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Localized states with nontrivial symmetries: Localized labyrinthine patterns
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The formation of self-organized patterns and localized states are ubiquitous in Nature. Localized states
containing trivial symmetries such as stripes, hexagons, or squares have been profusely studied. Disordered
patterns with nontrivial symmetries such as labyrinthine patterns are observed in different physical contexts.
Here we report stable localized disordered patterns in spatially extended dissipative systems. These two- and
three-dimensional localized structures consist of an isolated labyrinth embedded in a homogeneous steady state.
Their partial bifurcation diagram allows us to explain this phenomenon as a manifestation of a pinning-depinning
transition. We illustrate our findings on the Swift-Hohenberg-type of equations and other well-established models
for plant ecology, nonlinear optics, and reaction-diffusion systems.
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Spatiotemporal patterning resulting from a symmetry-
breaking instability is a central issue in almost all driven
far from equilibrium systems [1–3]. Localized structures,
dissipative solitons, and localized patterns belong to this
field of research. They consist of one or more regions in
one state surrounded by a region in a qualitatively different
state [4–8]. Spatial localization appears not only in nonlin-
ear systems, but can occur in linear ones such as Anderson
localization that arises in inhomogeneous systems [9]. Local-
ized states appear in other classes of experimentally relevant
systems such as nonlinear optics and photonics. Spatial lo-
calized patterns possess potential applications to all-optical
control of light, optical storage, and information processing
[6,8].

Localized patterns involving trivial symmetries such as
stripes, hexagons, or squares have been abundantly discussed
and are by now fairly well understood, including their re-
spective snaking bifurcation diagrams [7,10]. Indeed, these
localized patterns involve few Fourier modes. However, lo-
calized patterns with nontrivial symmetries have neither been
experimentally observed nor documented, nor theoretically
predicted. An example of this type of patterning phenomenon
is referred to as localized labyrinthine patterns (LLP). They
are observed in population biology, such as in vegetation pop-
ulations, on the skin of animals, or human bodies [cf. Fig. 1].
All these examples show an area, which is not necessarily
circular, containing complex spatial structures, a labyrinth,
and surrounded by a uniform state. In the vegetation pop-
ulations, this intriguing phenomenon seems to be stationary
(see the Supplementary Material [20]). Extended labyrinthine
patterns refer to two-dimensional (2D) or more-dimensional
dissipative structures characterized by a circular or spherical
powder-like spectrum globally [12], they exhibit a short-range
order with a single Fourier mode, and have a finite number of
defects [13]. A power spectrum with a powdered ring (sphere)

structure is the main characteristic of patterns with nontrivial
symmetries.

In this Letter, we account for the formation of local-
ized patterns with nontrivial symmetries in well-established
models from ecology, optics, and reaction-diffusion sys-
tems. We illustrate and investigate this phenomenon using
a Swift-Hohenberg equation (SHE) [14], which constitutes
a well-known paradigm in the study of spatial periodic or
localized patterns in spatially extended systems [2]. We show
that this model supports static and stable LLP. Considering ad-
equate initial conditions, LLP are generated in the coexistence
region between the extended labyrinth and homogenous state.
We draw the partial bifurcation diagram showing the stability
domain of LLP and their pinning-depinning transitions, where
the localized labyrinth exists as a stationary solution. Free
energy allows us to study the relative stability analysis. We
show numerical evidence of stable three-dimensional local-
ized labyrinthine patterns. Further, within the pinning range
of parameters, three LLP with different sizes are generated
for a fixed value of the system parameters.

The SHE reads ([14])

∂t u = εu − u3 − ν∇2u − ∇4u, (1)

where the real order parameter u = u(x, y, z, t ) is an excess
scalar field variable measuring the deviation from criticality,
ε is the control parameter, and ν the (anti) diffusion coefficient
for (positive) negative value. The cubic term accounts for the
nonlinear response of the system under study. The Laplace
operator ∇2 = ∂xx + ∂yy + ∂zz acts in the (x, y, z)-Euclidean
space and t is time. The last term on the right-hand side,
the bi-Laplacian, stands for hyperdiffusion. Equation (1) can
also be used to describe 2D systems, where the Laplacian,
bi-Laplacian, and the order parameter u are defined in the
(x, y)-Euclidean space. The model equation (1) can be rewrit-
ten in a variational form as ∂t u = −δF/δu, where F is a
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FIG. 1. Snapshots of localized labyrinthine patterns in natural
systems. (a) Irregular distribution of vegetation embedded in a uni-
form vegetated cover observed in central Cameroon using Google
Earth software (with ground coordinate 3◦58’22.70” N 12◦19’05.84”
E). (b) Brain cactus (Mammilaria Elongata Cristata) with a contorted
tissue (courtesy of David Stang). It is a localized structure in the bare
soil background. (c) Pigmented areas composed of stripes and spots
in the skin dorsum of a frog (Dendropsophus ozzyi) [11] (reproduced
with permission from the copyright holder). (d) Skin lessions of
Tinea imbricata disease (courtesy of Michael Marks).

