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Machine learning algorithms have opened a breach in the prediction's fortress of high-dimensional chaotic sys-
tems. Their ability to find hidden correlations in data can be exploited to performmodel-free forecasting of spa-
tiotemporal chaos and extreme events. However, the extensive feature of these evolutions makes up a critical
limitation for full-size forecasting processes. Hence, themain challenge for forecasting relevant events is to estab-
lish the set of pertinent information. Here, we identify precursors from the transfer entropy of the system and a
deep Long Short-Term Memory network to forecast the complex dynamics of a system evolving in a high-
dimensional spatiotemporal chaotic regime. Performances of this triggerable model-free prediction protocol
based on the information flowing map are tested from experimental data originating from a passive resonator
operating in such a complex nonlinear regime. We have been able to predict the occurrence of extreme events
up to 9 round trips after the detection of precursor, i.e., 3 times the horizon provided by Lyapunov exponents,
with 92% of true positive predictions leading to 60% of accuracy.
We have implemented a process to forecast extreme events in a fully developed turbulent flow. The novelty of
our strategy lies in the information's use theorymethod to detect precursors and use themas the input of a neural
network to infer the incoming extreme events. Our process is suitable for all the extended dissipative systems
that can only be partially observed or real-world data.

© 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

Large-aspect-ratio deterministic systems operating out of equilib-
rium can become extremely sensitive to the initial conditions when un-
dergoing chaotic spatiotemporal evolution [1–4]. Spatiotemporal chaos
may be understood as the exponential destruction of information in
both time and space, making the dynamics require many spatially dis-
tributed chaotic elements to be described [5]. With these elements, ac-
curate modeling of such a system lies in two key points—a good
description of the physical equations and minimal uncertainty in the
initial conditions. Despite many years of intensive research to under-
stand the complex dynamics of chaos,most are limited to theoretical in-
vestigations. Only a few experimental works had been reported due to
the huge precision required to gain knowledge on the initial conditions.
Recently, improvements of supervised machine learning algorithms
have brought new perspectives for the forecasting of spatiotemporal
complex dynamics in optics [6], economy [7], power grid load [8], and
meteorology [9–11], to mention a few. These studies were performed
aly).
mainly using deep learning, recurrent, and echo state networks. By pro-
viding model free processes it could be possible that chaos theory tools
are no more necessary to handle time series in general. Even though
powerful, the performances of machine learning-based forecasting can
be compromised when dealing with spatiotemporal chaos. Indeed, the
specificity of this chaos is its extensive feature. The larger the system,
the larger the number of the coupled nodes in the network. This
makes the problem rapidly unsolvable for high-dimensional spatiotem-
poral chaotic systems. Thus, alternative strategies based on local inten-
sive order parameters other than predicting the whole system are
needed.

Here, we show that model-based and model-free tools can be com-
bined to provide triggerable local forecasting of the extreme events in
chaotic regimes. Namely, the forecasting process is activated when rel-
evant information is identified. Answering the question of when and
where the extreme events will emerge, we also address the question
of what is coming? We will also forecast the profile of the coming
event. Our strategy is depicted by the Fig. 1. First, from output signals
of a resonator operating in a highly chaotic regime we identify relevant
pairs. Next, they are used to train a neural network. The pre-trained net-
work is deployed to monitor the dynamics in live and trigger the
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Fig. 1. Schematic representation of predictionmethod of the spatiotemporal chaos at the output of the optical fiber ring synchronously pump close to a resonance frequency. CW: contin-
uous wave. In the grey panel, we illustrate how the signals are selected to compute the transfer entropymap. The details of the multi-layer Network are given in the Appendix D section.

S. Coulibaly, F. Bessin, M.G. Clerc et al. Chaos, Solitons and Fractals 160 (2022) 112199
forecast when a precursor is detected. Our manuscript is organized as
follows. After describing how the precursors are found in the
Section 2, we describe the experimental setup in Section 3. In
Section 4 we recall some basic of high dimensional chaos, before intro-
ducing themethodswewill used to estimate the range the local dynam-
ical regions to be forecasted Section 5. The details of our model-free
prediction process and the results are provided in Section 6, followed
by the concluding remarks in Section 7.

