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A B S T R A C T

Vegetation patterns in arid and semi-arid ecosystems as a self-organized response to resource scarcity is a well-documented issue. Their formation is often
attributed to the symmetry-breaking type of instability. In this contribution, we focus on a regime far from any symmetry-breaking instability and consider a
bistable regime involving uniformly vegetated covers and a bare state. We show that vegetation populations exhibit non-random two-phase structures where high
biomass density regions are separated by sparsely covered areas or even bare soil. These structures are referred to as phase separation vegetation covers. We
provide observations of this phenomenon in Gabon, Angola, Argentina, and Mexico. The inhomogeneities in environmental conditions are crucial to explain the
origin of phase separation vegetation covers. We derive a simple equation from ecologically relevant models to explain various field observations. The bifurcation
diagrams obtained from this model allow us to prove that inhomogeneity in the aridity parameter is a source of resilience for vegetation covers, avoiding collapsing
towards a bare state. We characterize the natural observations and the equilibria from the model by using Fourier transform technique, spatial autocorrelation
analysis, and size distribution of patches analysis.
1. Introduction

The fragmentation of landscapes and loss of biological produc-
tion in drylands, which leads to desertification as a result of cli-
mate change and longer drought periods, is one of the world’s most
pressing environmental challenges. This fragmentation is typically ac-
companied by a non-equilibrium symmetry breaking instability, even
when the topology of the landscapes is flat [1,2]. The patterns that
emerge from the symmetry-breaking instability is generically called
vegetation patterns. The ‘tiger bush’ is a well-known example that
was first seen in the early 1940s thanks to the development of aerial
photography [3]. Since this discovery, several modeling approaches
have been proposed to explain the origin of these patterns, ranging
from cellular-automata models [4], integrodifferential equations [1],
reaction–diffusion equations [5–8], to spatially stochastic models [9,
10]. The later approach focuses on how environmental randomness can
be used to create symmetry-breaking transitions that lead to the forma-
tion of vegetation patterns. Besides tiger bush other spatially periodic
vegetation patterns have been reported such as hexagons [1,2,11,12],
and labyrinths [2,12].

Vegetation patterns are not always periodic. They can be localized
in space [13–17], found close to the symmetry-breaking instability.
In [18,19], it is established how two well separated isolated patches
interact in one- and two-dimensions. As one moves out from the
patch center, the patch tail monotonically decays, whereas localized
gaps have a damped oscillatory tail. Depending on how far apart the
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gaps are, the interaction can be either attractive or repulsive [20].
Localized patches may exhibit a curvature instability that causes the
self-replication phenomenon [21,22] or the emergence of arcs and
spirals [23].

Nonperiodic vegetation patterns in a regime far from any symmetry-
breaking instability can be observed in nature. These structures emerge
spontaneously from random perturbations of the unstable homoge-
neous steady state that separates the two stable states forming a bistable
system. This phenomenon is referred as phase separation. Growth of
spatial domains of different phases whose dynamics is governed by
power law in systems with conserved and nonconserved order param-
eters is a well documented issue [24–26]. This phenomenon has been
studied in a variety of out-of-equilibrium systems, including polymer
chemistry [27,28], material science [29], optical systems [30–33] and
cell biology [34]. However, the topic of phase separation in ecosystems
caused by environmental inhomogeneity has received little attention.

Examples of phase separation in ecosystems are shown in Fig. 1.
These are satellite photos, retrieved from Google Earth software, of
vegetation coverage in different regions. Near the African coast, the
landscapes of Gabon (see Fig. 1a) and Angola (see Fig. 1b) show distinct
patches of bare soil and planted areas of various sizes and forms. Scat-
tered vegetated and non-vegetated areas are seen in the hilly regions
of Argentina (see Fig. 1c) and Mexico (see Fig. 1d). It is seen that the
vegetation distribution in all these places is inhomogeneous. Modeling
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Fig. 1. Vegetation pattern phase separation. Top views of (a) Gabon, Africa (2◦ 44’
08.42" S, 10◦ 12’ 28.37" E), (b) Angola, Africa (6◦ 19’ 39.10" S, 12◦ 35’ 25.98" E), (c)
Argentina, South America (40◦ 58’ 17.21" S, 71◦16’ 03.76" O), and (d) Mexico, North
America (29◦ 04’ 25.99" N, 110◦ 11’ 19.27" O).

approaches in vegetation ecosystems do not exhibit heterogeneous non-
periodic self-organization as equilibrium. The spatial characterization
of such vegetation states and the transitions between them have not
been explored.

We propose a unified description for non-homogeneous and non-
periodic vegetation covers, vegetation pattern phase separation. We
show that the inhomogeneous vegetation covers are equilibrium states
of the ecosystem under inhomogeneous environment. We demonstrate
how the inclusion of inhomogeneities in the parameters plays a crucial
part in explaining the wide range of distinct observed equilibria. We
observe that the vegetation spatial organization is characterized by a
power-law distribution in Fourier space and an exponential decay in
the spatial correlation. Finally, a power law for the early temporal
evolution of the total biomass is numerically inferred .