Lyapunov functional or a free energy

F =
∫

dxdydz

2

(
−εu2 + u4

2
− ν(∇u)2 + (∇2u)2

)
. (2)

The variational structure of the SHE (1) indicates that only sta-
tionary solutions such as uniform states, spatially periodic, or
localized patterns are possible. The SHE (1) is a well-known
paradigm for the study of periodic and localized patterns, was
first derived in hydrodynamics [14], and later in other fields of
natural science, such as chemistry [15], and nonlinear optics
[16]. In the last decade, it has been established that Eq. (1) has
already constructed by Turing, but was unpublished [17].

Other real SHE was derived for out of equilibrium systems
[18,19]

∂t u = η − εu − u3 − (ν − bu)∇2u − ∇4u − c(∇u)2, (3)

where ε and η are control parameters; ν, b are diffusion
parameters; and c is the nonlinear advection strength. The
presence of nonlinear diffusion and nonlinear advection terms,
u∇2u and (∇u)2, render Eq. (3) nonvariational. In general, this
equation does not admit a Lyapunov functional.

Whether a SHE model is variational or not, numerical
simulations of both models, Eqs. (1) and (3) with periodic
boundary conditions show evidence of stable stationary local-
ized labyrinthine patterns [see Figs. 2(a) and 2(b)].

To obtain localized labyrinthine patterns, the initial con-
ditions consist of a circular area, of certain diameter d , of a
stable labyrinthine pattern in the center of the simulation box,
embedded in a uniform background. The evolution towards

a)

(c) Vegetation

(d) Photonics

(e) Chemistry

(b)

(a)

FIG. 2. Stationary localized labyrinthine patterns obtained in
different pattern forming models: (a) SHE (1) (ε = 1.17, ν = 1);
(b) generalized SHE (3) (ε = 0.2, ν = 1, η = −0.06, b = 0.1, c =
0.1); (c) nonlocal vegetation; (d) passive diffractive resonator; and (e)
reaction-diffusion. See the Supplementary Material for more details
of models and parameters used in (c), (d), and (e) [20]. The right-
upper inset in (a) shows the powder-like ring specturm of the LLP in
the SHE model (1). All the localized structures fulfill the definition of
labyrinthine patterns (see Supplementary Material [20] for details).

equilibrium starts with a quick adjustment of the interface
mediated by the curvature of the stripe patterns; then there
is an accommodation of the stripe patterns in the bulk. To this
end, some retraction of stripes in the interface takes place (cf.
Video 1 and the stabilization of LLP in the Supplementary
Material [20]). The final localized region is not perfectly cir-
cular, containing finite segments of deformed stripes separated
by spots of the same width, and a high number of defects
inherited from the extended labyrinth. These finite-size stripes
can be interconnected or not. They support all stripe orienta-
tions along the motionless interface separating the labyrinth
to the homogeneous steady state, as shown in Fig. 2. Note that
localized nontrivial symmetry patterns arise between the crit-
ical sizes do � d � dc (see the Supplementary Material [20]
for details). In addition, the formation of LLP in the above
scalar model equations in the form of SHE, additional models
are also considered that are experimentally relevant. First, a
generic interaction redistribution model describing vegetation
pattern formation which is an integrodifferential model equa-
tion. This simple modeling approach based on the interplay
between short-range and long-range interactions governing
plant communities captures localized labyrinthine pattern as
shown in Fig. 2(c). Second, broad area photonics devices
such as nonlinear resonators subjected to a coherent injected

L012202-2



LOCALIZED STATES WITH NONTRIVIAL SYMMETRIES: … PHYSICAL REVIEW E 105, L012202 (2022)

0 
40

0 40

0 

40

(d)

(a) (b) (c)