2. Complex dynamics characterization and information transfer

The degree of sensitivity to the initial conditions is formally deduced
from the value of the largest Lyapunov exponent (LE). This exponent
can be computed for low dimensional systems based on themathemat-
ical model if known [12] or from the time series [13]. However, for ex-
tended systems, the main characteristics of the chaos require the
knowledge of the continuous spectrum of LEs [14]. Hence, from experi-
mental data, only the consequences of the chaos can be measured and
not their analytical characteristics. Indeed, LE is also interpreted as the
production rate of entropy during the evolution. Likewise, in high-
dimensional chaos, correlation ranges between different locations in
the system are much smaller than the actual size of the system. Conse-
quently, according to information theory [15], mutual information be-
tween two locations x1 and x2 may exponentially vanish as the
separation ‖x1 − x2‖ → ∞. For a system composed of two signals x and
y with joint probability p(x, y) the Shanon entropy [16] is H1 =
− ∑x, yp(x, y) log [p(x, y)]. If the same processes are supposed
independent it comes H2 = − ∑x, yp(x, y) log [p(x)p(y)]. The mutual

information is then IXY ¼ H2−H1 ¼ ∑x;yp x; yð Þ log
h

p x;yð Þ
p xð Þp yð Þ

i
. To

determine which of the two signals provides more information
regarding its own past, it is useful to compute the transfer entropy

(TE) [17–21]: TEY→X ¼ ∑x;yp xnþ1; xhn; y
h
n

� �
log

h
p xnþ1 jxhn ;yhnð Þ
p xnþ1 jxhnð Þ

i
, with n the

current iteration and h the history length. Hence, taking x and y as the
measured data at different locations separated by Δt (slow time in
Fig. 1) and lagging one over the other by Δτ (fast time in Fig. 1), one
can construct the map TEY→X(Δt,Δτ) or TEX→Y(Δt,Δτ) as sketched in
Fig. 1. With the two-point correlation length (see Section 5.2), TE will
be the model-free tool that we will use to measure the impact of the
spatiotemporal chaos in our system. In practice, there are a many
codes that allow to compute the transfer entropy of continuous time
2

series. Here, for our transfer entropy maps, we have used the open
source JIDT software package [22] (https://github.com/jlizier/jidt/).
The portability of this JIDT Java-based code,with no installation require-
ment have motivated our choice.
3. The experimental setup

A details sketch of the experimental setup is depicted in Fig. 2. It is
similar to the one used in Ref. [23]. It consists of a passive fiber ring cav-
ity built with a specially designed dispersion shifted fiber (βDSF= − 3.8
ps2/km at 1545 nm and γDSF=2.5 W−1.km−1) closed by a 95/5 coupler
made of the same fiber to get a perfectly uniform cavity of 132.9 m-long
with a finesse of 15.6. We drive the cavity with a train of square shaped
pulses of 1 ns duration. This configuration prevents from stimulated
Brillouin scattering and to generate high peak power to trigger the
parametric process. These pulses are generated from a continuous
wave (cw) laser at 1545 nm (with a narrow linewidth, less than
100 Hz) whose intensity is chopped by an electro-optic modulator
(EOM). The repetition rate of these pulses is set to match with the rep-
etition rate of the cavity, in order to drive the system synchronously and
get one pulse per roundtrip. Pulses are then amplified by an erbium
doped amplifier and filtered out by a thin bandwidth filter (BPF,
100 GHz) to remove amplified spontaneous emission (ASE) in excess.
Finally, pump pulses are launched into the cavity through the right
port of the cavity propagating in the anticlockwise direction (blue ar-
rows). Note that, we added a 99/1 tap coupler just before the input
port of the cavity for input powermonitoring and setting. Due to the in-
terferometric nature of such a system the linear phase accumulated by
pump is extremely sensitive to external perturbations (change in pres-
sure, temperature) and need to be stabilized. For this purpose, a fraction
of the output power of the EOM is launched through the left port of the
cavity, propagating in the clockwise direction (red arrows). This weak
signal detected at the cavity output by a photodetector (PD1) provides
an error signal for a feedback loop system (proportional-integrate-de-
rivative) which finely tunes the cw laser wavelength. As in Ref. [23,
24], a combination of three polarization controllers and measurements
of a fraction of cavity output signals are used to control the cavity
detuning (normalized detuning set to Δ=1.1, monostable [25]). In
order to study the intracavity field, we added just before the coupler
closing the cavity a 99/1 tap coupler. A part of this extracted field
(20%) is analyzed by means of optical spectrum analyzer while the

https://github.com/jlizier/jidt/


Fig. 2. Experimental setup. PWM, powermeter; PC1–5, polarization controller; PD1–2, photodetector; OSA, optical spectrum analyzer; Elec. BPF: electronic band-pass filter; Oscillo.1–2,
oscilloscope; Pulse Gen., pulse generator; EOM, electro-optic modulator; PID, proportional-integrate-derivative; EDFA1–2, erbium-doped fiber amplifier; BPF, band-pass filter; STR, fiber
stretcher; FBG, fiber Bragg grating; SOA, semiconductor optical amplifier; Laser fs, femtosecond laser.
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other part (80%) is amplified by a low noise EDFA and then studied by a
commercial time-lens (Picoluz ultra-fast temporal magnifier, Thorlabs)
based on the results published in Ref. [26].

