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a b s t r a c t 

A pair of periodically coupled and forced simple oscillators can exhibit aperiodic behaviors. Here we 

study the effect of periodic spatial modulations in an optical dimer composed of photorefractive sat- 

urable waveguides. The propagation of light along these waveguides as a function of the initial condition 

exhibits chaotic behaviors. The dynamical behaviors are elucidated based on the adequate representation 

of the variables, frequency spectra, and Poincaré sections. Homoclinic and heteroclinic entanglements 

associated with the hyperbolic points that separate the stable equilibria are the origin of the chaotic be- 

havior. The different dynamical regimes have been characterized as a function of light power and initial 

conditions. Our results open the possibility of using optical saturable dimers in the secure transmission 

of information. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Oscillators and their dynamics have attracted the attention of 

hysics from their dawn, being the pendulum, one of the first 

echanical examples studied due to its potential application as a 

atch [1,2] . An oscillator is a system that is characterized by be- 

ng able to exhibit a periodic or quasi-periodic evolution around 

n equilibrium. The most common examples come from classical 

echanics (pendulum and spring mass system), electricity (elec- 

rical circuits), and quantum mechanics (atoms and molecules), but 

he oscillators are observed in all the natural sciences ranging from 

iology, chemistry to physics. A single oscillator for small distur- 

ances is characterized by exhibiting harmonic movement, which 

s one of the elementary behaviors of physics. When the distur- 

ances are increased, nonlinear terms modify the harmonic oscilla- 

ions but the oscillations persist [3] . This scenario changes radically 

hen one couples two oscillators [4] . Small disturbances exhibit 

ifferent normal modes, coherence oscillations [5] . However, the 

onnection of the different attractive and repulsive manifolds of 

nstable (hyperbolic) equilibria produces chaotic behaviors [6–8] . 

ndeed, this heteroclinic entanglement produces exponential sensi- 

ivity around the hyperbolic points. This type of chaotic behavior is 

bserved in conservative or non-conservative systems. In the case 

f two simple coupled oscillators in conservative systems, chaotic 

ehaviors are not observed due to conserved quantities. The cou- 

ling of other oscillators or the inclusion of external forcing can 
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nduce chaotic behaviors [8–11] . A simple system of two coupled 

onservative oscillators in optics is a nonlinear coherent coupler—

ptical dimers —consisting of two coupled waveguides (see Fig. 1 ) 

12,13] . A dimer formed by photorefractive saturable waveguides 

hows different equilibria with regular behaviors. Indeed, this sys- 

em is integrable [13] , that is, the solutions can be expressed in 

erms of integrals and the phase space can be characterized em- 

loying simple curves [14] . Namely, the phase space is of foli- 

ted nature. Integrable systems are structurally fragile, that is, un- 

er system modifications, integrability is lost and chaotic behavior 

merges. 

The paper aims to investigate the effect of periodic spatial 

odulations in an optical dimer composed of photorefractive sat- 

rable waveguides. These spatial modulations are responsible for 

he emergence of chaotic behaviors when light propagates along 

hese waveguides as a function of the initial condition and light 

ower. Adequate representation of the physical variables, frequency 

pectra, and Poincaré sections allow us to reveal the complex dy- 

amic behaviors. 

The article is organized as follows. The spatial unmodulated op- 

ical dimer model composed of saturable photorefractive waveg- 

ides and its analytical characterization of dynamical behaviors 

re presented in Section 2 . Detailed characterization of the inte- 

rable optical dimer dynamics employing the frequency spectrum 

nd phase space is presented in Section 3 . In Section 4 , the spa-

ial modulation of the dimer is incorporated, generating chaotic 

ehaviors. In addition, a detailed characterization of the frequency 

pectrum and Poincaré sections for different powers are presented. 

onclusions are presented in Section 4 . 

https://doi.org/10.1016/j.chaos.2021.111488
http://www.ScienceDirect.com
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Fig. 1. Schematic representation of a saturable dimer, which is composed of two waveguides (represented by the red cylinders) separated by a given distance. z accounts for 

the propagation direction along waveguides. Insets depict the symmetric and asymmetric mode profiles. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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. Model of the spatial unmodulated optical dimer 

Light propagation on an array formed by single-mode identi- 

al nonlinear photorefractive saturable waveguides (as sketched in 

ig. 1 ) is well described by a dimensionless saturable discrete non- 

inear Schrödinger equation (s-DNLE) [13] , which for two coupled 

aveguides reads as 

i 
∂u 1 

∂z 
= V u 2 − γ u 1 

1 + | u 1 | 2 
i 
∂u 2 

∂z 
= V u 1 − γ u 2 

1 + | u 2 | 2 . (1) 

ere, u n (z) corresponds to the fundamental mode complex am- 

litude at the n -th site ( n = 1 and 2); γ > 0 accounts for a fo-

using nonlinearity; V defines the coupling coefficient between 

oth waveguides, which decays exponentially with the distance be- 

ween waveguides [16] . z is the dynamical variable in this model 

nd stands for the propagation distance along waveguides. Model 

1) possesses two conserved quantities, the Power 

 (z) = P 1 (z) + P 2 (z) ≡ | u 1 (z) | 2 + | u 2 (z) | 2 , (2)

nd the Hamiltonian 

 ≡ −V (u 2 u 

∗
1 + u 

∗
2 u 1 ) + γ log 

[
(1 + | u 1 | 2 )(1 + | u 2 | 2 ) 