FIG. 3. Three-dimensional localized labyrinthine pattern solu-
tion of Eq. (3). (a) Color map of the full simulation, (b) and (c) are
color map slices of the localized labyrinthine pattern. (d) Isosurface
of the localized labyrinthine pattern with u = 1.3. Parameters are
ε = 4.2, ν = 5, η = −6.8, b = 0, and c = 0. The mesh integration
is 40 × 40 × 40.

beam [see Fig. 2(d)]. In this case, the resulting equation is a
complex Ginzburg-Landau-type equation. Finally, a reaction-
diffusion model for chemical dynamics, also supports LLP as
shown in Fig. 2(e). The description of these models and the
values of the parameters are provided in the Supplementary
Materials [20]. Similar solutions when using Dirichlet and
Neumann boundary conditions are observed. Also, localized
labyrinthine patterns are independent of the numerical grid
size (see the Supplementary Material [20] for details).

The 2D LLP are robust structures in 2D systems in the
various natural system, that is, this phenomenon is observed
in different physical systems as shown in Fig. 1 and in the
Supplementary Material [20]. It has been shown that the
Swift-Hohenberg equation supports three-dimensional (3D)
extended patterns with trivial symmetries such as lamellae,
body-centered cubic crystals, hexagonally packet cylinders
[25–28], and localized patterns [27–29]. Recently, clusters of
3D bullets forming a localized crystal with trivial symmetry
were reported [30]. We extend this analysis to 3D nontriv-
ial symmetry patterns and we show the existence of stable
3D localized labyrinthine patterns. They consist of finite-size
curved and connected tubes embedded in a homogeneous
background. The width of the tubes is half of the critical
wavelength at the symmetry-breaking instability. They are
obtained by numerical simulations of the generalized SHE
Eq. (3) with Neumann boundary conditions along x, y, and z
directions. Figure 3 shows a typical 3D localized labyrinthine
pattern.
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FIG. 4. (a) Bifurcation diagram of homogenous solutions and
(b) relative stability analysis of a localized labyrinth in SHE (1)
with ν = 1. The uniform u(x, y) = 0 state suffers a Turing instability
at εc1 = −0.25. The uppermost curve (blue) shows the maximum
u(x, y) of the different equilibrium patterns [stripe (i), fingerprint-
type labyrinth (ii), glassy labyrinth (iii), and scurfy labyrinth (iv)]. At
εc2 = 0.125, the nonzero homogenous states (HSS-green curves) are
unstable to in-homogenous perturbations. In the narrow region lim-
ited by ε−

p = 1.16 and ε+
p = 1.19, where the extended labyrinthine

pattern and the uniform solutions coexist, the existence of localized
labyrinthine patterns (v) is possible. Free energy F given by Eq. (2)
is computed for an extended labyrinth (EL), the stripe pattern (SP),
the homogenous states (HSS), and a localized labyrinthine pattern
(LLP) near the pinning region.

The homogeneous steady states us = 0 and us± = ±ε1/2

solutions of Eq. (1) undergo symmetry-breaking instabilities
at εc1 = −ν2/4 and εc2 = ν2/8. At both critical bifurcations
points the critical wavelength is λc = 2π/kc = 2

√
2π/

√
ν.

Indeed, when the linear coefficient of the Laplacian is negative
ν > 0, the spontaneous pattern formation process becomes
possible thanks to the appearance of a finite band of lin-
early unstable Fourier modes that triggers the appearance
of spatially periodic patterns. The upper cutoff is affected
by the bi-Laplacian term, which is always stabilizing for
short distances since dispersion is an efficient mixing mech-
anism. Numerical simulations of the bi-dimensional Eq. (1)
in the neighborhood of the critical point ε = εc1 indicate
the emergence of extended patterns, as shown in Fig. 4(a).
When increasing the control parameter, the sequence of
symmetry-breaking transitions fingerprint, glassy, and scurfy
labyrinthine patterns are observed [13].

