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Localized dissipative vortices in chiral nematic liquid crystal cells
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Solitary waves and solitons have played a fundamental role in understanding nonlinear phenomena and
emergent particle-type behaviors in out-of-equilibrium systems. This type of dynamic phenomenon has not only
been essential to comprehend the behavior of fundamental particles but also to establish the possibilities of novel
technologies based on optical elements. Dissipative vortices are topological particle-type solutions in vectorial
field out-of-equilibrium systems. These states can be extended or localized in space. The topological properties of
these states determine the existence, stability properties, and dynamic evolution. Under homeotropic anchoring,
chiral nematic liquid crystal cells are a natural habitat for localized vortices or spherulites. However, chiral
bubble creation and destruction mechanisms and their respective bifurcation diagrams are unknown. We propose
a minimal two-dimensional model based on experimental observations of a temperature-triggered first-order
winding/unwinding transition of a cholesteric liquid crystal cell and symmetry arguments, and investigate this
system experimentally. This model reveals the main ingredients for the emergence of chiral bubbles and their
instabilities. Experimental observations have a quite fair agreement with the theoretical results. Our findings
are a starting point to understand the existence, stability, and dynamical behaviors of dissipative particles with
topological properties.
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Dissipative particle-type solutions have been studied in
many fields of nonlinear science, ranging from biology,
chemistry, to physics (see the reviews [1–4] and references
therein). Localized structures are characterized by being sup-
ported by a spatially extended stable state. These localized
states present features of the particles. Hence, one can char-
acterize them with a family of discrete parameters such
as position, amplitude, width, and topological charge. The
localized structures generalize the concept of solitons or soli-
tary waves reported in fluid dynamics, nonlinear optics, and
Hamiltonian systems [5]. Because of the initial conditions
or inherent fluctuations, out-of-equilibrium physical systems
exhibit rich dynamics of the localized structures [1–4].
Particle-type solutions with topological charges are well
known as vortices [6]. In complex fields, vortices are point-
like singularities that locally break the rotational symmetry.
Namely, zero intensity at the singular point characterizes the
vortex with a phase spiraling around it. The number of phase
jumps determines the topological charge of the vortex [6].
The spiral rotation sense gives the sign of the charge. Vor-
tices are nucleated and annihilated by pairs between opposite
charges due to the conservation of the total topological charge.
The Ginzburg-Landau equation is a universal and minimal
model that presents vortices [6,7]. This universal model has
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been used to describe superconductors, magnetic media, flu-
ids, superfluids, granular matter, liquid crystals, and optical
dielectrics, to mention a few [6–10].

Liquid crystals are a natural physical context where ex-
tended or localized dissipative vortices can be observed [11].
Extended vortices in nematic liquid crystals are usually
called umbilical defects. Topological localized states are
the cholesteric bubbles observed in chiral liquid crystals,
spherulites or elementary torons [12–15]. These localized
states are characterized by exhibiting localized vorticity with
a circular shape surrounded by a homogeneous state without
vorticity, when observed under crossed polarizers (see Fig. 1).
These cholesteric localized objects and textures also pos-
sess a rich three-dimensional structure [15]. The spherulites
are usually observed close to the winding/unwinding tran-
sition [12–14], which occurs when the helical structure
of a chiral nematic liquid crystal develops/frustrates un-
der homeotropic anchoring [16,17]. Topological transitions,
nontopological to topological states and vice versa, have pre-
viously been observed in liquid crystals [12,18–21]. Although
cholesteric bubbles and their transitions have been studied for
several decades, their theoretical description, interaction, cre-
ation mechanisms, and instabilities have not been completely
clarified.

This Letter aims to investigate the emergence, stabiliza-
tion, and instabilities of chiral bubbles in the context of
cholesteric liquid crystal cells subjected to thermal driving.
Experimentally, the winding/unwinding transition, triggered
by temperature, of a chiral nematic liquid crystal sample is
analyzed. We show that this transition is of the first-order type.
Different cholesteric textures are observed when changing
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FIG. 1. Cholesteric liquid crystal cell under homeotropic an-
choring and crossed polarizers. (a) Schematic representation of the
experimental setup. TC represents the thermal chamber. O stands for
the objective of the microscope, with magnifications ranging from
20× to 50×. P and A are the polarizer and analyzer, respectively.
(b) Director representation �n of the chiral nematic liquid crystal
displaying a TIC phase. p is the cholesteric pitch. (c) The subcritical
bifurcation between the (d) unwound state and the (e) TIC phase.
The light blue shaded region stands for the bistability region. (f)
Cholesteric labyrinth. (g) Loop of CF-1. (h) Chiral bubbles. (i) Fin-
gering instability of the localized vortices.