]
, (3) 

hich are useful to study the dynamical properties as well as to 

heck numerical accuracy. As the model (1) has two degrees of 

reedom and two conserved quantities is fully integrable [14,15] . 

herefore, we can find stationary (steady state) solutions analyt- 

cally, in the linear and nonlinear regimes, of the form u n (z) = 

 n exp [ iλz] , where λ corresponds to the solution frequency and U n 

mplitudes are real. It is simple to show that complex solutions 

nly exist for two defined phases 0 or π , therefore, amplitudes 

an be simply treated as real quantities. As a consequence, model 

1) reduces to two algebraic equations 

U 1 = V U 2 − γU 1 

1 + U 

2 
1 

λU 2 = V U 1 − γU 2 

1 + U 

2 
2 

. (4) 

otice that saturable models possess two linear regimes, at low 

nd high powers [17–19] . When light power is low, term 1 + U 

2 
n ≈
2 
 and equations are completely linear with two eigenfrequencies 

iven by λ = ±V − γ , for symmetric ( ++ ) and antisymmetric ( + −) 

odes, respectively. Mode profiles are sketched as insets in Fig. 1 . 

n the other hand, when power is very high saturation term be- 

omes negligible [ 1 / (1 + U 

2 
n ) � 1 ] and equations become linear

gain. In this high-power regime, eigenfrequencies simply become 

= ±V for ++ and + − modes, respectively. Both limits define the 

xistence region for solutions on a P versus λ diagram [13,19] . 

For low power, model (1) transforms directly into a cubic dimer 

odel [10] , in which −γ u n / (1 + | u n | 2 ) ≈ γ | u n | 2 u n − γ u n . There-

ore, the dynamical picture is very well-known, including chaos 

rediction [9–11,20,21] . In that case, for low power, there are 

nly two ( ++ and + −) fundamental nonlinear stationary solutions, 

hich become four at larger powers, with two degenerated and 

quivalent asymmetric states bifurcating at the ++ ( + −) solution 

or positive (negative) nonlinearity. In that case, the asymmetric 

olution is always stable, while the symmetric or asymmetric so- 

ution loses stability and transforms into a hyperbolic point, been 

esponsible of generating chaotic dynamics. 

Nonlinear stationary solutions for coupled Eq. (4) are found us- 

ng a standard method based on equilibrium states [13] . Consider- 

ng the ansatz U 1 = A and U 2 = αA , where A and α are real con-

tants. Inserting this ansatz in (4) and, after straightforward calcu- 

ations, we obtain 

= ±1 α± = 

γ A 

2 ±
√ 

γ 2 A 

4 − 4 V 

2 (1 + A 

2 ) 2 

2 VA 

2 (1 + A 

2 ) 
. (5) 

e find four stationary solutions, where two of them are trivial 

nd have exactly the same form than the linear ones. Hence, these 

olutions bifurcate at the linear modes at low power ( λ = ±V − γ ), 

hile disappearing at high power ( λ = ±V ). For γ > 0 , the non-

rivial solutions ( α±) bifurcate from the symmetric solution ++ at 

wo different power regions which depend on nonlinearity γ [13] . 

lthough we can construct a P versus λ diagram for all these so- 

utions, we focus on constructing an effective potential represen- 

ation, which captures the main dynamical features of this model 

nd gives us all the dynamically connected nonlinear stationary so- 

utions as well. Using a reduced center of mass “x̄ ” as a key dy- 

amical parameter, we simply define as x̄ ≡ P /P . Note that the real 
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Fig. 2. Contour plots for effective potential H(x, P) for different values of γ : (a) 10, (b) 2, (c) 6, and (d) 15. V = 1 . Color dots are explained in the text. Full (dashed) lines 

correspond to stable (unstable) stationary solutions. The color scale is rainbow , with purple-blue (red) indicating lower (larger) values, with green intermediate values. Insets 

in (a) show some spatial profiles at different x -values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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enter of mass is simply defined as x ≡ 1 + x̄ . x̄ = 0 (x = 1) means

hat all the power is at waveguide 1 ( P = P 1 ), while x̄ = 1 (x = 2)

ndicates that all the power is at waveguide 2. x̄ = 0 . 5 (x = 1 . 5)

epresents both, the ++ and + − solution; however, as γ > 0 ⇒ 

> 0 , we are only interested on the connection of nontrivial solu- 

ions with symmetric ( ++ ) modes. 