The time stretching effect was obtained by pumping the time-lens
with a femtosecond laser centered at 1570 nm providing pulses with a
fixed repetition rate of 99.88 MHz. This laser was used as a reference
clock for the EOM such as the repetition rate of cavity pump pulses is
an exact multiple of the femtosecond laser (typically 65 times in our
case). In order to drive the cavity in a perfectly coherent way, we
added a stretcher inside the system, thuswe could finely tune the cavity
length such as the pump pulses repetition rate matched with the cavity
repetition rate. The magnified signal (magnified factor of 57) was
filtered bymeans of a fiber Bragg grating to perfectly remove the femto-
second pump in excess, and then slightly amplified by a semiconductor
optical amplifier to be recorded by a fast photodiode and anoscilloscope
(70 GHz bandwidth each). Thanks to this time-lens, we were able to re-
cord at each round-trip the intracavity temporal pattern over a window
of 36 pswith a resolution of about 300 fs (shorter than the local dynam-
ics time scale). We will use these data either to train the network or to
test its performances.

4. Spatiotemporal chaos in an optical fiber ring resonator

Fig. 1 sketches up the prediction protocol of chaotic extreme pulses
in a Kerr resonator. The data are obtained from a passive resonator
made of an optical fiber ring synchronously pumped close to a cavity
resonance. The repetition rate of the cavity is about 1.54 MHz (64.9
μs) and the local dynamics time scale is of the order of the ps. For sim-
plicity, the ring was set to operate in a monostable regime, i.e., a region
where the transmission function is single valued for a given pump
power. By pumping the cavity well above the cavity threshold, typically
a few times, the continuous wave solution breaks into a periodic wave
train, which in turn experiences an oscillatory instability and then
evolves onto a chaotic regime [27,28]. This current sequence is universal
and can be observed in many other fields of physics [5,12]. The dynam-
ics of the light circulating in the cavity is accurately modeled by the
driven and damped nonlinear Schrödinger equation [29] (see
3

Appendix A), referred to as Lugiato-Lefever equation (LLE) [30]. The
LLE has the advantage that we can use both model-based and model-
free tools to compute all the quantities needed to characterize the spa-
tiotemporal complexity.

Fig. 3(a) shows an example of the complex behavior obtained exper-
imentally by pumping the cavity well above the nonlinear threshold (3
times the emission threshold). It illustrates the output cavity field in the
time domain, round trip to round trips. An almost periodic pulse train of
3.8 ps period with a pulse duration of typically 1.8 ps can be observed.
Pulse positions and shapes modifications in this two dimensional map
is characteristic of a spatiotemporal chaos [27]. We performed numeri-
cal simulations with the experimental parameters. They are depicted in
Fig. 3(b). Numerical results look similar to experimental results in Fig. 3
(a). The fine characterization of the complexity of this spatiotemporal
chaotic regime had been performed from standard analysis tools [12] ei-
ther by changing the time window or the pump power. For the sake of
simplicity, since the agreement between experiments and numerics is
very good, we used numerical simulations to perform these investiga-
tions. Firstly, Fig. 3(c) shows the Lyapunov spectrum evolution for dif-
ferent time window durations (ΔTp) for a pump power set to Sn=4.9
(about 5 times the nonlinear threshold). The spectrum broadens
by increasing the time window, which is a clear signature of a
spatiotemporal chaos. Secondly, Fig. 3(d) represents Kaplan-Yorke di-
mension evolution as a function of the temporal window for several
pump powers ranging from 3.3 to 4.9 times the cavity threshold.
The curves' slopes increase with the pump power that confirms the
spatiotemporal chaotic nature of the process. More precisely, these
slopes provide an estimation of the duration ΔTstc of independent
chaotic subdomains. It is of the order of 1 ps in this case and much
smaller (ΔTstc ≪ ΔTp) than the time widow duration (36 ps here, see
Fig. 3(a) and (b)). Lyapunov spectra also enable us to estimate the
production rate of information during evolution along the slow time
(cf. Fig. 1). For high-dimensional chaos the mean metric entropy
corresponds to the Kolmogorov-Sinai entropy hKS = ∑λi>0λi [31,32].
The fluctuations lifetime over the cavity roundtrips is given by τstc=1/
hKS. From experimental parameters we found that τstc < tR where tR
represents the cavity roundtrip, which is a key feature of a system
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Fig. 3. Typical spatiotemporal turbulent dynamics (a) from experiments and (b) from numerics (LLE, Eq. (S7) in supplemental documents). (c) Lyapunov spectrum for different timewin-
dows (ΔTP). (d) Kaplan-Yorke dimension as function of the temporal window (ΔTP) for different output power normalized to the cavity threshold (Sn). All parameters are listed in
Appendix A. (e) Probability density functions of the all the peaks (blue), laminar peaks (orange) and turbulent peaks (yellow) from numerics for a detection threshold set at the mean
value of the intracavity power. The evolution of these distributions is provided as an additional material (moviepdf.gif). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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evolving into a high dimensional chaotic regime. On the other hand, the
description of the spatiotemporal chaos can be achieved by analogy
with hydrodynamics [27]. The dynamics is an irregular succession of
laminar and turbulent flows. A detailed statistical study of the laminar
or turbulent domains was performed in [27]. The probability distribu-
tion of the laminar/turbulent domains has the following mixture func-
tion: P(x) = (Ax−μ + B)e−mx. All the constants depend only on the
parameters except m which also changes with the value of the power
set to separate the laminar and turbulent domains. The burst detected
during the evolution can be labelled according to their location in a lam-
inar or a turbulent flow, respectively. Distributions of all the bursts,
those located in laminar, and turbulent domains are shown in Fig. 3
(e) for a threshold set at the mean value the intracavity power. Highest
bursts are mainly located in the laminar flows, and it is even more
pronounced for highest threshold values (see movie in supplemental
material for other thresholds). Hence, we can use the transfer entropy
4