the temperature, such as translational invariant configuration
(TIC), modulated TIC, cholesteric fingers of type 1 (CF-1),
loops of CF-1, and spherulites. Similar textures have been
reported in experiments controlled by applying a voltage to
cholesteric liquid crystal cells [12]. Based on the subcritical
nature of the observed transition and symmetry arguments, an
amplitude equation of the Ginzburg-Landau type is proposed.
This minimal two-dimensional model allows us to disclose the
phase diagram and the transitions in the system. We establish,
theoretically and numerically, the stability region of the chiral
bubbles. The combined effect of chirality, interface curvature,
and topology allows us to reveal a saddle-node mechanism
of the appearance or disappearance of the chiral bubbles. The
finger instability of the cholesteric bubbles is characterized by

a modal stability analysis. There is a fair agreement between
the experimental observations and the theoretical findings.

Experimental setup. Polarized optical microscopy with a
hot stage is a well-known experiment setup that permits the
characterization of liquid crystal textures and their transitions
(see Ref. [22] and references therein). Figure 1(a) shows a
schematic representation of this experiment. This setup is
made up of a white light source, which passes through a
polarizer P and illuminates a cholesteric liquid crystal (CLC)
sample. To control the temperature, the sample is inside a
thermal chamber (TC). The transmitted light goes into the
objective O and after that passes through another polarizer
A. A CMOS camera monitors transmitted light. We consider
CLC samples with homeotropic anchoring. The imposition
of this boundary condition frustrates the helical structure of
the CLC [cf. Fig. 1(b)]. The degree of frustration of this
mesophase is quantified by the confinement parameter d/p,
where d is the cell thickness and p is the cholesteric pitch [17].
This pitch accounts for the length of rotation of the molecules,
and it depends on temperature, and the concentration of chiral
molecules [12,22]. The liquid crystal used is a mixture of
nematic E7 (Merck) with a chiral molecule EOS-12 [23].
The molecule concentration determines the cholesteric pitch
p [11]. The pitch length is determined by the Grandjean-Cano
technique [12].

Experimental results. To carry out the study of the
winding/unwinding transition of CLC samples, we consider
two cells with different concentrations of chiral elements
since a higher chiral molecule concentration yields a higher
mixture chirality and shorter pitch. The first sample has a
dopant concentration of 3 wt % (p = 21.8 μm at T = 57 ◦C)
and its thickness is d = 9 μm. When varying the temper-
ature, the sample shows a subcritical winding/unwinding
transition at T +

c ≈ 61.3 ◦C, as depicted in Fig. 1(c). The
transmitted light intensity is used to measure the subcritical
winding/unwinding transition. The blue (red) curve stands for
the increase (decrease) of temperature at a rate of 0.5 ◦C/min.
At T < T −

c ≈ 61.1 ◦C the helical structure of this CLC un-
winds completely, and under crossed polarizers a homeotropic
texture is observed [see Fig. 1(d)], which is characterized by
no transmitted light. When the sample overcomes the critical
temperature T +

c , the uniform helical structure is recovered
and a homogeneous coloration is observed on the transmitted
light, TIC phase [cf. Fig. 1(e)]. The hysteresis loop between
the homeotropic and TIC phase renders the transition of the
first-order type. Indeed, the system exhibits a bistability region
[see the light blue shaded region in Fig. 1(c)].

The second sample of the CLC mixture contains 25 wt %
(p = 2.6 μm at T = 57 ◦C) of the chiral molecule and
thickness d = 200 μm. We observe a subcritical bifurca-
tion, however, the scenario changes radically. In this case, at
T > T +

c ≈ 51.3 ◦C the nucleation of the cholesteric fingers is
observed. Rapidly, the rounded tip of the fingers suffers a tip-
splitting instability, and the abnormal tip advance and merge
with the nearest cholesteric finger, showing similar dynamical
behaviors to those reported in Ref. [24]. This process ends in
a cholesteric labyrinthine pattern. Figure 1(f) shows a typical
observed labyrinthine pattern. The self-merging of the fingers
gives rise to CF-1 loops, analogous to those observed with
the application of an oscillatory voltage [25]. Upon decreasing
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the temperature, the CF-1 retracts and the loops survive [see
Fig. 1(g)]. Lowering further, the CF-1 loop collapses into
cholesteric bubbles [cf. Fig. 1(h)]. Here, we use the term
cholesteric bubble for the localized objects created by this
process, which correspond to the elementary torons [15]. The
transition from CF-1 loops to spherulites is irreversible [14].
When increasing the temperature, the cholesteric fingers ap-
pear at the interface of the localized vortices, as shown in
Fig. 1(i). This fingering instability has been also observed in
electrically driven experiments [26].