To characterize the dynamical features of this system, we con- 

truct an effective potential H( ̄x , P ) . From the definition of x̄ , we

rite u 1 = 

√ 

P (1 − x̄ ) and u 2 = 

√ 

P ̄x , in which we have selected 

ositive signs due to the focusing nonlinearity and the unstaggered 

ature of solutions. Inserting these expressions into Eq. (3) , we get 

 simple form for the effective potential 

( ̄x , P ) = −2 V P 
√ 

x̄ (1 − x̄ ) + γ log [1 + P + P 2 x̄ (1 − x̄ )] . (6)

e plot a normalized effective potential in Fig. 2 (a) for γ = 10 , as

n example, as a function of x and P . To simplify the comparison at
3 
ifferent P values, we have normalized H(x, P ) diving it by H(0 , P ) ,

o rescale values and simplify the analysis. We have also included 

xamples in Figs. 2 (b)–(d) for other values of γ , to compare main 

henomenological changes. 

Critical points of H(x, P ) are found directly from expression 

6) , obtaining the nonlinear stationary solutions connected in pa- 

ameter space (antisymmetric solution + − is dynamically isolated 

or γ > 0 ). A first solution corresponds to the symmetric one, for 

hich x̄ sym 

= 0 . 5 . This mode exists for all powers, bifurcating at 

ero power for λ = V − γ and disappearing at an infinite power for 

= V . The central vertical curve in Fig. 2 illustrates this symmet- 

ical state. Its stability properties change depending on the level 

f power and emergence of nontrivial solutions α±. For γ < 4 , the 

ymmetric solution is always a minimum, been therefore always 

table. For γ > 4 , it evolves from been a minimum into a max- 

mum and into a minimum again, modifying its stability conse- 
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uently. After differentiating expression (6) , we obtain two non- 

rivial solutions 

¯
 = 

1 

2 

± 1 

2 

√ 

1 − 2 

P 2 V 

2 
y ±, (7) 

ith y ± = γ 2 − 2(1 + P ) V 2 ± γ
√ 

γ 2 − 4(1 + P ) V 2 , which are lo- 

ated symmetrically around the symmetric solution ( ̄x = 0 . 5 ). 

hese nontrivial solutions are spatially asymmetric in terms of 

mplitudes at each waveguide ( α± � = 1 ) and are phenomenologi- 

ally connected to localized nonlinear solutions of extended sys- 

ems [17–19] . Considering their profile, we simply call them asym- 

etric modes. Expression (7) imposes restrictions for analytical so- 

utions, considering that x̄ is a real quantity. The first condition 

e observe is that these solutions do not exist above the upper 

ound P ub = (γ / 2 V ) 2 − 1 (red dots in Fig. 2 ). Therefore, the con-

ition γ > 2 V is necessary in order to have asymmetric nonlinear 

olutions (same condition is obtained when looking for opening a 

gap ” in between linear modes: V − γ < −V , which is a region in

arameter space where localized solutions exist [17–19] ). Fig. 2 (b) 

hows that there is only one stationary solution for γ = 2 V , the 

ymmetric mode. For P > P ub , only symmetric (and antisymmetric) 

olutions exist, which is a signature of the saturable nonlinearity 

nd its tendency to become a linear system at high powers. 

Additionally, we find two extra conditions which define the 

ifurcation power for two different asymmetric solutions: P ± = 

/V − 2 ±
√ 

(γ /V − 2) 2 − 4 . Power P − represents the bifurcation 

ower for a standard asymmetric solution, similar to the one found 

or a nonlinear cubic dimer [10] . Around this parameter region, 

aturable phenomenology approaches to the nonlinear cubic one, 

s we have described before. This new stable solution bifurcates 

t P − from the symmetric mode, which now becomes unstable: a 

inimum is transformed into a maximum in the effective potential 

epresentation. This bifurcation power is indicated by green dots 

n Figs. 2 (a), 2 (c) and 2 (d), been: 0.25, 0.54, and 0.15, respectively.

ecause of the system symmetry, the asymmetric solution exist to 

he right and to the left of x̄ = 1 / 2 [using y − in Eq (7) ], positions

hat correspond to two local minima in the potential representa- 

ion. Therefore, this asymmetric mode is always stable in its whole 

xistence region: { P −, P ub } , denoted by full lines in Fig. 2 . 

Interestingly, an extra mode appears for a saturable system at 

 + [replacing y + in Eq (7) ], which is a fundamentally different re- 

ult compared to a standard cubic dimer. For cubic nonlinearities, 

he asymmetric mode exists from a given power threshold 2 V/γ
p to infinity, without any fundamental change in its dynamical 

roperties. However, for a saturable dimer, a second asymmetric 

olution appears at power P + (see blue dots in Fig. 2 ). This solu-

ion is a connector mode or intermediate solution in between the 

ymmetric mode and the first stable asymmetric state. This solu- 

ion appears as a maximum in the potential representation, been 

lways an unstable solution in its existence region { P + , P ub } and,

herefore, a new hyperbolic point for the system. Because of the 

ppearance of this second asymmetric state, the symmetric mode 

ecomes stable in the interval { P + , ∞} . Consequently, we observe a

istable regime where the symmetric and first asymmetric modes 

re simultaneously stable, been both equilibria in the system for 

he same level of power. 