Spatial confinement leading to the formation of localized
patterns with nontrivial symmetry occurs in parameter space
(ε > εc2), where extended labyrinthine patterns coexist with a
homogeneous steady state. Within this hysteresis loop, there
generally exists a so-called pinning range of parameters [31],
delimited by ε±

p , in which LLP can be observed [cf. Fig. 4(a)].
Taking advantage of the variational structure of Eq. (1), we
address the problem of the relative stability analysis. We
evaluate numerically F , associated with uniform states, ex-
tended labyrinth, and LLP. Figure 4(b) summarizes the results.
These equilibria correspond to a local or global minimum
of Lyapunov functional F given by Eq. (2). From Fig. 4(b),

L012202-3



CLERC, ECHEVERRÍA-ALAR, AND TLIDI PHYSICAL REVIEW E 105, L012202 (2022)

we see that the localized labyrinth is more energetically fa-
vorable than the extended labyrinth (EL) but less stable than
the homogeneous steady state (HSS) and the perfect stripe
pattern (SP). The limiting points of the stability region of the
localized labyrinth solutions ε−

p < ε < ε+
p are similar to the ε

parameters associated to the interchange of metastability be-
tween extended states. The localized labyrinths are stationary
and stable patterns since their localized area never expands
despite diffusion and never shrinks despite nonlinearity and
dissipation.

Localized patterns with trivial symmetry (stripes and
hexagons) are organized into a complex diagram following
a homoclinic snaking bifurcation [7]. This type of diagram
is obtained by a continuation method. The symmetries of the
localized structures are relevant for the convergence of this
algorithm. However, in the case of LLP there is a lack of
continuation algorithms to characterize the full bifurcation
diagram. To figure out the existence region of stable LLP, we
performed direct numerical simulations of Eq. (1). Figure 5(a)
summarizes the results, where we plot

||u||2 = 1

LxLy

∫ Lx

0

∫ Ly

0
[u(x, y) − us+]2dxdy, (4)

as a function of the bifurcation parameter. The full bifurcation
diagram can be complex, so we display only three branches
of LLP obtained with different initial conditions shown in the
insets (i), (ii), and (iii) of Fig. 5(a). The maximum amplitude
of the three LLPs is the same, but they have different sizes.
Varying ε from these initial conditions, we obtain the three
branches shown in Fig. 5(a). Whatever the initial condition,
when increasing the bifurcation parameter the LLP decrease
in size, mediated by the shrinking of fingers and accommo-
dation of defects (see the Supplementary Material [20] for
details). All LLP disappear close to ε > ε+

p and the system
exhibit a transition towards a mixture of circular localized
peaks and dips. Figure 5(b) illustrates this transition, during
which we observe the contraction of fingers, which transform
to circular peaks or dips. This process correspond to the in-
verse of the invagination of localized structures [32]. Starting
from the initial conditions shown in the insets (i), (ii), and
(iii) of Fig. 5(a) and decreasing the bifurcation parameter, we
observe an increase in the size of the LLP. Further decreasing
ε < ε−

p , we observe a transition to an extended fingerprint-like
labyrinthine pattern. This depinning transition mediated by
front propagation has the tendency to reduce the number of
circular spots and dips, and enhance the invagination process
as illustrated in Fig. 5(c).

By varying the control parameter within the pinning region
delimited by ε−

p and ε+
p , we see that for a fixed ε, and near

ε = ε−
p the sizes of the coexisting LLP are different. However,

close to ε = ε+
p the system reaches more or less the same size.

We stress that the position of LLP and their size depends on
the initial conditions, and the maximum of the coexisting LLP
is essentially constant for fixed values of the system parame-
ters. The number of coexisting LLP with different sizes can be
much larger than the three branches shown in the bifurcation
diagram displayed in Fig. 5(a).

The localized patterns with trivial symmetries have a
well-established bifurcation diagram based on continuation

(c)

(a)

(b)

(b)

(c)

ii

i

iii
iii
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ii

FIG. 5. Three stable branches of LLP and pinning-depinning
transitions in the SHE model (1). (a) Plot of ||u||2 for three initial
conditions (i, ii, and iii) with different sizes (see Fig. 3 in the Supple-
mentary Material [20] for details). The upward (downward) triangles
account for the increasing (decreasing) of ε, starting from εic = 1.17.
(b) Temporal sequence of the pinning-depinning transition when
crossing ε+

p =1.19 and (c) ε−
p = 1.16.

methods. However, when dealing with localized patterns with
nontrivial symmetries, there are no available algorithms for
the continuation to handle this problem. Whether the localized
labyrinthine patterns present a homoclinic snaking bifurcation
diagram or not remains an open question. The plausibility of
spatial varying parameters can be responsible for complex lo-
calized patterns. However, our result opens a novel possibility
of localized patterns with nontrivial symmetries even in ho-
mogenous and isotropic systems. The existence of these types
of localized patterns is the consequence of an intricate inter-
play between pinning, defects, and complex-shaped interface.
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I. LOCALIZED LABYRINTHINE PATTERNS8