Theoretical description. Close to the winding/unwinding
transition and in the long-pitch limit p � l , where l is a
typical molecular length, the average molecular orientation of
the frustrated chiral nematic liquid crystal state inside a cell
of thickness d can be modeled as [27,28]
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where �n is the liquid crystal director, which accounts for the
orientational average of molecules in a small volume ele-
ment, α = α(x, y, t ) is the tilt angle of �n from the vertical z
axis, and θ = θ (x, y, t ) is the azimuth angle of the director,
that is, the angle between the projection of �n into the x-y
plane and the x axis. To characterize the winding/unwinding
transition, one can introduce the order parameter Q ≡
nz(nx + iny) [27]. Close to the transition, α � 1, the or-
der parameter becomes Q(x, y, z, t ) ≈ αei(θ+z/p) sin(πz/d ) =
Aeiz/p sin(πz/d ). The two-dimensional complex amplitude
A(x, y, t ) = αeiθ can be used as an order parameter to
study the winding/unwinding transition at the middle plane
of the cell [27]. This simplification assumes that 3D ef-
fects, such as confinement and surface anchoring, are
neglectable.

To shed light on the cholesteric textures that emerge in the
thermically driven winding/unwinding transition, we propose
a phenomenological amplitude equation for A. Based on the
subcritical nature of the transition [see Fig. 1(c)], symme-
try arguments, and multiscaling, the dimensionless amplitude
equation reads

∂t A = μA + β|A|2A − |A|4A + ∂η∂η̄A

+ δ∂η∂ηĀ + χ (A∂η̄A − Ā∂η̄A), (2)

where ∂η = ∂x + i∂y is a differential operator on the complex
plane, the Wirtinger derivative. The bifurcation parameter
μ ∝ T − T +

c measures the distance from the critical temper-
ature. Indeed, μ is a function of temperature, concentration,
cholesteric pitch, thickness of the cell, and elastic constants.
The three first terms on the right-hand side of Eq. (2) model
a subcritical transition (β > 0). The fourth and fifth terms
account for the isotropic and anisotropic elastic coupling in
the system, respectively [29]. The last term models the mirror
symmetry breaking, i.e., chirality [27]. The model Eq. (2)
obeys the scaling ∂t ∼ μ, ∂η ∼ μ1/2, A ∼ μ1/4, χ ∼ μ1/4,
with μ � 1 and δ ∼ O(1). The dynamics of Eq. (2) is vari-

FIG. 2. Phase diagram of model Eq. (2) with β = 1 and δ =
0.05. μlb = −1/4 and μub = 0 are the limits of the bistability re-
gion between Ao and AT . μMP = −3/16 is the Maxwell point. The
green line accounts for the spatial instability of AT . The red curve
is the saddle-node bifurcation of the localized vortices. The yellow
line with � markers stands for the transition between loops and
spherulites. The blue line with ◦ markers shows the mode-3 insta-
bility of chiral bubbles. χo = 0.26 is the minimum value for the
existence of spherulites ( ). The 
 symbol is the triple point of
the system. Regions I, II, III, IV, and V account for the stable zone
of uniform state Ao, TIC phase AT , cholesteric patterns, cholesteric
loop, and chiral bubble, respectively. Path VI represents the finger-
ing instability. ψ = Re(A)Im(A) is the polarization field. The right
panels illustrate the states in the respective regions.

ational, ∂t A = −δF[A, Ā]/δĀ, where

F =
∫∫

dxdy

{
− μ|A|2 − β

|A|4
2

+ |A|6
3

+ |∇A|2

+2δ Re
{
(∂ηĀ)2

} − χ |A|2(∂η̄A + ∂ηĀ)

}
(3)

is a Lyapunov functional. Hence, the dynamics of the ampli-
tude Eq. (2) is driven by the minimization of F . A similar
amplitude equation to model (2), but supercritical and with
terms of different order in the scaling has been used to study
the unwinding transition [27].