In brief, as a function of the power P and strength of saturation 

, the optical dimer presents regions of monostability and bistabil- 

ty. These bistability regions appear and disappear due to pitchfork 

nd saddle-node bifurcations, as illustrated in Fig. 2 . 

. Dynamic for an integrable dimer 

We numerically integrate the set of Eq. (1) , assuming a given 

nput condition, and study the dynamics of the optical dimer us- 

ng two methods. The first one consists of computing the spectrum 
4 
xcited along the propagation coordinate z [23] , which gives us in- 

ormation about the frequencies effectively excited or frequencies 

ecomposition during the dynamics for a different level of power. 

e run the simulations up to a given propagation distance z max , 

ong enough to allow the different frequencies to emerge. Figs. 3 (a) 

nd 3 (b) show two examples, for γ = 10 , where we excite the sys-

em using a single-site and two-sites (symmetric) excitation, re- 

pectively. 

First of all, considering the excitation of a single waveguide 

 Fig. 3 (a)], we observe that for a low power regime both linear 

requencies are excited [see Fig. 3 (a2)]. This is due to the exci- 

ation of both linear eigenmodes simultaneously: “+0 ” = “++ ” + 

+ −”; i.e., a single-site excitation. As the nonlinearity is positive, 

requencies are shifted to the right of the spectrum for an increas- 

ng power, where the γ + V symmetric mode is mostly excited. 

owever, there is an oscillation of the energy from one site to the 

ther as Fig. 3 (a3) shows. For P � 1 , the center of mass shrinks and

 → 1 ; i.e, the energy remains trapped at the input waveguide. This 

s the well-known self-trapping transition [9,10,13,15,23–25] , which 

ccurs above a given level of power. As it was shown in Fig. 2 , the

symmetric stationary mode bifurcates from the symmetric state, 

hich is corroborated dynamically in Fig. 3 (a). Once the asymmet- 

ic mode is excited, it governs the dynamics and the strong peak 

n the spectrum corresponds to this state, with only few energy 

een transferred into the second waveguide. Indeed, a single-site 

xcitation does not match exactly to the asymmetric stationary 

ode; therefore, some part of the energy oscillates in between 

oth waveguides. As the effective potential (6) predicts, there is 

 second bifurcation region which modifies the system dynamics. 

lose to power P + (15.746, for γ = 10 ) there is a regime where sat-

ration emerges and stabilizes the previously unstable symmetric 

olution. Therefore, as the input condition corresponds to x (0) = 1 , 

here is a transit in between two minima which induces an oscil- 

ation of the center of mass as shown in Fig. 3 (a3). This oscillation

ontinues for an increasing power, where for P > P ub only the sym- 

etric mode is excited because is the only remaining stationary 

olution at larger power. 

Fig. 3 (b) shows similar diagrams but for a symmetric input con- 

ition x (0) = 1 . 5 . For low level of power, we observe how the sym-

etric mode rapidly unstabilizes and generate several harmonic as 

hown in Fig. 3 (b2). This is corroborated with the oscillation of x 

hown in Fig. 3 (b3) for low powers. Then, above P ≈ 16 , the sym-

etric solution stabilizes, that is, no harmonic are generated [see 

ig. 3 (b2)] and the center of mass oscillation ends [see Fig. 3 (b3)]. 

A second method corresponds to a Poincaré map [22] , which 

elps us to understand the overall system dynamics for longer 

ropagation distances. This is necessary to allow the energy to ex- 

lore the full parameter space (initial conditions), in order to show 

ifferent stable equilibria and hyperbolic points. To implement this 

ap in our system, we construct a parameter space formed by the 

enter of mass x (z) and its derivative 

 x ≡ d x 

d z 
= 

−2 Im (u 1 u 

∗
2 ) 

P 
, (8) 

here dx indicates a transversal velocity for which the center 

f mass x changes along the propagation coordinate. As station- 

ry solutions are naturally immobile, parameter space must show 

hese points as equilibrium and isolated points in the map. To 

onstruct these diagrams, we initialize Eq. (1) using N = 101 in- 

ut conditions, which go from x (0) = 1 to x (0) = 2 as x (0) = 1 +
j − 1) / (N − 1) , with j = 1 , . . . , N. Color code in Poincaré maps cor-

espond to a rainbow scheme, where red/orange increases up to 

lue/purple, passing through greenish colors, for an increasing j- 

alue. 