Labyrinthine patterns are disordered spatial structures characterized by a well-de�ned intrinsic length and presenting9

a powderlike ring spectrum in Fourier space [1], which signi�es their lack of simple symmetry, local behavior of a single10

wavevector, and a large number of defects [2]. Localized labyrinthine patterns (LLP) arise as the stabilization of a11

labyrinthine pattern enclosed by a homogenous state. For example, they can be observed in the context of vegetation12

self-organization as irregular patches embedded in a uniform vegetated cover [cf. Fig. 1]. The localized vegetation13

labyrinths are robust and stationary, as shown in the temporal sequence of Figure 1, in which no relevant change is14

observed in a decade. Hence, natural systems can show the coexistence between states with trivial and nontrivial15

symmetries. Figure 2 shows stationary localized labyrinthine patterns obtained in di�erent pattern forming models.16

The upper (lower) insets are the modulus of the global (averaged windowed) Fourier transform. From these Fourier17

transforms, one concludes that the localized patterns are disordered (upper insets) and locally characterized by a18

single mode (bottom insets).19

8 km

(a) 2011 (b) 2015 (c) 2020

Figure 1: Temporal sequence of snapshots of a localized vegetation labyrinthine pattern. The localized labyrinthine
pattern is observed in central Cameroon using Google Earth software (with ground coordinate 3◦58'22.70" N
12◦19'05.84" E [3]). The images were taken on December of (a) 2011, (b) 2015, and (c) 2020.

20

21

II. SWIFT-HOHENBERG MODELS22

To shed light in the existence, stabilization, and growth mechanisms of these new localized patterns, we consider23

the paradigmatic Swift-Hohenberg equation (SHE) [4]24

∂tu = εu− u3 − ν∇2u−∇4u, (1)

where u = u(x, y, t) is a real scalar �eld, ε is the bifurcation parameter, and ν > 0 is the anti-di�usion coe�cient, and25

a generelization version of the SHE [5, 6]26

∂tu = η − εu− u3 − (ν − bu)∇2u−∇4u− c(∇u)2, (2)

where ε and η are control parameters, ν, b are linear and nonlinear di�usion parameters, and c is the nonlinear27

advection strength. Both models support LLP [see Figs. 2(a) and 2(b)] in a pinning region where the uniform28

solutions us± = ±ε1/2 coexist with labyrinthine patterns of a critical wavelength λc = 2
√

2π/
√
ν.29
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Figure 2: Stationary localized labyrinthine patterns obtained in di�erent pattern forming models: (a) SHE (1) with
ε = 1.17 and ν = 1, (b) generalized SHE (2) with ε = 0.2, ν = 1, η = −0.06, b = 0.1, and c = 0.1, (c) Non-local
vegetation model Eq. (4) with Lf = 2.5, D = 1, ξf = 3, ξc = 1, µ = 1.3, (d) Passive di�ractive resonator
equation (8) with C = 21, θ = −3.8, and Ei = 22, (e) reaction-di�usion model Eq. (10) with a = 17.16. The upper

(lower) inset is the modulus of global (local) Fourier transform. λc and l are the critical wavelength (2π/|~kc|), of the
corresponding model, and the size of the window in the averaged windowed Fourier transform, respectively.

III. OTHER EXPERIMENTALLY RELEVANT SYSTEMS30

The existence of stable localized labyrinthine structure is not limited to the large wavelength pattern regime31

described by the paradigmatic Swift-Hohenberg equation but can be obtained from other experimentally relevant32

systems. Three examples are chosen across various �elds of natural science: (A) vegetation interaction-redistribution33

model of vegetation dynamics, which can generate patterns even under strictly homogeneous and isotropic envi-34

ronmental conditions. It is grounded on a spatially explicit formulation of the balance between facilitation and35

competition. Ecosystems experience transitions towards fragmentation of landscapes followed by deserti�cation con-36

stitutes a major risk to the biological productivity of degradated zones, (B) nonlinear optical cavity subjected to a37

coherent injected �eld, where localized states have been experimentally observed with a possibility for applications in38

all-optical control of light, optical storage, and information processing, and (C) Chemical reaction-di�usion far from39

equilibrium systems.40

41

42

A. Vegetation interaction-redistribution model43

The nonlocal approach, we adopt here focuses on the relationship between the structure of individual plants and the44

facilitation-competition interactions existing within plant communities. Three types of interactions are considered: the45

facilitative Mf (~r, t), the competitive Mc(~r, t), and the seed dispersion Md(~r, t) nonlocal interactions. To simplify fur-46