to map the information flow from the neighborhood and the past. To
this end, we compute TEY→X(Δt,Δτ) with X ≡ |ψ(t,τ)|2 and
Y ≡ |ψ(t − Δt,τ + Δτ)|2, ψ being the considered field.

5. Estimation of the local dynamics range and predictability

The qualitative feature of a high dimensional complex behavior is
the finite nature of the interaction range. Theory of dynamical systems
and information theory have provided various estimations of this
range. In a spatiotemporal chaotic regime, the equal time two-points
correlation range and the Lyapunov dimension can be useful estimators.

5.1. Spatiotemporal chaos dimension ξδ

The Kaplan-Yorke dimension grows linearly with the volume of
a high dimensional chaotic system. For a fixed set of parameters, it
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is worth to provide an intensive characterization of the chaoticity
level. This can be done by computing the slope of the Kaplan-Yorke
dimension curve with respect to the volume [27]. The inverse of this
slope estimates the size of the independent sub-domains produced
by the presence of the attractor. Fig. 4(a) shows the typical evolution
of ξδ with respect of the pump power in the LLE. It can be seen that
the range of independent sub-domains decreases with the pumping
level. In the fully developed turbulent regime (Sn/Stn>9) we have
ξδ ≪ ΔTp.

5.2. Equal time correlation dimension ξ2

In the complex evolution the probability of two locations separated
by δT to behave coherently is obtained by computing the function:
[33–35]:

C δTð Þ ¼ 〈 ψ δT þ T 0, t
� �

−〈ψ〉
� �

ψ T 0, t
� �

−〈ψ〉
� �

〉: ð1Þ

The brackets 〈⋅〉 stand for the average process. C(δT) is the equal time
two-points correlation function. The computation cost of this function is
generally reduced by usingWiener-Khintchin theorem [36,37]. The cor-
relation length ξ2 is defined as the exponential decay of C(δT). For the
set of parameters used here, the correlation function is shown in Fig. 4
(b). We found ξ2 ≃ 4.2 ps, which is much larger than ξδ=1.3 ps.

The direct determination of C(Δτ) is quite costly in calculation time.
However, by using the Wiener-Khintchin theorem [36,37], it is com-
puted by the following process: first time-averaging the Fourier spectra
and next taking the inverse Fourier transform of its magnitude squared.
Since the experimental spectra result from an averaging process over a
large number of cavity roundtrip, C(Δτ) can also be computed taking
the inverse Fourier transform of the measured spectrum. Hence, for
the LL Eq. (1), we have computed ξδ end ξ2 with respect to the input
pump intensity.

5.3. The mutual information vanishing range ξI

Finite correlation range implies a vanishing range. The information
content is shared by two locations separated by δT. Transfer entropy is
set to determine the causality in the mutual information, it can be also
use to estimate ξI. Setting the roundtrip lag at the location of P11 the
profile of the transfer entropy is shown in Fig. 4(c). It can also be seen
that this quantity decays exponentially when the separation increases.
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We found that ξI=4.3 ps, which is of same order of ξ2. The three
ranges clearly suggest that the correlations in the system span beyond
the chaotic subdomains. To understand the meaning of these
quantities, we have represented the mean profile of the bursts in the
unit of ξδ and ξ2 = ξI in Fig. 5. As it can be seen from this figure ξδ
appears to be the maximal extension of the local chaotic objects that
are the burst and ξ2 = ξI the range above which their information
content vanishes. This sets ξ2 = ξI as the best choice for the local
dynamics range.

Note that the assumption of exponential decay is based on theobser-
vation in many chaotic systems. However, in such a profile, it is also ex-
pected that data follow a power law as proposed in [38,39]. We have
analyzed our data of C(δT) according to this proposition. The result is
given in Fig. 6. As excepted, this figure shows a region where the enve-
lope of C(δT) follows a power law,which is initially preceded by a region
where the distribution is exponential. The starting point of this power
law is three times larger than the exponential decay range. In addition,
the exponential decay range obtained following the reference [39], is
about 4.88. This is of the same order than the values we have previously
obtained by detecting the trend two-points correlation function. Hence,
in our analysis, the exponential regime allows us to determine the size
of subdomains for the forecasting.