Following an introduction, Section 2 shows the characterization
of the spatial self-organization of the satellite images in Fig. 1. In
Section 3, we present a straightforward Fisher–Kolmogorov–Petrovskii–
Piskunov (FKPP) type model with inhomogeneous environmental con-
ditions and explore the dynamics of phase separation vegetation covers.
The study of equilibria and the coarsening dynamics of homogeneous
states are discussed in Sections 4 and 5, respectively. In Section 5.2, we
examine how the coarsening dynamics are impacted by an inhomoge-
neous environment by avoiding collapse to the bare state. The paper is
concluded in Section 6. A detailed derivation of the FKPP equation from
the generic interaction redistribution model and the reaction–diffusion
water and biomass model is included in the Appendix section.

2. Spatial characterization of field observations

To characterize vegetation phase separation patterns shown in
Fig. 1, we evaluate their Fourier spectrum and their spatial autocor-
relation. The results are shown in Fig. 2, where the Fourier spectrum
|𝐹 (𝑞)|2, as a function of the radial wavevector 𝑞, is depicted in Fig. 2(𝑎1,
𝑏1, 𝑐1, 𝑑1). All satellite images taken from Gabon, Angola, Argentina,
and Mexico unexpectedly possess a power-law decaying tail connecting
2

Fig. 2. Fourier spectra and spatial autocorrelations. The blue dots and the blue lines
represent the real data from the vegetation images of Fig. 1. (𝑎1, 𝑏1, 𝑐1, and 𝑑1)
correspond to the Fourier spectrum of Gabon, Angola, Argentina, and Mexico vegetation
patterns, respectively. The red line in the Fourier space illustrates the power-law
behavior of the tail in the radial direction 𝑞. The exponents range from 2.0 to 3.4.
The 𝑅2 values of the linear fittings are (𝑎1) 0.79, (𝑏1) 0.77, (𝑐1) 0.69, and (𝑑1) 0.70,
respectively. (𝑎2, 𝑏2, 𝑐2, and 𝑑2) are autocorrelations corresponding to Gabon, Angola,
Argentina, and Mexico vegetation patterns, respectively. The characteristic correlation
lengths 𝑙 are (𝑎2) 𝑙 = 610.9 m, (𝑏2) 𝑙 = 20.6 m, (𝑐2) 𝑙 = 11.3 m, and (𝑑2) 𝑙 = 72.4 m. They
are obtained by fitting the exponential law 𝐵𝑒−𝑟∕𝑙 to the real data, where 𝐵 is a positive
constant. The 𝑅2 value of all the exponential fittings is 0.99. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

a range of spatial scales in the wavevector space. In this figure, the lin-
ear fitting is indicated by red line. At the very least, this eliminates the
possibility of a wavelength selection process leading to the formation
of periodic vegetation patterns. Besides, each vegetation photograph
of Fig. 1 is accompanied by spatial autocorrelation function 𝐶(𝑟) as
a function of a distance 𝑟 [see Fig. 2(𝑎2)]. The vegetation structures
have a spatial autocorrelation characterized by an exponential decay
behavior until an asymptotic value is reached. Up until great distances,
Gabon shown in Fig. 2(𝑎2) and Angola shown in Fig. 2 (𝑏2) exhibit
an exponential behavior. At small distances, the exponential decay is
truncated in Argentina and Mexico as shown in Fig. 2(𝑐2) and Fig. 2(𝑑2),
respectively. The exponential decay is represented by fitting curves of
the form ∼ 𝑒−𝑟∕𝑙 of the autocorrelation data [see brown dashed lines in
panels of Fig. 2(𝑎2, 𝑏2, 𝑐2, 𝑑2)]. The correlation length is denoted by 𝑙,
which describes the local vegetation pattern phase-separation of a well
defined mean patch size. In fact, a closer look at the vegetation covers
in Fig. 1 reveals nonperiodic behavior, leaving aside the explanation of
spontaneous symmetry-breaking mechanisms.

The Fourier spectra together with spatial autocorrelations indicated
that the vegetation patterns observed in Africa and America reported in
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Fig. 1 do not emerge spontaneously from symmetry-breaking instability
but rather from phase separation mechanism. Independent of the region
of the planet, and type of soil and vegetation (bushes, patches, shrubs,
trees), we observe a power-law in Fourier space and an exponential
decay of the autocorrelation function. In the next sections, we introduce
a model and provide an explanation to the field observations.