Fig. 4 presents four different examples at different level of 

ower to show the different phenomenological regimes for this 
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Fig. 3. Optical dimer dynamics for input excitation (a) x (0) = 1 and (b) x (0) = 1 . 5 . (a1) and (b1) Dynamically excited spatial frequencies λ are plotted for different input 

power P. (a2) zoom of (a1) at indicated region, while (b2) shows (b1) on a saturated scale. (a3) and (b3) show x (z max ) versus input power P. Dashed lines indicates P = 15 . 

V = 1 , γ = 10 , z max = 100 . 
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ystem. At low power [see Fig. 4 (a) for P = . 1 ], we observe a sin-

le fixed point at x = 1 . 5 , which corresponds to the symmetric sta-

le solution, i.e. an isolated center equilibrium. All orbits around it 

escribe a closed trajectory, indicating an oscillating behavior for 

ny input condition different to x = 1 . 5 . For powers in the interval

 P −, P + } , the symmetric solution becomes unstable and transforms 

nto an hyperbolic point at x = 1 . 5 , while the asymmetric modes

merges as new center points [see Fig. 4 (b) for P = 10 ]. In Fig. 2 (a)

e see that, when bifurcating, the asymmetric solution rapidly 

odifies its center of mass close to waveguides 1 and 2. In fact, 
5 
or P > 1 , the shift in position (with respect to waveguides) is less

han 0.02. For P = 10 , stationary solutions are located in x = 1 . 016

nd x = 1 . 984 [obtained directly from expression (7) ], correspond- 

ng to the two fixed points shown in Fig. 4 (b). All this dynamics is

ell-known and identical to the one for the cubic dimer [9–11] . 

For powers in the interval P + < P < P ub , we expect that satu-

ation starts affecting the dynamics. In this parameter region, we 

xpect to observe three fixed points: two stable asymmetric solu- 

ions around a third stable symmetric solution at x = 1 . 5 . In addi-

ion, we naturally expect two hyperbolic points connecting the sta- 
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Fig. 4. Poincaré maps, phase space { x, dx } , for different power P: (a) 0.1, (b) 10, (c) 18, and (d) 30. V = 1 , γ = 10 , z max = 10 0 0 for (a) and 50 0 0 for (b)–(d). (e1)–(e2) 

Waveguide power | u 1 , 2 (z) | 2 at the last part of propagation for (a)–(d) cases, respectively, with x (0) = 1 . 25 as indicated by black circles. 
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le modes. Fig. 4 (c) shows this phenomenology for P = 18 , where

xed points are located at x = 1 . 02 , 1.5, and 1.98, while hyper-

olic points at x = 1 . 22 , and 1.78. Finally, for P > P ub we expect to

bserve a kind of linear behavior, due to the saturation and dis- 

ppearance of asymmetric solutions. The only stationary solution 

emaining corresponds to the symmetric one, been therefore an 

solated fixed point. This is well described in Fig. 4 (d) for P = 30 .

igs. 4 (e1)–(e2) show some dynamical examples at the end of the 

omputed trajectory, where regular and predictable oscillatory be- 

avior is observed in all cases for the same input condition, but for 

ifferent power and, therefore, different dynamical regimes. 

When the optical dimer presents bistability between different 

table equilibria, their stability regions are circumscribed by the 

eteroclinic and homoclinic orbits [22] , as shown in Figs. 4 (b) and 

 (c). These orbits are generated from the hyperbolic points and 

onnections between them. The chaos theory initiated by the pi- 

neering works of Poincaré shows that disturbances of a dynami- 

t

o

6 
al system, for example periodic forcing, induce chaotic behaviors 

round heteroclinic and homoclinic curves [22] . 

. Chaos on a saturable optical dimer 

In order to observe a chaotic dynamics on a dimer system, 

e must introduce an external driving that turns model (1) into 

 non-integrable system. Namely, we must remove a conserved 

uantity. In a photonic platform, we could induce parametric 

hanges by varying fabrication parameters. Coupling V can be spa- 

ially modulated by changing the distance in between waveguides, 

nd nonlinearity γ can be adjusted as well by varying the pulse 

nergy of the femtosecond laser used for waveguide writing [16] . 

owever, this technique is implemented in silica-like materials 

hich have a nonlinear cubic response. Saturable systems are com- 

only studied on photorefractive materials, for example a SBN 

rystal [15] . The nonlinear coefficient γ can be controlled by an ex- 

ernal voltage applied on one crystal axis, which allows the study 

f linear and nonlinear dynamics at a very low level of optical 
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Fig. 5. (a), (b) and (c) Dynamically excited spatial frequencies λ as a function of 

input power P, for a single site excitation x (0) = 1 , for { γ1 , ω} = { 0 . 2 , 1 } (a), { 0 . 2 , 2 } 
(b), and { 1 , 1 } (c). (a1) shows the excited spectrum for P ∈ { 0 , 30 } , normalized with 

the maximum peak at every P. (a2), (b2) and (c2) show zooms at bifurcation power 

region P − , while (a3), (b3) and (c3) at the multi-stable region ∼ { P + , P ub } , both on a 

saturated scale. V = 1 , γ0 = 10 , z max = 100 . 
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ower. As this voltage is externally applied, it can be varied on 

 controlled oscillatory way. Therefore, we can study the effect of 

aving an oscillatory nonlinearity on model (1) , for which we con- 

ider 

→ γ (z) = γ0 + γ1 sin (ωz) . (9) 