For μ < μub ≡ 0, the unwound state A = Ao ≡ 0 of Eq. (2)
is stable (see region I in Fig. 2). When μ � μub the zero state
is unstable by a subcritical instability and the TIC state AT =
(1/2 + √

1/4 + μ)1/2eiθo is stable (see region II in Fig. 2),
with θo an arbitrary phase. Indeed, the model Eq. (2) presents
a bistability region between A = 0 and AT in μlb � μ �
μub for small chirality. Within this zone there is a Maxwell
point μMP, where F[AT ] = F[Ao] [30]. The AT solution has
a spatial instability that gives rise to striped pattern, which
is associated with the modulated TIC phase [12]. A linear
stability analysis around AT delivers the critical wave vector

|�kc| =
√

[ f (μ) + δg(μ) + 2χ2A2
T ]/(1 − δ2), where f (μ) =

μ + 2βA2
T − 3A4

T and g(μ) = βA2
T − 2A4

T . The spatial in-
stability curve is obtained by restricting |�kc| to be a real
quantity (cf. green line in Fig. 2). The critical wavelength is
λc = 2π/|�kc|, which is proportional to the pitch p [12]. For
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FIG. 3. Transition from CF-1 loops to chiral bubbles. (a) Ex-
perimental bifurcation triggered by decrease the temperature in the
sample with 25 wt % of chiral dopant. (b) Numerical transition in
model Eq. (2) with β = 1, and δ = 0.05, when parameters change
from region IV to V in the phase diagram of Fig. 2. ψ = Re(A)Im(A)
is the polarization field. φ is the phase field. The middle panels are
transient states.

high chirality (χ > 1.5), the parameter χ is approximated
by χ ≈ (2π/

√
2AT )/p. Hence, χ is interpreted as a quali-

tative measure of the confinement, and have a temperature
dependence through p. Experimentally, a similar bifurcation
diagram has been obtained by varying the applied voltage and
the confinement parameter (chirality) [26].

Chiral bubble solutions and instabilities. The model Eq. (2)
exhibits localized finger states with different tips. When
changing parameters, the pointed tips can merge, and the
rounded tips exhibit the tip-splitting instability, which is
characterized by a flowerlike type of growth [12]. The final
equilibrium structure is a labyrinthine pattern with embedded
loops (see panel III of Fig. 2 and Video 1 in the Supplemental
Material [31]). Entering in the zone IV, the fingers withdraw
and only loops survive. Starting from region IV and going into
region V, the loop collapses into an axisymmetric localized
vortex solution A(r, θ ) = R(r)eiφ(θ ), where R and φ are the
modulus and phase, and {r, θ} are the polar coordinates. Fig-
ure 3 shows this transition experimentally and numerically.
Besides the change in size, the phase field transforms from
a nontrivial phase structure into the typical phase jump of a
singular point or vortex (spherulites) [19]. This transition has
been studied experimentally and numerically from a three-
dimensional configuration [32].

In the experiment, when decreasing temperature, the
spherulites shrink as depicted in Fig. 4(a). Suddenly, the
localized vortex is lost. This out-of-the-blue disappearance
is characteristic of a saddle-node bifurcation and is referred
to as ruin [33]. An analogous transition is observed numer-
ically between regions V and I of Fig. 2. This transition
should be accompanied by the divergence of the spherulite
residence time τr , which is the elapsed time by the vortex
before its disappearance, near the saddle-node bifurcation. To
shed light on this mechanism, we measure from model Eq. (2)
the accumulated area Aac(χ ) = ∫ τr

to

∫ ∞
0 R(r, t )2drdt , which is

FIG. 4. Disappearance of chiral bubbles. (a) Experimental obser-
vation of the spherulite loss in the sample with 25 wt % of chiral
dopant. The black dots correspond to the maximum intensity peak
of the localized structure when the temperature is decreased from
56.3 ◦C (i) until the disappearance at Td ≈ 55.3 ◦C. The blue curve
is the fit 128(T − Td )0.08. The insets shows the spherulite changes
under circular polarization. (b) Divergence of Aac at χc = 0.989,
in Eq. (2) with μ = −0.45, β = 1, δ = 0.05, and to = 0. The fit is
Aac = 0.024(χc − χ )−1/2, where χc = 0.9895.

proportional to τr near the bifurcation [34]. The lower limit
to is an arbitrary reference time. Figure 4(b) summarizes the
result. When varying χ , a power law Aac ∝ (χc − χ )−1/2 is
obtained, rendering the transition of the saddle-node type [33].