3. Phase separation dynamics for biomass

We adopt a continuous time and space description of the biomass
density 𝑏(𝑥, 𝑦, 𝑡) at space coordinates 𝐫 = (𝑥, 𝑦) and time 𝑡. Theory of
vegetation patterns based on the non-local FKPP equation has been
reported in [35–37]. In this contribution, we consider the paradigmatic
local FKPP [38,39] model equation describing the population dynamics
of individuals with the inclusion of small inhomogeneities in the growth
parameter

𝜕𝑡𝑏 = −
(

𝜂 +
√

𝛤𝜉(𝐫)
)

𝑏 + 𝜅𝑏2 − 𝑏3 +𝐷∇2𝑏. (1)

This simple model is derived from the nonlocal FKPP equation, and
from reaction–diffusion water biomass model (see the Appendix). The
parameter 𝜂 measures the linear growth (𝜂 < 0) or decay (𝜂 > 0) of
vegetation population. 𝜂 increases as the aridity of the environment
increases; 𝜅 measures the net effect of facilitative versus competi-
tive interactions, and 𝑏3 is the nonlinear saturation. The last term
describes diffusion with coefficient 𝐷 and ∇2 = 𝜕𝑥𝑥 + 𝜕𝑦𝑦 is the
bidimensional laplacian operator. The degree of aridity described by
the parameter 𝜂 of an environment is related with on-site evapotran-
spiration process [40]. A spatial distribution of this process can arise
naturally due to different type of soil, diverse plant groups, and topo-
graphic variations [41]. The function 𝜉(𝐫) models these environmental
inhomogeneities and 𝛤 measures the intensity of them.

Let us briefly recall that Eq. (1) can be stated in gradient form

𝜕𝑡𝑏 = − 𝛿𝐹
𝛿𝑏

,

𝐹 ≡ ∫ 𝑑𝐫
(

𝜂(𝐫) 𝑏
2

2
− 𝜅 𝑏

3

3
+ 𝑏4

4
+ 𝐷

2
(∇𝑏)2

)

, (2)

where 𝜂(𝐫) = 𝜂 +
√

𝛤𝜉(𝐫). Then, it is well-known that the system Eq. (1)
will reach an equilibrium minimizing the potential 𝐹 .

In what follows, we focus on the effects of independent inhomo-
geneities in space. In this case, the function 𝜉(𝐫) is generated by a
delta-correlated gaussian random process of zero mean. In the absence
of inhomogeneities, i.e., 𝛤 = 0, the model for vegetation Eq. (1)
was derived from ecologically relevant models (see the Appendix).
It has also been derived from a variety of physical systems, including
liquid crystals [42], flame combustion [43], fiber Kerr resonators [44],
passive Kerr cavity [45], and electrical circuits [46], to mention a few.

Eq. (1) for 𝛤 = 0 supports domain walls [47] (or bistable fronts)
separating the two stable equilibrium states 𝑏ℎ1 = (𝜅+

√

𝜅2 − 4𝜂)∕2 and
𝑏ℎ2 = 0. One important aspect of equilibria, is that for positive values
of 𝜅 there exist a tipping – or saddle node – point at 𝑏𝑠 = 𝜅∕2 and
𝜂𝑠 = 𝜅2∕4. As one crosses the critical aridity 𝜂 = 𝜂𝑠, this bifurcation,
which is defined by the annihilation of two equilibria, causes dramatic
changes in the system [48], well documented as catastrophic shift in
ecology.

The dynamics of Eq. (1) in the simple case of homogeneous environ-
mental conditions, is characterized by front propagation. Straightfor-
ward calculations lead to a propagation speed of the fronts proportional
to the difference of energy of the homogeneous states. Neglecting the
curvature effects for the domain propagation, the speed of walls reads
(see the textbook [47] and reference therein)

𝑣𝑤𝑎𝑙𝑙𝑠(𝑏ℎ1 → 𝑏ℎ2) ≡ 𝑣0 ∝ 𝐹 (𝑏ℎ2) − 𝐹 (𝑏ℎ1), (3)

𝐹 (𝑏) ≡ 𝜂 𝑏
2

2
− 𝜅 𝑏

3

3
+ 𝑏4

4
. (4)

In homogeneous environmental conditions where 𝜂 is a constant, the
dynamics leads to either a uniform vegetated cover or a state totally
3

Fig. 3. The bifurcation diagram of Eq. (1) for parameters 𝜅 = 0.6 and 𝐷 = 0.1,
showing the different behaviors for different 𝛤 values. (a) Bifurcation diagram for the
averaged biomass ⟨𝑏⟩. (b) Bifurcation diagram for the area fraction ⟨𝐴⟩. (c), (d) and
(e) show examples of the different equilibria exhibited in the bifurcation diagram. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

devoid of vegetation. This approximation cannot explain the wide range
of vegetation patterns depicted in Fig. 1. It is then necessary, to include
inhomogeneities in the environmental conditions, such as the aridity,
which will explain the field observation as we will see in the next
section.

4. Equilibrium states analysis

In this section, we discuss equilibria of Eq. (1) first in the homoge-
neous parameter 𝛤 = 0 case, and then when 𝛤 ≠ 0, considering both
delta-correlated and spatial correlated inhomogeneities.