5.4. Prediction horizon

There are many definitions of the prediction time of chaotic evolu-
tion. These definitions converge to the same value when dealing with
low dimensional chaos with a few positive Lyapunov exponents. The
widely used is the Lyapunov time given Tλm

=1/ max (λi). However,
this time has some limitations for high-dimensional systems. In that
case, the maximal local Lyapunov exponent can be a good alternative.
So far the bursts are the most chaotic objects in the system.We can fol-
low the local Lyapunov exponent together with the local evolution as
shown in Fig. 7. We can see that the local values of the maximum
Lyapunov exponent correspond to the emergence of at least one burst
and are much larger than the mean value λm=0.8 (see Fig. 3(c)). The
Lyapunov time given by the mean value of these local features is
Tλ l

≃ 3 roundtrips. This time scale has to be compared with the
Kolmogorov-Sinai entropy time [40,41]. This entropy is estimated as
hKS = ∑ λm with λm the positive Lyapunov exponents. Then TKS=1/
hKS gives the time scale of entropy production by the system. We have
computed this time for different pump temporal windows and pump
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intensities. This is summarized in Table 1. In our configuration this time
is smaller than a roundtrip time. Consequently, our prediction horizons
are larger than the characteristic time of the chaos in the system.

6. Precursors-driven machine learning

Since the spatiotemporal chaos generated in the resonator is highly
dimensional, (ΔTstc ≪ ΔTp and τstc < tR), forecasting the fully
developed turbulence of the fiber ring cavity is a great challenge.
Recent use of neural networks has opened new perspectives in this
field [9,42–45]. In particular, in [9,42], the authors have used an echo
state network to reproduce the dynamics of the Kuramoto-
Shivashinsky equation over several Lyapunov times. It also shows that
increasing the size of the system requires larger network nodes with
the same forecasting accuracy. This would be almost impossible in our
systempresenting amuch higher spatiotemporal chaotic behavior com-
pared to these works. Here, we propose to investigate an alternative to
Fig. 6. Equal time two-points correlation function in logarithmic scale. The red line corre-
spond to the fit of the envelop with the function p(δT) in inset. Black squares to the local
maxima of the envelop. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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the forecast of the complete field under study. It consists of identifying a
precursor of an event of interest and extracting a subdomain around it
to reduce the complexity of the forecasting and increase the accuracy
of the predictions. For this purpose, we compute the information flow
to optimize the determination of the size of subdomains. The transfer
entropy 2D map is presented in Fig. 8(b) (numerics) and Fig. 8
(g) (experiments). At finite roundtrips, it exhibits either a central peak
(P0i) or double peak (P1i) structures. As an example, the temporal
profiles of roundtrip lags P01 and P11, the most powerful, are shown
in Fig. 8(a) and (f). Experimental traces are temporally wider because
of the finite band-pass of the detection systemwith a noise background
inherent to experiments, but a pretty good agreement with numerics is
obtained. These peaksmean that, on average, any peaks in the evolution
carry information from its own past. This information vanishes
roundtrip to roundtrip (Fig. 8(b) and (g)), the amplitude of the peaks
following an exponential decay as can be seen in Fig. 8(c) and 8(h).
The dual peaks structure of the P1i has the advantage to be easily
differentiated compared to the single peak of the P0i making P1i the
better choice than bursts precursors. Furthermore, the time shift
between the peaks of the P1i is of the same order of the equal time
correlation range ξ2 (see Appendix C). It can be appropriated to be the
order of magnitude of our subdomains. Each measurement is locally
centered at the location of the intensity burst. Given that information
converges from P1j towards P0i we can make an association {P0i,P1j}
( ∣ T − Tk ∣ ⩽ ξ2) and perform a supervised machine learning training,
with Tk being the location of the k-th local peak.

The network in Fig. 1 is a deep Long Short-Term Memory (LSTM)
encoder-decoder algorithm which has been shown to be suitable for
sequence-to-sequence forecasting [46,47]. We used two sets of data:
Table 1
Lifetime of spatiotemporal chaotic fluctuations in fraction of the cavity roundtrip. ΔTp is
the duration of the pump temporal window and (S/Sth)2 is the ratio between the pump
power S2 and the threshold value Sth

2 .

