) in the simple case of homogeneous environmental conditions, is characterized by front propagation. Straightforward calculations lead to a propagation speed of the fronts proportional to the difference of energy of the homogeneous states. Neglecting the curvature effects for the domain propagation, the speed of walls reads (see the textbook [47] and reference therein)

\[
\nu_{wall}(b_{\pm} \rightarrow b_{0}) \equiv \nu_{\pm} \propto F(b_{\pm}) - F(b_{0}). \tag{3}
\]

\[
F(b) \equiv \eta \frac{b^2}{2} - \frac{\kappa b^4}{3} + \frac{b^3}{4}. \tag{4}
\]

In homogeneous environmental conditions where \(\eta \) is a constant, the dynamics leads to either a uniform vegetated cover or a state totally devoid of vegetation. This approximation cannot explain the wide range of vegetation patterns depicted in Fig. 1. It is then necessary, to include inhomogeneities in the environmental conditions, such as the aridity, which will explain the field observation as we will see in the next section.

4. Equilibrium states analysis

In this section, we discuss equilibria of Eq. (1) first in the homogeneous parameter \(\Gamma = 0 \) case, and then when \(\Gamma \neq 0 \), considering both delta-correlated and spatial correlated inhomogeneities.

4.1. Homogeneous case \(\Gamma = 0 \)

Starting from random initial conditions \(b_0(x,0) \) around the unstable vegetated state, one can introduce the averaged biomass \(b \equiv \frac{1}{N} \sum_{i=1}^{N} \int d\mathbf{r} b_i(\mathbf{r},T)/NL^2 \) where \(N \) is the number of realizations and \(T \) is the time to reach equilibrium. \(b \) exhibits an abrupt change when increasing the aridity parameter \(\eta \) as shown by the blue dotted curve in Fig. 3(a).

There exist a single point called the Maxwell point and denoted by \(\eta = \eta_{\text{ms}} \), where front solutions of Eq. (1) are stationary, i.e., when the two stable homogeneous steady states have the same energy. For \(\eta < \eta_{\text{ms}} \), \(b_{\pm} \) has the lowest free energy density, whereas for \(\eta > \eta_{\text{ms}} \), \(b_{0} = 0 \) is the preferred state. Figs. 3(b) illustrates the bifurcation diagram for the mean biomass (\(\langle b \rangle \)) and the biomass area fraction (\(\frac{\langle A \rangle}{\langle b \rangle} \)) at different inital conditions \(b_i \) as

\[
\frac{\langle A \rangle}{\langle b \rangle} \equiv \frac{\sum_{i=1}^{N} \int d\mathbf{r} A_i(\mathbf{r},T)/NL^2}{\langle b \rangle}, \tag{5}
\]

The biomass area fraction corresponding to the case \(\Gamma = 0 \) is indicated by the blue dotted curve in Fig. 3(b). Without inhomogeneities, numerical simulations of Eq. (1) for a long time evolution, reach either a uniform cover state or a state totally devoid of vegetation. These equilibrium biomass covers correspond to an area fraction one or zero in Fig. 3(b), respectively. Therefore, vegetation patterns and phase separation vegetation covers are excluded in this case.
4.2. Inhomogeneous $\Gamma \neq 0$ and non-correlated $\xi(r)$ case

When the aridity parameter is inhomogeneous $\Gamma \neq 0$, numerical simulations of Eq. (1), using different random initial conditions and different realizations of $\xi(r)$, show there is no abrupt change in the mean biomass for large enough Γ. Fig. 3(a) show this smooth transition (see orange and green curves). In this case, the transition is rather continuous avoiding a catastrophic shift in the ecosystem.

Contrarily to the homogeneous case, the system can reach phase separation vegetation covers as shown in Figs. 3(c, d, e). Now, the system is characterized by the coexistence of disordered patches of vegetation and bare soil. According to the bifurcation diagram in Fig. 3(b), equilibrium biomass covers can have an area fraction other that zero or one. Note that states with low area fraction $(A \ll 1)$ are found above the Maxwell point $(\eta > \eta_m)$ (cf. Figs. 3(d) and 3(e)). However, states with high area fraction $(1 - A \ll 1)$ are only found below the Maxwell point $(\eta < \eta_m)$, as shown in Fig. 3(c).