4.1. Homogeneous case 𝛤 = 0

Starting from random initial conditions 𝑏𝑖(𝐫, 0) around the unsta-
ble vegetated state, one can introduce the averaged biomass ⟨𝑏⟩ ≡
∑𝑁

𝑖=1 ∫ 𝑑𝐫𝑏𝑖(𝐫, 𝑇 )∕𝑁𝐿2, where 𝑁 is the number of realizations and 𝑇
is the time to reach equilibrium. ⟨𝑏⟩ exhibits an abrupt change when
increasing the aridity parameter 𝜂 as shown by the blue dotted curve
in Fig. 3(a). There exist a single point called the Maxwell point and
denoted by 𝜂 = 𝜂𝑚, where front solutions of Eq. (1) are stationary,
i.e., when the two stable homogeneous steady states have the same
energy. For 𝜂 < 𝜂𝑚, 𝑏ℎ1 has the lowest free energy density, whereas
for 𝜂 > 𝜂𝑚, 𝑏ℎ2 = 0 is the preferred state. Figs. 3(b) illustrates
the bifurcation diagram for the mean biomass ⟨𝑏⟩ and the biomass
area fraction ⟨𝐴⟩ ≡

∑𝑁
𝑖=1 ∫ 𝑑𝐫𝐴𝑖(𝐫, 𝑇 )∕𝑁𝐿2, respectively. The latter

is defined using the binarized biomass field 𝐴𝑖 for different initial
conditions 𝑏𝑖 as

𝐴𝑖(𝐫, 𝑇 ) ≡
{

1 if 𝑏𝑖(𝐫, 𝑇 ) ≥ 𝑏𝑠 = 𝜅∕2,
0 if 𝑏𝑖(𝐫, 𝑇 ) < 𝑏𝑠 = 𝜅∕2.

(5)

The biomass area fraction corresponding to the case 𝛤 = 0 is indicated
by the blue dotted curve in Fig. 3(b). Without inhomogeneities, nu-
merical simulations of Eq. (1) for a long time evolution, reach either
a uniform cover state or a state totally devoid of vegetation. These
equilibrium biomass covers correspond to an area fraction one or zero
in Fig. 3(b), respectively. Therefore, vegetation patterns and phase
separation vegetation covers are excluded in this case.
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Fig. 4. Statistical analysis of a low area fraction equilibrium for parameters 𝜅 = 0.6,
𝐷 = 0.1, 𝜂 = 0.95, and 𝛤 = 0.01. (a) Examples of equilibrium 𝐴 fields. (b) Probability
density of patch area 𝑃 (𝑎) with a power law fit and its logarithmic scale graph in
the inset. (c) Autocorrelation function of the 𝑏 field, showing an exponential fit and a
semi logarithmic scale graph in the inset. (d) Averaged absolute value of the Fourier
transform of 𝑏 in semi logarithmic scale (for contrast purposes). (e) Logarithmic scale
graph for the tail of the Fourier transform with power law fits for the 𝐴 and 𝑏 fields.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

4.2. Inhomogeneous 𝛤 ≠ 0 and non-correlated 𝜉(𝐫) case

When the aridity parameter is inhomogeneous 𝛤 ≠ 0, numerical
simulations of Eq. (1), using different random initial conditions and
different realizations of 𝜉(𝐫), show there is no abrupt change in the
mean biomass for large enough 𝛤 . Fig. 3(a) show this smooth transition
(see orange and green curves). In this case, the transition is rather
continuous avoiding a catastrophic shift in the ecosystem.

Contrarily to the homogeneous case, the system can reach phase
separation vegetation covers as shown in Figs. 3(c, d, e). Now, the
system is characterized by the coexistence of disordered patches of
vegetation and bare soil. According to the bifurcation diagram in
Fig. 3(b), equilibrium biomass covers can have an area fraction other
than zero or one. Note that states with low area fraction (⟨𝐴⟩ ≪ 1)
are found above the Maxwell point (𝜂 > 𝜂𝑚) (cf. Figs. 3(d) and 3(e)).
However, states with high area fraction (1 − ⟨𝐴⟩ ≪ 1) are only found
below the Maxwell point (𝜂 < 𝜂𝑚), as shown in Fig. 3(c).

Inhomogeneities can prevent plants from collapsing to bare ground.
It is important to notice that even for entirely uncorrelated inhomo-
geneities, one can recognize the spatial structures seen in vegetation
(see Fig. 1), and predicted by the FKPP Eq. (1). One can identify the
location and size of patches by using ImageJ software [49], which has
been applied to the field 𝐴. Fig. 4(a) shows examples of the field 𝐴 for
different realizations of the numerical simulations. It is interesting to
note that the probability distribution of patch sizes 𝑃 (𝑎), where 𝑎 is the
area of a biomass patch, follows a power law as shown in Fig. 4(b).
This 𝑃 (𝑎) behavior is in line with some measurement for small patch
4

Fig. 5. Steady state averaged biomass ⟨𝑏⟩ from Eq. (1) with spatially correlated
inhomogeneities. The surface-plot show the average biomass ⟨𝑏⟩ for different values
of the intensity