ΔTp [ps]

22 45 180 360

(S/Sth)2 11 3.66 1.83 0.47 0.23
14 2.85 1.32 0.34 0.16
20 1.81 0.81 0.21 0.10
23 1.31 0.71 0.18 0.09



Fig. 8. (a)–(e) Numerical simulations of the LLE (Eq. (2) in Appendix A) and (f)–(j) from experiments in a Kerr resonator. (b) and (g) show the 2D plot of the transfer entropy. (a) and
(f) represent profiles of P01 and P11. The evolution of the transfer entropy at the fast time lag given by the P11 maximum with respect to the roundtrip lags are shown in (c) and (h).
The blue solid line shows the evolution of the transfer entropy as a function of the roundtrips, the symbols (+) mark peaks at each P1n, and the strait yellow line the best exponential
fit from these maxima. (d) and (e) show correlation maps after the supervised training using the association between detected pulses and their P11 and P12 precursors respectively
from numerical simulations and (i) and (j) from experiments. In panels (d), (e), (i), and (j) the horizontal axes, Actual value, stands for the measured peak value (blue points) and the
standard deviation of the observed pulses (red points). The vertical axes, Forecast value, accounts for the predicted peak value and their standard deviation.
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Fig. 9. Predictions of thewhen and where in circles, n + 9 round-trips after a precursor is
detected, superimposed on the spatiotemporal evolution of the field at the cavity output,
(a) from numerics and (b) experiments. (c)-(e) Examples of the what is coming? predic-
tion: forecast pulse in orange dashed lines (predicted shape) to be compared to the refer-
ence one in blue solid lines. More comparison are provided as an additional material
(plot_pred_anim.gif). The normalized parameters areΔ=1.1 and S=5.0. Accuracymetrics
give that 92% of the P11 precursors produce true positive prediction. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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either two simulation runs or two experimental campaigns of record-
ings. One for training and testing, and the other one to evaluate fully in-
dependently the forecasting accuracy of our system. Fig. 8(d) and
(e) show the highly forecasting correlation skill on the test data for
two roundtrip lags, P11, P12, from numerics, and Fig. 8(i) and (j) from
experiments. The correlation is close to 97% for P11 and only decays to
60% for P12 in numerics proving the excellent performance of our
method. In experiments (Fig. 8(i) and (j)), while data are noisy,
correlation factors remain still close to 1, with 75% and 64% for P11
and P12, respectively.

After training and testing are completed,we can now follow the evo-
lution looking for the precursors. For the detection, we have used a
moving window convolution of the current roundtrip with the profile
of the P1i. Once a double peak precursors identified in the running
roundtrip we feed of our multi-level network, and then we predict the
positions of pulses that will appear m roundtrips later. We performed
the same process for numerical simulations and experiments. The posi-
tions of reconstructed local predictions (when andwhere) are presented
in circles in Fig. 9(a) and (b), superimposed on spatiotemporal traces of
the output cavity. As illustrated on the right-hand side of Fig. 9(b), pre-
cursors are identified at roundtrip n to forecast pulseswhichwill appear
at roundtrip n + 9. This is 3 times the horizon given by the local maxi-
mum Lyapunov exponent. We obtained a better accuracy in the predic-
tions for numerical simulations (Fig. 9(a)) because experimental data
(Fig. 9(b)) are noisier. The shape of the predicted pulses (“what is com-
ing ?”) is also predicted from our algorithm. Typical examples are
depicted in Fig. 9(c) to (e). An excellent agreement is achieved com-
pared to the reference traces. The performances of the predictions in
terms of false-positive and accuracy are summarized in Table 2. For
P13, predictions at n + 9 roundtrips is possible with less than 8%
of false-positive precursors while operating in a strongly chaotic
spatiotemporal regime. At this horizon, the accuracy is about 60%. By
slightly lowering the pump power from 3.3 to 3 times the cavity thresh-
old (P12), the regime is still strongly chaotic. While we get the same
ratio of false-positive prediction, we reach 75% of prediction accuracy
at n + 6 roundtrips. For weakly spatiotemporal chaotic regimes, be-
tween two and three times the cavity threshold, the prediction are al-
most perfect.

This value is remarkable for such a high-dimensional chaotic system.
We also point out that all predictions based on P11 reach an accuracy
above 90% without any deep optimization of the network. The LSTM
encoder-decoder are not the unique recurrent neural network
7

that could perform the forecasting process. However, the main
purpose of our work was to show that precursors can be used to make



Table 2
Performances of the method as a function of the double peaks precursor (P1i).

P11 P12 P13

False-positive precursors (%) 6.66 8 14.92
True-positive precursors (%) 74.60 71.30 66.4
Pulses without precursors (%) 25.40 28.70 33.6
Prediction accuracy (%) 96.60 60 –
Roundtrip forecast 3 9 15
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a model-free prediction of extreme events in a high-dimensional cha-
otic system.