ther the mathematical modeling, we consider that the seed dispersion obeys a di�usive processMd(~r, t) ≈ D∇2b(~r, t),47

whereD is the di�usion coe�cient. We assume in addition that all plants are mature neglecting the allometry, and they48
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are settled on �at territory ~r = (x, y), assuming isotropic environmental conditions. The interaction-redistribution49

model reads50

Mi = exp

{
ξi
Ni

�
b(~r + ~r′, t)φi(~r, t)d~r

′
}
, with φi(~r, t) = exp(−~r/Li) (3)

where i = {f, c}. ξi represents the strength of the interaction, Ni is a normalization constant. We assume that their51

Kernels φi(~r, t) are exponential functions with Li the range of their interactions.52

A logistic equation with the above mentioned nonlocal interactions leads to the so called vegetation interaction-53

redistribution model. The spatiotemporal evolution of the normalized biomass density b(r, t) in isotropic environmental54

conditions reads [7]55

∂tb(~r, t) = b(~r, t)[1− b(~r, t)]Mf (~r, t)− µb(~r, t)Mc(~r, t) +DMd(~r, t). (4)

The normalization is performed with respect to the total amount of biomass supported by the system. The �rst two56

terms in the logistic equation with nonlocal interaction Eq. (4) describe the biomass gains and losses, respectively.57

The third term models seed dispersion. The aridity parameter µ accounts for the biomass loss and gain ratio. Other58

approches based on reaction-di�usion type of modelling incorporate water transport by below ground di�usion and/or59

above ground run-o� [8].60

The homogeneous steady state solutions of Eq. (4) are: bo = 0 which corresponds to the state totally devoid of61

vegetation, and the homogeneous cover solutions, which satisfy the equation62

µ = (1− b) exp ∆b, (5)

with ∆ = ξf − ξc measures the community cooperativity if ∆ > 0 or anti-cooperativity when ∆ < 0. The bare state63

bo = 0 is unstable (stable) µ < 1 (µ > 1) and stable otherwise. The homogeneous cover state with higher biomass64

density is stable and the other is unstable. These solutions are connected by a saddle node or a tipping point whose65

coordinates are given by
{
bsn = (∆− 1)/∆, µsn = e∆−1/∆

}
. The linear stability analysis of the vegetated cover (bs)66

with respect to small �uctuations of the form b(~r, t) = bs + δb exp{σt + i~k · ~r} with δb small, yields the dispersion67

relation68

σ(k) =

(
bs(1− bs)ξf − bs −

bs(1− bs)ξc
(1 + L2

ck
2)3/2

)
eξf bs −Dk2. (6)

Given the spatial isotropy, the growth rate σ(k) is a real quantity. This eigenvalue may become positive for a �nite69

band of unstable modes which triggered the spontaneous ampli�cation of spatial �uctuations towards the formation70

of periodic structures with a well-de�ned wavelength (2π/kc). At the symmetry-breaking instability, the value of71

the critical wavenumber kc marking the appearance of a band of unstable modes, and hence the symmetry-breaking72

instability, can be evaluated by two conditions: σ(kc) = 0 and ∂σ/∂k|kc = 0. These conditions yield the most unstable73

mode74

k2
c =

1

L2
c

[(
3bse

ξf bs(1− bs)ξcL2
c

2D

)2/5

− 1

]
. (7)

This critical wavenumber determines the wavelength of the periodic vegetation pattern 2π/kc that emerges from the75

symmetry-breaking instability. Replacing kc in the condition σ(kc) = 0, we can then calculate the critical biomass76

density bc. The corresponding critical aridity parameter µc is provided explicitly by the homogeneous steady states77

Eq. (5). The critical wavelength (2π/kc) determines the half space between stripes in the localized labyrinth, solution78

of Eq. (4), shown in Fig. 2.79

B. Passive nonlinear resonator model80

We consider a passive resonator with plane mirrors, �lled by a resonant two-level medium without population81

inversion and driven by a coherent plane-wave injected signal. In the good cavity limit where the medium relaxes82

much faster than the cavity �eld, the material variables (the atomic polarization and population di�erence) are83
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adiabatically eliminated, and the resulting model equation is a complex Ginzburg-Landau equation of the form84

∂tE = Ei − (1 + iθ)E − 2CE

1 + |E|2
+ i∇2E, (8)

where E is the normalized slowly varying complex envelope of the electrical �eld circulating within the optical cavity,85