Following previous analysis, we take γ0 = 10 and vary γ1 and 

as control parameters in order to study the emergence of chaos. 

irst of all, we compute the frequency spectrum for different in- 

ut conditions. Fig. 5 summarizes the obtained results. Along this 

ection, we consider three cases as examples: a weak-slow ( ws ) 
7 
 γ1 , ω} = { 0 . 2 , 1 } , a weak-fast ( wf ) { γ1 , ω} = { 0 . 2 , 2 } , and strong-

low ( ss ) { γ1 , ω} = { 1 , 1 } perturbations. Our idea is to see the main

ffects of varying the strength and frequency of nonlinear mod- 

lation. Naturally, Figs. 5 (a1)–(c1) show a similar result than the 

ne shown in Fig. 3 (a), where we observe the four main regimes: 

xcitation of low-power symmetric and antisymmetric modes, bi- 

urcation of asymmetric solutions, multi-stable region, and exci- 

ation of high-power symmetric and antisymmetric modes again. 

owever, if we zoom up the dynamically more interesting regions 

low power at Figs. 5 (a2),(b2) and (c2), and intermediate power 

igs. 5 (a3), (b3) and (c3)], we realize that the nonlinear modula- 

ion introduces the generation of new harmonics which could be 

f great relevance for perturbing the stability and propagation of 

ifferent input conditions. These figures are color saturated in or- 

er to show more details in the spectrum, although these details 

re weak with respect to main frequencies. 

We nicely observe how the nonlinear modulation destabi- 

izes the region where transitions are happening: P ∼ P − and P ∼
 P + , P ub } , generating a kind of continuous excitation of frequencies

n the transitions regions. We notice that this continuous genera- 

ion increases in terms of affected power interval for an increasing 

odulation from ws → wf → ss , in both power regimes. Therefore, 

e expect a more chaotic scenario for an increasing forcing of the 

ystem. However, although this is an obvious conclusion, we also 

otice that when power is above P ∼ P ub , system stabilizes again 

ithout any relevant harmonic generation and observed instabil- 

ty. On the contrary, we observe a high-power linear regime, which 

s a saturable signature, been completely different to the standard 

ubic phenomenology ocurring at larger power levels. 

To deepen the analysis, we construct different Poincaré maps 

following the same scheme than in the previous section in terms 

f input conditions) at different level of power, for the same three 

ifferent nonlinear modulation parameters ( ws, wf , and ss regimes), 

n which each point of the phase space { x, dx } is obtained strobo-

copically after a period T = 2 π/ω. Fig. 6 shows results for P = 10

fter propagating the equations up to z max = 50 0 0 [different col- 

rs represent a different input conditions from x (0) = 1 . 0 (red) 

o x (0) = 1 . 5 (violet)]. At this level of power, we expect a sys-

em presenting two fixed and one hyperbolic points as shown in 

ig. 4 (b). For a soft modulation ( sw ), Fig. 6 (a) shows the broaden-

ng of the region close to the original hyperbolic point at x = 1 . 5

green colors). This is a clear manifestation of the chaotic behav- 

or that emerges from the explosion of the homoclinic curve, ho- 

oclinic entanglement [7,22] . Therefore, an initial condition in this 

egion of the phase space is exponentially sensitive; if one starts 

rom an almost symmetric initial condition, after evolving, it will 

ot be possible to predict whether the light intensity is concen- 

rated in the left or the right waveguides. Although the trajectories 

end to mix in this region, their size is small. Indeed, the chaotic 

egion is a delimited zone of phase space, which is fractal in nature 

7] . 

By inspecting three specific input conditions [black curves in 

igs. 6 (d)–(f)], we observe that close to the original fixed point 

triangle and circle) the energy remains oscillating stable around 

his point. However, close to the hyperbolic point (square, chaotic 

egion), we observe that the energy goes back and forward from 

ites 1 and 2, which is in agreement with the broadening of the 

reenish region. Fig. 6 (b) shows an essentially similar result than 

ig. 6 (a); however, we observe that the previously chaotic (green) 

egion starts to become mixed with orange and blue colors. This 

s an indication of a chaotic tendency due to the effective con- 

ection of trajectories for different input conditions. Blue curves 

n Figs. 6 (d)–(f) show this, where for x (0) = 1 . 1 there is a sta-

le oscillatory trajectory, but for x (0) = 1 . 3 there is a jump into

aveguide two and then back to waveguide one again. Hence, in 

he last case the trajectory is not bounded to the left fixed point 
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Fig. 6. Poincaré maps for power P = 10 and { γ1 , ω} = { 0 . 2 , 1 } (a), { 0 . 2 , 2 } (b), and { 1 , 1 } (c). (d), (e) and (f) show x (z) at the end of propagation, for input conditions 

x (0) = 1 . 1 (d), 1.3 (e), and 1.49 (f), as indicated by triangles, circles and squares, respectively. Black, blue, and red curves correspond to the same parameter used in (a), 