7. Conclusion

We have shown that forecasting high-dimensional chaos is possible
by splitting the system around the objects of interest. We identify these
objects bymapping the transfer entropy. This quantity is also used to es-
timate the extension range of the subsystem, the precursors of the ob-
ject of interest, and also the forecasting horizon of the dynamics. By
detecting the precursors, we can therefore build a triggerable model-
free process in which the “when?” and “where?” are no more the con-
cerns but the “what is coming?”. The level of the transfer entropy affects
only the accuracy of this prediction. Our analysis was based on the Long
Short-Term Memory encoder-decoder algorithm. However, other
methods can be implemented to recognize precursor-pulse pairs, such
as gate recurrent unit, echo state network, and deep learning. The opti-
mal recognition method of precursor-pulse pairs is an open problem.
Our protocol can be applied to any nonlinear systems independently
from its size provided that information flows are correctly computed.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.chaos.2022.112199.

CRediT authorship contribution statement

A.M. and F.B. conceived, designed and performed the experiments.
Numerical simulations based on the LLE were carried out by S.C. and
M.G.C. The development of analytical tools and characterization of the
ST chaos was performed by S.C. and M.G.C. All authors participated in
the analysis and interpretation of the results and the writing of the
paper.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgements

SC, AM, FB acknowledge the LABEX CEMPI (ANR-11-LABX-0007) as
well as the Ministry of Higher Education and Research, Hauts de France
council and European Regional Development Fund (ERDF) through the
Contract de Projets Etat-Region (CPER Photonics for Society P4S), the
French government through the Programme Investissement d'avenir
(I-SITEULNE/ANR-16-IDEX-0004ULNE), the CNRS (IRP LAFONI project)
Equipex T-REFIMEVE and H2020 Marie Skłodowska-Curie Actions
(MSCA)(713694). M.G.C. thanks for the financial support of FONDECYT
project 1210353 andMillennium Institute for Research in Optics, ANID–
Millennium Science Initiative Program-ICN17_012.

Appendix A. Numerical simulations

In the experimental setup, the propagation of light in an optical fiber
loop is modeledwithout loss of generality by the nonlinear Schrödinger
8

equation augmented with boundary conditions or Ikeda map
[24,29,48]:

∂zA z; Tð Þ ¼ −i
β2

2
∂2TA z; Tð Þ þ iγA z; Tð Þ Aðz; TÞj j2

A 0; T þ TRð Þ ¼
ffiffiffi
θ

p
Ei Tð Þ þ ffiffiffi

ρ
p

A L; Tð Þe−iΦ0 ;

where TR stands for the round-trip time, which is the time taken by the
pulse to propagate along the cavity with the group velocity, Φ0 is the
linear phase shift, θ(ρ) is the mirror transmission (reflection)
coefficient, and L is the cavity length. The complex amplitude of the
electric field inside the cavity is A. Each of the coefficients β2 is
responsible for the second-order dispersion, and γ is the nonlinear coef-
ficient of the fiber. The independent variable z refers to the longitudinal
coordinate, while T is the time in a reference frame moving with the
group velocity of the light. For large enough cavity finesse Fπα, with
α the effective losses of the cavity, the evolution of the electric field in-
side the loop is well described by the Lugiato-Lefever equation [29,30]:

∂ψ
∂t

¼ S− 1þ iΔð Þψ−iη
∂2ψ
∂τ2

þ i ψj j2ψ, ð2Þ

where S ¼ 2Ei
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γL=α3

p
,ψ ¼ A

ffiffiffiffiffiffiffiffiffiffiffi
γL=α

p
, t=αT/TR=αm, and τ= T/Tnwith

Tn ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∣β2L∣= 2αð Þp

. δ=(2kπ− Φ0)/α is the detuning with respect to the
nearest cavity resonance k. The integer m gives the roundtrip number
and the coefficient η = ± 1 is the sign of the group velocity dispersion
term. The configuration of our setup givesα=0.20,Δ=1.1 and Tn ≃ 1.1 ps.

Appendix B. Lyapunov spectrum computation

Strictly speaking, to prove a spatiotemporal chaotic dynamics, one
may compute several quantities. In particular, it is mandatory to com-
pute the Lyapunov spectrum. Next, this spectrum must have a positive
part and continuous region whose area has to linearly increase with
the size of the system. The computation of the Lyapunov spectrum itself
is very well documented [14] and is not the purpose here. Let just recall
the main steps. From the state of the system at a given time, the linear
evolution of any small perturbation δX can be described by ∂tδX = JδX,
where J is the respective Jacobian. In the present case, we introduce
ψ = ψr + iψi, with ψr and ψi being the real and imaginary part of ψ
respectively. At a time t = t0, introducing ψ = ψ0 + δψ, with
δψ≪ ψ(t = t0) = ψ0 the matrix J reads:

J ¼
− 1þ 2ψ0rψ0ið Þ Δ−ψ0

2
r−3ψ0

2
i −∂2τ

−Δþ ψ0
2
i þ 3ψ0

2
r

� �
þ ∂2τ − 1−2ψ0rψ0ið Þ

2
664

3
775, ð3Þ

and δX = (δψr, δψr)t. Suppose that we want to compute the n-th first
dominant exponents of the spectrum, we introduce the matrix L, that
contains n orthonormal vectors vi which to be used as initial
conditions when solving ∂tδX = JδX:

L t ¼ t0ð Þ≡ v1 v2 . . . vn½ � ¼

x11 x12 x13 . . . x1n
x21 x22 x23 . . . x2n

⋯⋯⋯⋯⋯
xd1 xd2 xd3 . . . xdn

2
6664

3
7775, ð4Þ

where d is the dimension of the system. After a time increment dt, the
matrix L evolves to L t0 þ dtð Þ ¼ bUL t0ð Þ where bU ¼ eJ⁎dt . Using the mod-
ified Gram-Schmidt QR decomposition on L(t0 + dt), the diagonal

elements of R account for the Lyapunov exponents eλi i ¼ 1, . . . ,nð Þ at
time t0 + dt, that is

~λi t0 þ dtð Þ ¼ 1
dt

ln Rii t0 þ dtð Þð Þ: ð5Þ

https://doi.org/10.1016/j.chaos.2022.112199
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Repeating this procedure several time, after a large number of itera-
tions N, the Lyapunov exponents can be approximated by

λi≡〈eλi〉 ¼
1

Ndt
∑
N

k¼1
ln Rii t0 þ kdtð Þð Þ: ð6Þ

From the spectrum {λi} an estimator of the dimension of the chaotic
attractor is given by the Kaplan-Yorke dimension DKY = p + ∑i=1

p λi/
∣ λp+1∣ where p is such that∑i=1

p λi>0 and ∑i=1
p+1λi<0 [12]. For a one-

dimensional system of size L, a spatiotemporal chaos implies that DKY

increase linearly with L.

Appendix C. Determination of the subdomains to forecast

In a spatiotemporal chaotic system many quantities can be used as
order parameter. Considering the extensive feature of this chaos, the
Kaplan-Yorke dimension may change linearly with the volume of the
system [3,35]. Namely, for a 1D system, DYK = ξδ−1ΔT where ΔT is the
extension of the system and ξδ represents the dimension correlation
length of the system for a fixed value of the control parameter. This
is an intensive quantity which gives an estimation of the extension
of the dynamically independent subsystems. Together with the
dimension correlation length one can compute the correlation length
ξ2. This length is defined as the exponential decay range of the equal
time two-point correlation [33–35]:

C Δτð Þ ¼ 〈 ψ Δτ þ τ0, tð Þ−〈ψ〉
� �

ψ τ0, tð Þ−〈ψ〉
� �

〉, ð7Þ

where the brackets 〈⋅〉 stand for the average process. The direct determi-
nation of C(Δτ) is quite costly in calculation time. However, by using the
Wiener-Khintchin theorem [37,49], it is computed by the following pro-
cess: first time-averaging the Fourier spectra and next taking the in-
verse Fourier transform of its magnitude squared. Since the
experimental spectra result from an averaging process over a large
number of cavity roundtrip, C(Δτ) can also be computed taking the in-
verse Fourier transform of the measured spectrum. Hence, for the LL
Eq. (2), we have computed ξδ end ξ2 with respect to the input pump
intensity. The third length we have computed is the long range decay
rate of the transfer entropy ξTE. The region around the burst to
forecast is largest range between ξδ, ξ2 and ξTE. Detailed
implementation can be found in the SI.

Appendix D. The forecasting protocol

Protocol of the forecasting process.
From data:

• Compute the transfer entropy map
• Detect the pulses
• Move backward to the chosen history

The training:

• compute the PDF from peaks amplitude
• split data 80% for training and 20% for testing with the same PDFs
• Standardize input data (precursors): Yeo-Johnson transform
• Create the LSTM encoder-decoder (see Table 3)

Forcasting:

• Watch the dynamics for precursors
• If precursor detected feed the network to forecast the incoming pulse
at the chosen horizon and location
9

Table 3
Python LSTM encoder-decoder summary for the network we have trained with linear ac-
tivation function.We have used the package Tensorflow-Keras. For the optimization with
have used the following options: “optimizer = Adam(), loss = ‘Huber’, metrics = ‘mae’”.

Model:
Layer (type)
 Output shape
 Param #
tm_1 (LSTM)
 (None, 3, 820)
 3365280

tm_2 (LSTM)
 (None, 820)
 5382480

peat_vector (RepeatVector)
 (None, 1, 820)
 0

tm_3 (LSTM)
 (None, 1, 820)
 5382480

tm_4 (LSTM)
 (None, 1, 820)
 5382480

me_distributed_10 (TimeDistr)
 (None, 1, 205)
 168305

otal params: 19,681,025
rainable params: 19,681,025
on-trainable params: 0
N
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