Inhomogeneities can prevent plants from collapsing to bare ground. It is important to notice that even for entirely uncorrelated inhomogeneities, one can recognize the spatial structures seen in vegetation (see Fig. 1), and predicted by the FKPP Eq. (1). One can identify the location and size of patches by using ImageJ software [49], which has been applied to the field A. Fig. 4(a) shows examples of the field A for different realizations of the numerical simulations. It is interesting to note that the probability distribution of patch sizes $P(a)$, where a is the area of a biomass patch, follows a power law as shown in Fig. 4(b). This $P(a)$ behavior is in line with some measurement for small patch sizes that have been documented in the literature [50]. In addition, as shown in Figs. 4(d) and 4(e), the tails of the Fourier transform of the $b(r,T)$ and $A(r,T)$ fields both follow a power law, typical of complex systems [51,52]. This Fourier space structure translates into a well-defined correlation function with an exponential decay for equilibrium states produced by the model Eq. (1), as shown in Fig. 4(c). We compare the outcomes of numerical simulations of the model equation with the satellite photos provided in Fig. 1 thanks to these straightforward analysis tools.

4.3. Inhomogeneous $\Gamma \neq 0$ and correlated $\xi(r)$ case

In what follows, we address the problem of considering the effects of inhomogeneities that are spatially correlated. To have spatially correlated inhomogeneities, let us consider an initial delta correlated function $\xi(r)$, to go through a simple reaction–diffusion process

$$\frac{\partial b(r)}{\partial t} = \epsilon \xi(r) + \nabla^2 b(r), \quad \xi(r) = \frac{\sqrt{\pi}}{L} e^{-r^2/L^2}.$$

where ϵ is a positive relaxational constant, and s parametrizes the evolution of $\xi(r)$. We extract different temporal stages of this evolution. In this way, we obtain inhomogeneity functions with a degree of spatial correlation, which is characterized by the dimensionless parameter d/L. d is the correlation length and L is the system size. After, we normalize the correlated functions $\xi(r,s)$ between $[-1, 1]$ in order to control the inhomogeneities in Eq. (1) with the inhomogeneity level intensity Γ. Fig. 5 shows the averaged biomass (b) from Eq. (1) for different values of the inhomogeneity intensities Γ and correlation lengths d of the inhomogeneities $\xi(r)$. When increasing d, (b) decreases (see insets (i) and (ii) in Fig. 5) in comparison to the homogeneous case shown in the inset (i) of Fig. 5. This is related to the coherent patches of bare soil that can coexist with the vegetated state thanks to incorporating a correlated inhomogeneity function $\xi(r)$. The addition of the spatial correlation can capture more smooth vegetation distributions, which are comparable to the satellite images of Gabon and Angola (cf. Figs. 1(a) and 1(b), respectively).
5. Coarsening dynamics

In the last section, we analyze the early temporal evolution of the biomass density field \(b(x, y, t) \) that leads to the equilibrium states discussed previously.

5.1. Coarsening in homogeneous environment

From this, one can infer the temporal evolution for the total cover of the biomass \(b \) as depicted in Fig. 6(a).

For this, consider that a localized portion of vegetation (patch) is placed on bare ground \(b = 0 \), as shown in Fig. 6(b). Then, the interface propagates, as seen in Figs. 6(c) and 6(d), with an approximated speed of \(v_b \) (see Section 3 and Eq. (3)). Thus, the characteristic size of the patch increases linearly with time \(t \) as

\[
\langle L_{\text{patch}} \rangle \sim v_b t. \tag{7}
\]

Then, it is straightforward to introduce the total biomass and the area of a patch \(A_{\text{patch}} \) by

\[
b_{\text{total}} \sim b_h \langle L_{\text{patch}} \rangle^2 \equiv b_h \langle A_{\text{patch}} \rangle. \tag{8}
\]

From this, one can easily see that

\[
\langle A_{\text{patch}} \rangle \sim t^n, \tag{9}
\]

with \(n = 2 \). The previous expression is valid for a single patch in space neglecting curvature effects. Otherwise, front interactions and curvature effects alter the simple dynamics of the front. Fig. 6(a) shows perfect agreement with this simple theory by fitting Eq. (9) to the numerical data.

More interesting is the natural nucleation of multiple patches after an initial perturbation. Initializing the system with random initial conditions, small deviations from the critical exponent \(n = 2 \) are expected due to multiple patch nucleation, as seen in Figs. 7(a) and (b) for early times. Figs. 7(c) to 7(f) show the temporal evolution of the nucleation of patches. Note that as one gets closer to the Maxwell point, the interaction between walls becomes stronger, and we expect larger deviations from the naive exponent \(n = 2 \). Unexpectedly, a crossover between exponents \(n = 2 \) and \(n = 3 \) is observed for low area fractions \(\langle A \rangle \) with the former dominating the early time dynamics.

5.2. Coarsening in an inhomogeneous environment

In the case \(\Gamma \neq 0 \), fronts can suffer from a pinning phenomenon [53], explaining the amorphous shapes we can observe as equilibrium states. Pinning phenomenon has been studied in several fields of physics, appearing naturally in discrete systems such as crystal lattices [54], and pattern forming systems [55]. Spatially modulated parameters could also induce pinning phenomenon as observed in liquid crystal devices [56] or granular media [57].