Ei is the input �eld amplitude, θ is the detuning parameter, and C is a cooperative parameter. The homogenous86

steady state solutions (Eo) satisfy87

E2
i =

{(
1 +

2C

1 + I

)2

+ θ2

}
I, (9)

where I = |Eo|2. The emergence of bistability in the model can be established by the conditions d2E2
i /d

2I = dE2
i /dI =88

0. The system exhibits bistability if C > Cc, where Cc is solution of (Cc−4)(1+2C2
c ) = 27θ2C2

c , with a critical cavity89

intensity Ic = (1+2Cc)/(Cc−1). The system exhibits two symmetry-breaking instabilities at I±T = C−1±
√
C2 − 4C.90

The critical wavenumber at both instabilities is kc =
√
−θ. Close to this point a Swift-Hohenberg equation, Eq. (1),91

has been established [9]. The critical wavenumber de�nes a critical wavelength 2π/kc, which is the half space between92

the stripes observed in the localized labyrinthine pattern, solution of Eq. (8), shown in Fig. 2.93

C. Reaction-Di�usion model94

Finally, reaction-di�usion systems are models of predilection for the study of dissipative structures and localized95

states. These models apply not only to chemical open reactors such as continuously stirred tank reactors (CSTR) but96

also to population dynamics such as population biology and epidemiology. In this context, the symmetry-breaking97

bifurcation is called the activation-inhibition instability. This bifurcation results from the competition between two-98

opposite processes: a short-range positive feedback due to an activator that favours the growth of �uctuations and99

a long-range negative feedback due to an inhibitor that neutralizes the activator's action. We choose the Edblom,100

Orban, and Epstein (EOE) model [10].101

∂tu = −uv2 + av − (1 + b)u+D∇2u

∂tv = uv2 − (1 + a)v + u+ F +∇2v,
(10)

where the dimensionless variables u and v corresponds to HSO3 and H+ concentrations, respectively. a and b are102

reduced reaction rates, d is the ratio of the di�usion constants of u and v, and F is the dimensionless in�ow of103

hydrogen ions. The homogenous steady states of Eq. (10), uo and vo, are solutions of104

uo =
avo

v2
o + 1 + b

av3
o

1 + b+ v2
o

− (1 + a)vo +
avo

1 + b+ v2
o

+ F = 0.
(11)

In the case of b = 1 and F = 7.65 the system exhibits a S-shaped bifurcation diagram with a as the bifurcation105

parameter. The middle branch is always unstable. In the narrow range a ∈ [16.95, 17.04] the model displays bistability106

of homogenous states, characterized by a hysteresis loop. To characterize pattern formation in this chemical model107

we perform a linear stability analysis. We make perturbations of �nite wavenumber around the stable homogenous108

states, i.e.109 (
u(~r, t)

v(~r, t)

)
=

(
uo

vo

)
+

(
δu

δv

)
ei
~k·~r+σt. (12)

After introducing Eq. (12) into Eq. (10), we obtain the linearized problem110

σ

(
δu

δv

)
=

(
−v2

o − 1− b−Dk2 −2uovo + a

v2
o + 1 2uovo − 1− a− k2

)(
δu

δv

)
. (13)
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We impose σ = ∂σ
∂k = 0 in the characteristic polynomial equation for σ and obtain the critical wavenumber,111

k2
c =
−v2

c − 1− b+D(2ucvc − 1− ac)
2D

, (14)

together with Eq. (11) the critical point(s) (ac, vc) can be obtained. We �nd, numerically, that in the two stable112

branches the Turing instability can arise. Note that, close to this critical point a non-variational Swift-Hohenberg113

model (Eq. (2)) has been established [6]. Eq. (14) de�nes a critical wavelength 2π/kc, which is the half space between114

stripes in the localized labyrinthine pattern in Fig. 2.115

IV. INITIAL AND BOUNDARY CONDITIONS, AND GRID INDEPENDENCE OF LOCALIZED116

LABYRINTHINE PATTERNS117

The nucleation process in the SHE model (1) is illustrated in Fig. 3. A circular patch of a diameter d is extracted118

from the center of a stable labyrinthine pattern. Then, it is embedded in the uniform solution us+ in order to create119

the initial condition as shown in t1 in Fig. 3. The localized labyrinthine pattern evolves towards an equilibrium until120

the temporal evolution of the Lyapunov Functional reaches a plateau, and the stable localized labyrinthine pattern121