(b), and (c), respectively. V = 1 , γ0 = 10 , z max = 50 0 0 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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nd goes back and forward from one site to another. Then, for an 

nput condition closer to the hyperbolic point [ x (0) = 1 . 49 ], we ob-

erve in Fig. 6 (f) that energy got trapped at the left fixed point

nd remains oscillating around it, although this is not a stable ob- 

ervation as it is shown around z = z max − 10 , where it was close

o jump into the other site, something that probably happens be- 

ore or will occur afterwards. Finally, for this level of power, a ss 

egime shows a strong mix of trajectories in Fig. 6 (c). We observe 

 clear emergence of fully developing chaos, where essentially only 

ed and violet trajectories at the left and right fixed points, respec- 

ively, are stable, as Fig. 6 (d) shows by red lines. Likewise, when 

he input condition moves away from fixed points, trajectories are 
8 
imply chaotic and the energy goes back and forward in a non triv- 

al way [see red lines in Figs. 6 (e) and (f)]. 

All the described phenomenology is akin to the cubic dimer 

ne, because at this level of power the system behaves as a Kerr 

ystem. The saturable nature of our model appears in the multi- 

table regime, for example as shown in Fig 4 (c). There, three fixed 

nd two hyperbolic points define a completely different scenario. 

ig. 7 shows our compiled results for P = 18 , and ws, wf , and ss

egime. In the first two regimes, we observe a kind of similar re- 

ult, but presenting different patterns at the Poincaré section. Close 

o the three fixed center points, there are stable trajectories as 

hown in Figs. 7 (a) and (b), by red, green and violet colors. These
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Fig. 7. Poincaré maps for power P = 18 and { γ1 , ω} = { 0 . 2 , 1 } (a), { 0 . 2 , 2 } (b), and { 1 , 1 } (c). (d), (e) and (f) show x (z) at the end of propagation, for input conditions 

x (0) = 1 . 1 (d), 1.3 (e), and 1.49 (f), as indicated by triangles, circles and squares, respectively. Black, blue, and red curves correspond to the same parameters used in (a), 

(b), and (c), respectively. V = 1 , γ0 = 10 , z max = 50 0 0 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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egions of the phase space are characterized by the fact that the 

rajectories can be foliated (islands), whereas in chaotic regions 

his is not possible. In the ws regime, we observe a clear separation 

f dynamics. We observe how for an input condition x (0) = 1 . 1 ,

t weak modulation ( ws ), trajectory is stable around the left fixed 

oint as black lines show in Fig. 7 (d). However, when increasing 

he input condition to x (0) = 1 . 3 , we observe a mixed dynamics

n Fig. 7 (a), which is an indication of chaos, where the energy 

oes back and forward in a non trivial form [see black curve in 

ig. 7 (e)]. Then, close to the new fixed point [ x (0) = 1 . 49 ], we ob-

erve a perfectly bounded trajectory in Fig. 7 (f), for both, ws and 
9 
f , regimes, shown by black and blue curves, respectively. Coming 

ack to x (0) = 1 . 3 , but now for a wf regime, we observe a bound

nd stable oscillation in turn the central fixed point [see blue curve 

n Fig. 7 (e)]. Interestingly, the same input condition in a ws regime 

ndicated chaos. Therefore, we observe how a faster modulation in- 

uces a new control of stable trajectories, where the central stable 

egion around the fixed point x = 1 . 5 has increased. However, an 

nput condition x (0) = 1 . 1 shows a not bounded trajectory, with 

he energy oscillating from one site to the other [see blue curve in 

ig. 7 (d)]. In a wf regime, we observe that the region in between 

xed points is more colored, with almost all colors mixed in phase 
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Fig. 8. Poincaré maps for power P = 30 and { γ1 , ω} = { 0 . 2 , 1 } (a), { 0 . 2 , 2 } (b), and { 1 , 1 } (c). (d), (e) and (f) show x (z) at the end of propagation, for input conditions 

x (0) = 1 . 1 (d), 1.3 (e), and 1.49 (f), as indicated by triangles, circles and squares, respectively. Black, blue, and red curves correspond to the same parameters used in (a), 