For the temporal dynamics, fronts will be highly coupled to the external inhomogeneities imposed, putting in doubt the validity of Eq. (7). Surprisingly, coarsening dynamics for low area fractions were observed, although with a different exponent \(n \) compared with the homogeneous case, as seen in Fig. 8.

One can see that inhomogeneities increase the characteristic exponent for the area cover growth, from \(n = 2 \) to \(n = 4 \). Indeed, it is observed that inhomogeneities dramatically accelerate evolution towards the equilibrium state, reaching an almost full cover approximately fifty times faster compared to the homogeneous case \(\Gamma = 0 \) case.

6. Conclusions

We have reported satellite photos showing phase separation vegetation covers, obtained from Google Earth software in different landscapes of Africa and America. We have characterized vegetation phase separation patterns by establishing their Fourier spectra and spatial autocorrelations. We have demonstrated that these patterns, independent of the plant involved and the type of soil in which they are observed, exhibit a generic power-law in Fourier space and exponential decay of autocorrelation function. Thanks to this investigation, we were able...
to rule out the symmetry-breaking mechanism caused by the formation of periodic vegetation patterns.

We have derived a simple equation, the local FKPP, as a paradigm for the studying of population dynamics, from the generic interaction redistribution model, and the reaction–diffusion water and biomass model. We have demonstrated that environmental inhomogeneities are necessary to account for the phase separation patterns observed in vegetation. Numerical simulations for a long time evolution showed that the model Eq. (1) without inhomogeneities cannot support phase separation vegetation covers.

Simple static indicators such as patch size distributions, spatial Fourier transform analysis, and correlation functions analysis reveal the presence of inhomogeneities. Additionally, we propose dynamical indicators given by the coarsening power-law exponents for the early time evolution of vegetation covers.

More importantly, inhomogeneities are shown to be a source of resilience for vegetation covers. We demonstrated that enough inhomogeneities allowed to avoid collapsing towards a bare state, shielding light on mechanisms to preserve arid ecosystems from the global warming process and long drought periods.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

D.P.-R. acknowledges the financial support of ANID National Ph.D. scholarship, Chile 2020-21201484. M.G.C. acknowledges the financial support of ANID-Millennium Science Initiative Program-ICN17_012 (MIRO), Chile and FONDECYT, Chile project 1210353. S.E.-A. acknowledges the financial support of ANID National Ph.D. scholarship, Chile 2020-21201376. M.T. is a Research Director at Fonds de la Recherche Scientifique FNRS.

Appendix

A.1. Nonlocal FKPP model

The nonlocal FKPP model for vegetation population reads [20,35]

\[\partial_t b = b(1 - b) m_f(r) - \mu b m_c(r) + D m_d(r), \]
\[m_{f,c} = \exp(\chi f,c) \int d^d r' \hat{\phi}_{f,c}(r') b(r + r') \]
\[m_d = \int d^d r' \hat{\phi}_d(r') | b(r + r') - b(r) |, \]

where \(b \) corresponds to the biomass density field, following a logistic growth depending on the neighboring biomass with \(m_f \). Mortality has a base rate \(\mu \) enhanced by competition feedback through \(m_c \). The seed dispersion is described by the last term in the rhs of Eq. (10). The nonlocal terms Eqs. (11) and (12) correspond to a weighted sum of the biomass with kernels \(\phi_{f,c,d}(r') \). These kernels are decaying functions of the distance between interacting plants, and are assumed to be radially symmetric. They model facilitative (\(f \)), competitive (\(c \)), and seed dispersion (\(D \)) processes. The strength of the competitive and facilitative interactions are \(\chi_f \) and \(\chi_c \), respectively. Whereas \(D \) is the intensity of seed dispersion.

We perform a weak nonlinear analysis in Eq. (10). First, note the critical parameter \(\mu = \mu_c = 1 \) at which the bare soil state \(b = 0 \) changes its stability. The curve defining the non-trivial homogeneous equilibria is \(0 = (1 - b) \exp(\chi_f b) - \mu \exp(\chi_c b) \), and has two positive solutions for \(\chi_f - \chi_c \geq 1 \). These solutions collapse to the \(b = 0 \) state at \(\chi_f - \chi_c = 1 \) and \(\mu = \mu_c \). Let us explore the vicinity of the onset of bistability by introducing a small parameter \(\epsilon \) (\(\epsilon \ll 1 \)) that describes the distance from criticality as

\[\mu = \mu_c + \epsilon^2 \eta, \]
\[\chi_f - \chi_c = 1 + \epsilon \kappa. \]