√

𝛤 and the degree of correlation 𝑑∕𝐿 of the inhomogeneities. 𝑑 is the
correlation length of the 𝜉(𝐫) function, obtained by fitting an exponential law to the
autocorrelation 𝐶(𝐫) of 𝜉(𝐫), and 𝐿 is the size of the simulation box. All the correlated
𝜉(𝐫) were created with the reaction–diffusion process (𝜖 = 0.1). (i) 𝑑∕𝐿 = 0 and

√

𝛤 = 0,
(ii) 𝑑∕𝐿 = 0.03 and

√

𝛤 = 0.08, and (iii) 𝑑∕𝐿 = 0.08 and
√

𝛤 = 0.07 correspond to
different equilibria obtained in Eq. (1). The biomass 𝑏 is normalized to 1 in the three
insets. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

sizes that have been documented in the literature [50]. In addition, as
shown in Figs. 4(d) and 4(e), the tails of the Fourier transform of the
𝑏𝑖(𝐫, 𝑇 ) and 𝐴𝑖(𝐫, 𝑇 ) fields both follow a power law, typical of complex
systems [51,52]. This Fourier space structure translates into a well-
defined correlation function with an exponential decay for equilibrium
states produced by the model Eq. (1), as shown in Fig. 4(c). We compare
the outcomes of numerical simulations of the model equation with
the satellite photos provided in Fig. 1 thanks to these straightforward
analysis tools.

4.3. Inhomogeneous 𝛤 ≠ 0 and correlated 𝜉(𝐫) case

In what follows, we address the problem of considering the effects
of inhomogeneities that are spatially correlated. To have spatially
correlated inhomogeneities, let us consider an initial delta correlated
function 𝜉(𝐫), to go through a simple reaction–diffusion process

𝜕𝑠𝜉(𝐫) = −𝜖𝜉(𝐫) + ∇2𝜉(𝐫), (6)

where 𝜖 is a positive relaxational constant, and 𝑠 parametrizes the
evolution of 𝜉(𝐫). We extract different temporal stages of this evolution.
In this way, we obtain inhomogeneity functions with a degree of spatial
correlation, which is characterized by the dimensionless parameter
𝑑∕𝐿. 𝑑 is the correlation length and 𝐿 is the system size. After, we
normalize the correlated functions 𝜉(𝐫, 𝑠) between [−1, 1] in order to
control the inhomogeneities in Eq. (1) with the inhomogeneity level
intensity 𝛤 . Fig. 5 shows the averaged biomass ⟨𝑏⟩ from Eq. (1) for
different values of the inhomogeneity intensities 𝛤 and correlation
lengths 𝑑 of the inhomogeneities 𝜉(𝐫). When increasing 𝑑, ⟨𝑏⟩ decreases
(see insets (ii) and (iii) in Fig. 5) in comparison to the homogeneous
case shown in the inset (i) of Fig. 5. This is related to the coherent
patches of bare soil that can coexist with the vegetated state thanks to
incorporating a correlated inhomogeneity function 𝜉(𝐫). The addition
of the spatial correlation can capture more smooth vegetation distri-
butions, which are comparable to the satellite images of Gabon and
Angola (cf. Figs. 1(a) and 1(b), respectively).
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Fig. 6. Biomass propagation in homogeneous landscape. (a) The blue dots are the
temporal evolution of the area cover for numerical simulations of Eq. (1), with
parameters 𝜅 = 0.6, 𝐷 = 0.1, 𝜂 = 0.02, and 𝛤 = 0. The orange indicates the theoretical
prediction from Eq. (9). (b), (c), and (d) are different stages of propagation, showing
that homogeneous conditions favor circular patches and full cover at equilibrium. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

5. Coarsening dynamics

In the last section, we analyze the early temporal evolution of
the biomass density field 𝑏(𝑥, 𝑦, 𝑡) that leads to the equilibrium states
discussed previously.

5.1. Coarsening in homogeneous environment

From the front or wall speed Eq. (3), one can infer the temporal
evolution for the total cover of the biomass 𝑏 as depicted in Fig. 6(a).
For this, consider that a localized portion of vegetation (patch) is placed
on bare ground 𝑏 = 0, as shown in Fig. 6(b). Then, the interface
propagates, as seen in Figs. 6(c) and 6(d), with an approximated speed
of 𝑣0 (see Section 3 and Eq. (3)). Thus, the characteristic size of the
patch increases linearly with time 𝑡 as

⟨𝐿𝑝𝑎𝑡𝑐ℎ⟩ ∼ 𝑣0𝑡. (7)

Then, it is straightforward to introduce the total biomass and the area
of a patch 𝐴𝑝𝑎𝑡𝑐ℎ by

𝑏𝑡𝑜𝑡𝑎𝑙 ∼ 𝑏ℎ1⟨𝐿𝑝𝑎𝑡𝑐ℎ⟩
2 ≡ 𝑏ℎ1⟨𝐴𝑝𝑎𝑡𝑐ℎ⟩. (8)

From this, one can easily see that

⟨𝐴𝑝𝑎𝑡𝑐ℎ⟩ ∼ 𝑡𝑛, (9)

with 𝑛 = 2. The previous expression is valid for a single patch in
space neglecting curvature effects. Otherwise, front interactions and
curvature effects alter the simple dynamics of the front. Fig. 6 (a) shows
perfect agreement with this simple theory by fitting Eq. (9) to the
numerical data.