(b), and (c), respectively. V = 1 , γ0 = 10 , z max = 50 0 0 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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pace, what is a clear manifestation of chaos. We also observe the 

ppearance of isolated closed trajectories (“islands”), as an indica- 

ion of a periodic dynamics; however, these trajectories are not 

eached by trivial input conditions, considering that we can only 

et the input center of mass in an experiment. Finally, we observe 

hat a strong modulation ( ss ) regime, at this level of power, only 

hows a chaotic behavior, with the whole phase space covered by 

ixed trajectories. Examples are shown by red lines in Figs. 7 (d)–

f), where we observe a non trivial dynamics with exchange of en- 

rgy between sites and kind of short bound oscillation around left 

nd right fixed points. 
10 
Finally, to show the saturable nature of our model Eq. (1) , we 

ncreased the power up to P = 30 , where saturation comes into 

lay and determine the dynamics with an isolated fixed point at 

 = 1 . 5 , as shown in Fig. 4 (d). In this regime, the dynamics is gov-

rned by symmetric and antisymmetric solutions only, which are 

he only fixed points in a high-power linear regime. Therefore, 

e mostly observe oscillation in turn this fixed point, as shown 

n Figs. 8 (a)–(c) for x (0) = 1 . 3 (circles) and x (0) = 1 . 49 (squares),

ith simple oscillatory dynamics and a well defined period [see 

igs. 8 (e) and (f)]. Dynamics becomes more complex close to the 

revious left and right fixed points, which now do not exist any- 
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Fig. 9. Dynamical examples for an input excitation x (0) = 1 . 1 . Four files correspond to powers P = . 1 , 10 , 18 , 30 , while three columns correspond to { γ1 , ω} = { 0 . 2 , 1 } , 
{ 0 . 2 , 2 } and { 1 , 1 } , respectively. V = 1 , γ0 = 10 , z max = 50 . 
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ore, but we find a non simple dependence in the effective poten- 

ial at this region, as shown in Fig. 2 (a). Derivative at these regions

hange, although no critical points (hyperbolic or center points) 

re found, but inflection points. We observe this complexity for an 

nput condition x (0) = 1 . 1 in all regimes, where we nevertheless

bserve a quite periodic, but not trivial, oscillation, as shown in 

ig. 8 (d). Islands appear at intermediate and strong regimes, with 

ome chaotic mixing regions in between those islands. This is an 

nteresting feature of this model, because although stationary so- 

utions at this level of power behave as linear ones, they are still 

onlinear effects which could manifest chaos as we clearly show, 

or example, in Fig. 8 (c), where there is a broad chaotic region with

everal colors mixed. Only single-site input conditions could circu- 

ate through the system without noticing the effective potencial, as 

hown in Figs. 8 (a)–(c) by broader trajectories which mix red and 

iolet colors only. 
v

N

11 
. Conclusions and remarks 

Coupled waveguides as a function of the initial condition and 

ower of the injected light exhibit complex dynamic behaviors. We 

how that simply considering a saturable optical dimer with spatial 

odulation exhibits chaotic behaviors. By using frequency spectra 

nd Poincare sections, we give evidence of the complex dynam- 

cs exhibited by this simple system. Because of the saturable non- 

inearity that characterizes the optical dimer under study, chaotic 

ehaviors are exhibited only in an intermediate power range. The 

rigin of the chaotic behavior is due to the entanglement of the 

omoclinic and heteroclinic curves associated with the hyperbolic 

oints that separate the stable equilibria of the saturable optical 

imer. 

Using our previous findings, we would like to explore a possi- 

le application considering the saturable properties and the acti- 

ation of chaotic dynamics using an external driving mechanism. 

owadays, the encrypted transmission of information is a key goal 
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or increasing digital demand, including different transactions re- 

uiring a high degree of security. Hence, the ability to send infor- 

ation in a codified way is mandatory. Our saturable system has 

he particularity of presenting linear regimes at different levels of 

ower and, therefore, we could have a controlled output below and 

ver a defined power threshold, while having a chaotic and hard 

o predict regime at an intermediate level of power. As this sys- 

em has only two degrees of freedom, the energy could only tran- 

it from one site to another, but the output could change abruptly 

n a chaotic regime. This could be interpreted as a non-controlled 

utput for an eavesdropper, for example. This is similar to the Al- 

ce and Bob idea on quantum information [26] , and as soon as the

mitter and receiver knows the correct protocol, in our case de- 

ned with the level of power used in the system, the information 

ill be securely transferred. 

Fig. 9 shows some examples, varying different parameters, 

ower P in rows and { γ1 , ω} in columns. As we clearly observe,

ow and high power regimes show a controlled oscillatory out- 

ut, but intermediate powers show a non periodic dynamics which 

ould produce confusion on an eavesdropper. As the system tends 

o be chaotic in an intermediate power regime, this produces peri- 

dic and non-periodic output patterns which could be really hard 

o predict due to the non-integrability of model (1) + (9) . There- 

ore, we can use the chaotic regime to occult information, consid- 

ring the optical power as external control of the system. Work in 

his direction is in progress. 
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