A linear analysis of Eq. (10) around \(b = 0 \) with finite wavevector perturbation \(b = A \exp(q \cdot r + i \theta) \) leads to the characteristic equation \(\lambda(q) = 1 - \mu + D \phi_d(q) - 1 \), where \(\phi_d(q) \) is the Fourier transform of \(\phi_d(r) \). Remarking that the kernels are normalized, it follows that \(\phi_{f,c,d}(q = 0) = 1 \). Moreover, as the kernels are radially symmetric the expansion for large wavelength perturbation reads \(\phi_d(q) \approx 1 + a_{d,\xi} \phi_d(0) q^\xi / 2 + \cdots \), having at dominant order the band of unstable modes \(\delta q^2 = (\mu - 1) / (D a_{d,\xi} \phi_d(0)) / 2 \sim \epsilon^2 \). Then, we propose the ansatz

\[b = \epsilon A(T = \epsilon^2 t, \mathbf{R} = \epsilon \mathbf{r}) + \epsilon^2 W^{[2]} + \epsilon^3 W^{[3]} + \cdots, \]

where \(W^{[\alpha]} \) correspond to nonlinear corrections of order \(\epsilon^\alpha \). Additionally, we expand the integral terms, provided that the kernels in Eqs. (11) and (12) decay faster than an exponential, as

\[\int d^d r' \phi_{f,c,d}(r') b(r + r') \approx b(r) + V^2 b / 4 \int d^d r' \phi_{f,c,d}(r') r'^2 + \cdots \]

By replacing this expansion and Eqs. (13), (14), (15) in Eq. (10) a hierarchy of equations at different orders in \(\epsilon \) are found. Orders \(\epsilon \) and \(\epsilon^2 \) satisfy automatically the solvability condition, and at \(\epsilon^3 \) order we get the equation

\[\partial_T A = -\eta A + \kappa A^2 - A^3 / 2 + D_v V^2 A, \]

where

\[D_v = D / 4 \int d^d r' \phi_d(r') r'^2. \]

In this way, with a renaming and scaling of variables and parameters in Eq. (16), we recover the local FKPP Eq. (1).
A.2. Water and biomass model

Another popular approach to explain the vegetation pattern formation proposed in the literature is based on water transport [5–8]. When biomass and water interact, vegetation ecosystems can be modeled by a pair of coupled reaction–diffusion equations. A general approach when considering sloped territory was provided in [5]. A model considering the possible bistability between bare soil and populated state reads [58]

$$\begin{align*}
\partial_t b &= b(1-b)u(1+b)^2 - \mu b + D\nabla^2 b, \\
\partial_t w &= w - \sigma b u(1+b)^2 + \nabla^2 w.
\end{align*}$$

(18)

Where b and w correspond to the biomass and ground water density fields, respectively. y characterizes the increase of biomass production with water consumption. The parameter μ represents the mortality rate and D accounts for the dispersal by seeds. The parameter p models the mean water input to the system, and σ weights the water lost by consumption of the biomass.

We can derive a normal form equation for long wavelength perturbations near the onset of bistability. Let us consider the dynamic around the bare soil state as $(b, w) = (0, p) + \delta \vec{A} \exp(\langle \mathbf{q} \cdot \mathbf{r} + \lambda t \rangle)$, with $\delta \ll 0$, the Jacobian reads

$$J = \begin{pmatrix}
p - \mu - Dq^2 & 0 \\
-\sigma & -1 - q^2
\end{pmatrix},
$$

(19)

which has eigenvalues $\lambda_q(p) = -1 - q^2$ and $\lambda_q(p) = p - \mu - Dq^2$. The eigenvalue λ_q can change of sign at $\mu_c = p$ and the equilibrium point changes its stability. The corresponding band of unstable modes is $\Delta q^2 = (p - \mu)/D$. Thus, close to the instability of the bare soil solution $\mu = \mu_c$, slow spatial variations domain the dynamics ($\Delta q^2 \rightarrow 0$). We can use a multiple time–space scale analysis to establish a simple normal form equation for long wavelength perturbations.

Finally, at order ϵ^3, we get the following linear inhomogeneous problem

$$\begin{align*}
\epsilon \partial_t \vec{A} &= A \begin{pmatrix} 0 & 0 \\ \sigma_p & 1 \end{pmatrix} \vec{W}^{[3]} + A \begin{pmatrix} \eta & 0 \\ 0 & 0 \end{pmatrix} + p\vec{A}^3 \begin{pmatrix} -3\eta^2 & 0 \\ 0 & 0 \end{pmatrix},
\end{align*}$$

(27)

Introducing the inner product $(\vec{f}, \vec{g}) = \int f(x)g(x)dx$, we search for the kernel of the adjoint of the linear operator acting on $\vec{W}^{[3]}$, which is

$$\psi = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

(28)

By a renaming and scaling of variables and parameters, we recover the local FKPP Eq. (1).

References