More interesting is the natural nucleation of multiple patches after
an initial perturbation. Initializing the system with random initial
conditions, small deviations from the critical exponent 𝑛 = 2 are
expected due to multiple patch nucleation, as seen in Figs. 7(a) and (b)
for early times. Figs. 7(c) to 7(f) show the temporal evolution of the
nucleation of patches. Note that as one gets closer to the Maxwell point,
the interaction between walls becomes stronger, and we expect larger
deviations from the naive exponent 𝑛 = 2. Unexpectedly, a crossover
between exponents 𝑛 = 2 and 𝑛 = 3 is observed for low area fractions
⟨𝐴⟩ with the former dominating the early time dynamics.
5

Fig. 7. Temporal dynamics of multiple patch growth in homogeneous landscape. (a)
and (b) exhibit the temporal dynamics following power laws in time for the vegetation
area cover, calculated from numerical simulation data of Eq. (1) with parameters
𝜅 = 0.6, 𝐷 = 0.1, and 𝛤 = 0. (c), (d), (e) and (f) show different stages of temporal
evolution with coarsening dynamics. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

5.2. Coarsening in an inhomogeneous environment

In the case 𝛤 ≠ 0, fronts can suffer from a pinning phenomenon [53],
explaining the amorphous shapes we can observe as equilibrium states.
Pinning phenomenon has been studied in several fields of physics,
appearing naturally in discrete systems such as crystal lattices [54],
and pattern forming systems [55]. Spatially modulated parameters
could also induce pinning phenomenon as observed in liquid crystal
devices [56] or granular media [57].

For the temporal dynamics, fronts will be highly coupled to the
external inhomogeneities imposed, putting in doubt the validity of
Eq. (7). Surprisingly, coarsening dynamics for low area fractions were
observed, although with a different exponent 𝑛 compared with the
homogeneous case, as seen in Fig. 8.

One can see that inhomogeneities increase the characteristic expo-
nent for the area cover growth, from 𝑛 = 2 to 𝑛 = 4. Indeed, it is ob-
served that inhomogeneities dramatically accelerate evolution towards
the equilibrium state, reaching an almost full cover approximately fifty
times faster compared to the homogeneous case 𝛤 = 0 case.

6. Conclusions

We have reported satellite photos showing phase separation vege-
tation covers, obtained from Google Earth software in different land-
scapes of Africa and America. We have characterized vegetation phase
separation patterns by establishing their Fourier spectra and spatial au-
tocorrelations. We have demonstrated that these patterns, independent
of the plant involved and the type of soil in which they are observed,
exhibit a generic power-law in Fourier space and exponential decay of
the autocorrelation function. Thanks to this investigation, we were able
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Fig. 8. Effect of inhomogeneities on early temporal evolution. The area cover of
vegetation shows a different exponent for its temporal dynamics, from numerical
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o rule out the symmetry-breaking mechanism caused by the formation
f periodic vegetation patterns.

We have derived a simple equation, the local FKPP, as a paradigm
or the studying of population dynamics, from the generic interaction
edistribution model, and the reaction–diffusion water and biomass
odel. We have demonstrated that environmental inhomogeneities are
ecessary to account for the phase separation patterns observed in
egetation. Numerical simulations for a long time evolution showed
hat the model Eq. (1) without inhomogeneities cannot support phase
eparation vegetation covers.

Simple static indicators such as patch size distributions, spatial
ourier transform analysis, and correlation functions analysis reveal
he presence of inhomogeneities. Additionally, we propose dynamical
ndicators given by the coarsening power-law exponents for the early
ime evolution of vegetation covers.

More importantly, inhomogeneities are shown to be a source of
esilience for vegetation covers. We demonstrated that enough inho-
ogeneities allowed to avoid collapsing towards a bare state, shed-
ing light on mechanisms to preserve arid ecosystems from the global
arming process and long drought periods.
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.1. Nonlocal FKPp model

The nonlocal FKPP model for vegetation population reads [20,35]

𝜕𝑡𝑏 = 𝑏(1 − 𝑏)𝑚𝑓 (𝐫) − 𝜇𝑏𝑚𝑐 (𝐫) +𝐷𝑚𝐷(𝐫), (10)

𝑓,𝑐 = exp(𝜒𝑓,𝑐 ∫ 𝑑𝐫′𝜙𝑓,𝑐 (𝐫′)𝑏(𝐫 + 𝐫′)), (11)

𝑚𝐷 = ∫ 𝑑𝐫′𝜙𝐷(𝐫′)
[

𝑏(𝐫 + 𝐫′) − 𝑏(𝐫)
]

, (12)

here 𝑏 corresponds to the biomass density field, following a logistic
rowth depending on the neighboring biomass with 𝑚𝑓 . Mortality has
base rate 𝜇 enhanced by competition feedback through 𝑚𝑐 . The seed
ispersion is described by the last term in the rhs of Eq. (10). The
onlocal terms Eqs. (11) and (12) correspond to a weighted sum of the
iomass with kernels 𝜙𝑓,𝑐,𝐷(𝐫′). These kernels are decaying functions
f the distance between interacting plants, and are assumed to be
adially symmetric. They model facilitative (𝑓 ), competitive (𝑐), and
eed dispersion (𝐷) processes. The strength of the competitive and
acilitative interactions are 𝜒𝑓 and 𝜒𝑐 , respectively. Whereas 𝐷 is the
ntensity of seed dispersion.