emerges. The step-like descend of the Lyapunov Functional at early stages of the temporal evolution is related to122

the accomodation of defects in the frustrated labyrinthine pattern [2]. A similar procedure is used to generate the123

three-dimensional LLP.124

Figure 3: Creation and stabilization of a localized labyrinthine pattern in the SHE (1) with ε = 1.165 and ν = 1.
The left panel shows an extended labyrinthine pattern in equilibrium. The dashed circle indicates the patch of
labyrinthine pattern that is embedded in the uniform solution. The size is d = 220. The middle planel accounts for
the evolution towards equilibrium of the localized labyrinthine pattern (t1 = 1 to t6 = 106, where
t1 < t2 < t3 < t4 < t5 < t6). The red curve in the right panel shows the minimization of the Lyapunov Functional F
during the stabilization of the localized labyrinthine pattern from the initial condition. See Supplementary Video 1
for the whole evolution.

125

126

In the SHE model (1), given an initial condition with a diameter d, LLP emerge as stable patterns when d . dc.127

Figure 4 shows the total area of localized labyrinthine patterns ||u||2 for di�erent initial conditions, considering the128

same initial extended labyrinthine pattern. There is a transition between LLP and extended labyrinthine patterns129

for dc ≈ 12λc. There is a �nite size of stripes needed to localized the complex labyrinthine patterns. Also, there is a130

minimum size do ≈ 7λc, which gives the minimum amount of wavelengths to form a non-trivial symmetry pattern.131

All the two-dimensional localized labyrinthine patterns shown in the main text and here [cf. Fig. 2 and Fig. 3]132

are obtained using periodic boundary conditions. For completeness, we show that in the SHE model (1) the same133

localized complex pattern can be seen in numerical simulations using Dirichlet and Neumann boundary conditions [see134

Fig. 5]. All of these disordered localized patterns are obtained using the procedure described above. Also, we perform135

numerical simulations in the SHE model (1) varying the numerical grid discretization, ∆x, to show the numerical136

robustness of LLP. These localized patterns are displayed in Fig. 6.137
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(i)

(ii)

(iii)

Figure 4: Transitions between (i) localized trivial symmetry patterns, (ii) localized non-trivial symmetry patterns,
and (iii) extended labyrinthine patterns in the SHE model (1) with ε = 1.164 and ν = 1. ||u||2 is the area of the
localized non-trivial symmetry patterns. The light blue shaded region accounts for the localized patterns with
di�erent degree of non-trivial simmetries exist. do ≈ 7λc and dc ≈ 12λc.

(a) Periodic (b) Dirichlet (c) Neumann

Figure 5: Di�erent boundary conditions for the numerical simulations of localized labyrinthine patterns in the
SHE (1) with ε = 1.175 and ν = 1. Periodic (a), Dirichlet (b), and Neumann (c) boundary conditions. The diameter
of the initial condition is d = 180.

0                                     512   0                                     512   0                                     512   

512 

0

512 

0

512 

0

Figure 6: Localized labyrinthine patterns with di�erent space discretizations ∆x the SHE model (1) with ε = 1.162
and ν = 1. (a) ∆x = 0.4, (b) ∆x = 0.5, and (c) ∆x = 0.6. The initial diameter is d = 200.

V. GROWTH MECHANISM OF LOCALIZED LABYRINTHINE PATTERNS IN THE138

SWIFT-HOHENBERG EQUATION139

Localized labyrinthine patterns, in the SHE model (1), are stable inside the pinning region delimited by ε−p and ε+p140

as shown in Fig. 7, in which the square of the area supported by the localized labyrinthine patterns ||u||2 is plotted141

as a function of the bifurcation parameter ε. When varying ε within this region, transitions between di�erent LLP142
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are possible due to shrinking or expansion of �ngers (at the interface or inside the labyrinthine structure), and the143

accommodation of defects. Likewise, this shrinking process is accompanied by the appearance of circular spots and144

the disappearance of local domains of stripe patterns. Figure 7 shows four LLP along one stable branch generated by145

decreasing/increasing ε, starting from ε = εic [inset (i) in Fig. 7].146

i

i

Figure 7: Localized labyrinthine patterns in the SHE model (1) along one stable branch (blue curve). The yellow
shaded area with boundaries ε−p = 1.16 and ε+p = 1.19 is the pinning region. Starting from the LLP in (i) at
εic = 1.17, the bifurcation parameter is increased (upward triangles) and decreased (downward triangles).
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