In region V of Fig. 2, cholesteric bubbles of different sizes
are stable. The main feature of the transition between bubbles
is the interface dynamics, with a core r f , which connects
R = 0 and R ≈ |AT | [see Fig. 5(a)]. For large bubbles size,
the radial profile of the interface is approximated by Ro =
[3/4(1 + e

√
3/4(r−r f ) )]1/2 at the Maxwell point [35]. Introduc-

ing the ansatz A(r, θ, t ) = Ro[r − r f (t )]eiθ + w, where w is a
small correction function, into Eq. (2) with β = 1 and δ � 1,
linearizing in w and applying a solvability condition after
straightforward calculation, we get

ṙ f = c1�μ + c2χ − co

r f
− c1

r2
f

, (4)

FIG. 5. (a) Chiral bubble observed in model Eq. (2) with μo =
−0.21, χ = 0.4, δ = 0.05, and β = 1. The radial profile |A| = R(r)
is characterized by the core r f of the interface. (b) Phase portrait
of Eq. (4). The yellow curve accounts for the case χ = 0. The blue
curve shows the force ṙ f when χ > χo. The open dots represent
unstable solutions. The solid black dot is a stable equilibrium (req).
μsn is the saddle-node critical parameter. μMP is the Maxwell point.
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where co = ∫ ∞
−∞(∂zRo)2dz, c1 = − ∫ ∞

−∞ ∂zRoRodz, c2 =
−2

∫ ∞
−∞ ∂zRoR2

odz, z = r − r f , �μ = μ − μMP, and ṙ f =
co∂t r f .

The kinematic Eq. (4) combines energy difference, chiral-
ity, curvature, and topology effects, respectively. Figure 5(b)
illustrates the kinematic Eq. (4). There are two cases: zero chi-
rality χ = 0 (yellow curve) in which the system only has one
unstable state, and χ > χo = co/c2 (blue curve), where the
systems exhibit two localized topological states, one unstable
and another stable (r f = req). Hence, chiral bubbles are a con-
sequence of the presence of the chirality. Likewise, we note
that the previous method is only applicable for positive topo-
logical charges since the negative one requires considering the
transversal dynamics of the interface. The disappearance of
the chiral bubble (μ = μsn) is mediated by the collision of
two equilibria, which indicates a saddle-node bifurcation. The
critical curve of this bifurcation is χ = χo + 2c1|�μ|1/2 (red
line in Fig. 2). Note that at μ = μMP and χ = χo, the chiral
bubble is unstable due to the divergence of its size.

In model Eq. (2), the chiral bubble suffers a fingering
instability (cf. path VI in the phase diagram of Fig. 2).
A numerical linear analysis can be performed to inves-
tigate this transition. Introducing the ansatz A = [Ro +
R̃(r) cos(mθ )eλmt ]ei[θ+φ̃(r) sin(mθ )eλmt ] in Eq. (2), where R̃(r) and
φ̃(r) are small perturbations, the modes m = 1, 2, and 3 are
unstable, where λ3 > λ2 > λ1 > 0. Modes with m > 3 cannot
be treated with the perturbational ansatz given above, due
to the appearance of new phase jumps in the complex field.
Experimentally, we have not observed these higher modes.
The blue line shown in Fig. 2 is the mode-3 instability. This
curve allows us to envisage a triple point between a patterned
state and two uniform phases (see the triangle in Fig. 2) [36].

In conclusion, the minimal model Eq. (2) allows us to
reveal analytically the instabilities of chiral bubbles, namely,
saddle-node bifurcation and interfacial instability. Both
behaviors are mainly controlled by the chirality χ of the
system, which is the manifestation of the inherent twist of
the chiral liquid crystal in the middle plane of the cell. Also,
the model reproduces other types of cholesteric textures,
such as the TIC phase, cholesteric labyrinth, and CF-1 loop.
The instabilities and textures have been experimentally
observed using polarized optical microscopy. Indeed, there
is agreement between the experimental observations and the
2D minimal model Eq. (2). Three-dimensional effects were
neglected in this work and could be necessary to describe in
more depth the transition from CF-1 loop to the cholesteric
bubble. However, the detailed analysis of this transition
was out of the scope of this study. Comparisons between
the theoretical 2D model and the 3D results in Ref. [32]
are in progress. In addition, with our modeling approach, it
is possible to visualize and understand other behaviors of
cholesteric liquid crystals. For example, nematic umbilical
defects undergo structural transitions due to chirality [37], the
chiral bubble interaction, and topological labyrinthine pattern
propagation. Work is in progress in these directions.
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