We perform a weak nonlinear analysis in Eq. (10). First, note the
ritical parameter 𝜇 = 𝜇𝑐 = 1 at which the bare soil state 𝑏 = 0 changes
ts stability. The curve defining the non-trivial homogeneous equilibria
s 0 = (1 − 𝑏) exp(𝜒𝑓 𝑏) − 𝜇 exp(𝜒𝑐𝑏), and has two positive solutions for
𝑓 − 𝜒𝑐 ≥ 1. These solutions collapse to the 𝑏 = 0 state at 𝜒𝑓 − 𝜒𝑐 = 1
nd 𝜇 = 𝜇𝑐 . Let us explore the vicinity of the onset of bistability by
ntroducing a small parameter 𝜖 (𝜖 ≪ 1) that describes the distance
rom criticality as

𝜇 = 𝜇𝑐 + 𝜖2𝜂, (13)

𝑓 − 𝜒𝑐 = 1 + 𝜖𝜅. (14)

A linear analysis of Eq. (10) around 𝑏 = 0 with finite wavevector
erturbation 𝑏 = 𝐴 exp(𝑖𝐪 ⋅ 𝐫 + 𝜆𝑡) leads to the characteristic equation
(𝐪) = 1 − 𝜇 + 𝐷(𝜙𝐷(𝐪) − 1), where 𝜙𝐷(𝐪) is the Fourier transform of
𝐷(𝐫). Remembering that the kernels are normalized, it follows that
̂𝑓,𝑐,𝐷(𝐪 = 0) = 1. Moreover, as the kernels are radially symmetric
he expansion for large wavelength perturbation reads 𝜙𝐷(𝐪) ≈ 1 +
𝑞𝑥𝑞𝑥𝜙𝐷(𝟎)𝐪2∕2 + ⋯, having at dominant order the band of unstable
odes 𝛥𝑞2 = (𝜇−1)∕(𝐷𝜕𝑞𝑥𝑞𝑥𝜙𝐷(𝟎)∕2) ∼ 𝜖2. Then, we propose the ansatz

= 𝜖𝐴(𝑇 = 𝜖2𝑡,𝐑 = 𝜖𝐫) + 𝜖2𝑊 [2] + 𝜖3𝑊 [3] +⋯ , (15)

here 𝑊 [𝑛] correspond to nonlinear corrections of order 𝜖𝑛. Addi-
ionally, we expand the integral terms, provided that the kernels in
qs. (11) and (12) decay faster than an exponential, as

𝑑𝐫′𝜙𝑓,𝑐,𝐷(𝐫′)𝑏(𝐫 + 𝐫′) ≈ 𝑏(𝐫) + ∇2𝑏
4 ∫ 𝑑𝐫′𝜙𝑓,𝑐,𝐷(𝐫′)𝐫′2 +⋯

y replacing this expansion and Eqs. (13), (14), (15) in Eq. (10) a
ierarchy of equations at different orders in 𝜖 are found. Orders 𝜖 and

𝜖2 satisfy automatically the solvability condition, and at 𝜖3 order we
get the equation

𝜕𝑇𝐴 = −𝜂𝐴 + 𝜅𝐴2 − 𝐴3∕2 +𝐷𝑒∇2𝐴, (16)

here

𝑒 =
𝐷
4 ∫ 𝑑𝐫′𝜙𝐷(𝐫′)𝐫′2. (17)

n this way, with a renaming and scaling of variables and parameters

n Eq. (16), we recover the local FKPP Eq. (1).
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A.2. Water and biomass model

Another popular approach to explain the vegetation pattern forma-
tion proposed in the literature is based on water transport [5–8]. When
biomass and water interact, vegetation ecosystems can be modeled by a
pair of coupled reaction–diffusion equations. A general approach when
considering sloped territory was provided in [5]. A model considering
the possible bistability between bare soil and populated state reads [58]

𝜕𝑡𝑏 = 𝑏(1 − 𝑏)𝑤(1 + 𝛾𝑏)2 − 𝜇𝑏 +𝐷∇2𝑏,

𝜕𝑡𝑤 = 𝑝 −𝑤 − 𝜎𝑏𝑤(1 + 𝛾𝑏)2 + ∇2𝑤. (18)

Where 𝑏 and 𝑤 correspond to the biomass and ground water density
fields, respectively. 𝛾 characterizes the increase of biomass production
with water consumption. The parameter 𝜇 represents the mortality rate
and 𝐷 accounts for the dispersal by seeds. The parameter 𝑝 models
the mean water input to the system, and 𝜎 weights the water lost by
consumption of the biomass.

We can derive a normal form equation for long wavelength pertur-
bations near the onset of bistability. Let us consider the linear dynamics
around the bare soil state as (𝑏,𝑤) = (0, 𝑝) + 𝛿𝐴𝑣 exp(𝑖𝐪 ⋅ 𝐫 + 𝜆𝑡), with
𝛿𝐴 ≪ 0, the jacobian reads

𝐽 =
(

𝑝 − 𝜇 −𝐷𝑞2 0
−𝜎𝑝 −1 − 𝑞2

)

, (19)

which has eigenvalues 𝜆𝑠(𝑞) = −1 − 𝑞2 and 𝜆𝑢(𝑞) = 𝑝 − 𝜇 − 𝐷𝑞2.
The eigenvalue 𝜆𝑢 can change of sign at 𝜇𝑐 = 𝑝 and the equilibrium
point changes its stability. The corresponding band of unstable modes
is 𝛥𝑞2 = (𝑝−𝜇)∕𝐷. thus, close to the instability of the bare soil solution
𝑝 = 𝜇, slow spatial variations domain the dynamics (𝛥𝑞2 → 0). We
use a multiple time–space scale analysis to establish a simple normal
form model Eq. (1). We choose a small parameter 𝜖 which measure the
distance from the critical point 𝑝 = 𝜇 as

= 𝜇 − 𝜖2𝜂, (20)

hen, 𝛥𝑞2 ∼ 𝜖2. The non-trivial homogeneous equilibria read 𝑤1 =
∕
[

(1 − 𝑏)(1 + 𝛾𝑏)2
]

and 𝑤2 = 𝑝∕
[

1 + 𝜎𝑏(1 + 𝛾𝑏)2
]

. The onset of bista-
ility condition reads 𝜕𝑏𝑤1|𝑏=0 = 𝜕𝑏𝑤2|𝑏=0, giving the critical relation
𝑐 = 2𝛾 − 1. Thus, we perturb around this condition as

= 2𝛾 − 1 − 𝜖𝜅. (21)

o perform a weak nonlinear analysis, we consider the ansatz

𝑏
𝑤

)

=
(

0
𝑝

)

+ 𝜖𝐴(𝑇 ,𝐑)𝑣𝟏 + 𝜖2𝑊⃗ [2] + 𝜖3𝑊⃗ [3] +⋯ (22)

here the slow time scale is 𝑇 = 𝜖2𝑡, and the space scale is 𝐑 =
𝐫. We insert the previous expressions for 𝑏 and 𝑤, and expansions
qs. (20), (21) in Eq. (18), and solve the linear problems for the
nknown functions 𝑊⃗ [𝑛] corresponding to nonlinear corrections of
rder 𝜖𝑛.

At order 𝜖, one has

=
(

0 0
−𝜎𝑐𝑝 −1

)

𝐴𝑣𝟏, (23)

hich gives the eigenvector at instability

⃗𝟏 =
(

1
−𝜎𝑐𝑝

)

. (24)

At order 𝜖2, one finds

=
(

0 0
−𝜎𝑐𝑝 −1

)

𝑊⃗ [2] + 𝐴2
(

0
−𝜎𝑐𝑝

)

, (25)

hich is solved for

⃗ [2] = 𝐴2
(

0
)

. (26)
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−𝜎𝑐𝑝
Finally, at order 𝜖3, we get the following linear inhomogeneous
roblem

⃗𝟏𝜕𝑇𝐴 =
(

0 0
−𝜎𝑐𝑝 −1

)

𝑊⃗ [3] + 𝐴
(

−𝜂
0

)

+ 𝑝𝐴2
(

𝜅
0

)

+

𝑝𝐴3
(

−3𝛾2

−𝜎𝑐 (𝛾2 − 2𝛾𝜎𝑐 − 𝜎𝑐 )

)

+ ∇2𝐴
(

𝐷
−𝜎𝑐𝑝

)

. (27)

ntroducing the inner product ⟨𝑓 |𝑔⟩ ≡ ∑

𝑖 𝑓𝑖𝑔𝑖, we search for the kernel
f the adjoint of the linear operator acting on 𝑊⃗ [3], which is

∗ =
(

1
0

)

.

Then, for a linear problem of the form 𝐴𝑥 = 𝑏, solutions exist
henever ⟨ker(𝐴†)|𝑏⟩ = 0. Applying the solvability condition to solve
q. (27), we get

𝑇𝐴 = −𝜂𝐴 + 𝑝𝜅𝐴2 − 3𝛾2𝑝𝐴3 +𝐷∇2𝐴. (28)

y a renaming and scaling of variables and parameters, we recover the
ocal FKPP Eq. (1).
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