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A pair of periodically coupled and forced simple oscillators can exhibit aperiodic behaviors. Here we
study the effect of periodic spatial modulations in an optical dimer composed of photorefractive sat-
urable waveguides. The propagation of light along these waveguides as a function of the initial condition
exhibits chaotic behaviors. The dynamical behaviors are elucidated based on the adequate representation
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1. Introduction

Oscillators and their dynamics have attracted the attention of
physics from their dawn, being the pendulum, one of the first
mechanical examples studied due to its potential application as a
watch [1,2]. An oscillator is a system that is characterized by be-
ing able to exhibit a periodic or quasi-periodic evolution around
an equilibrium. The most common examples come from classical
mechanics (pendulum and spring mass system), electricity (elec-
trical circuits), and quantum mechanics (atoms and molecules), but
the oscillators are observed in all the natural sciences ranging from
biology, chemistry to physics. A single oscillator for small distur-
bances is characterized by exhibiting harmonic movement, which
is one of the elementary behaviors of physics. When the distur-
bances are increased, nonlinear terms modify the harmonic oscilla-
tions but the oscillations persist [3]. This scenario changes radically
when one couples two oscillators [4]. Small disturbances exhibit
different normal modes, coherence oscillations [5]. However, the
connection of the different attractive and repulsive manifolds of
unstable (hyperbolic) equilibria produces chaotic behaviors [6-8].
Indeed, this heteroclinic entanglement produces exponential sensi-
tivity around the hyperbolic points. This type of chaotic behavior is
observed in conservative or non-conservative systems. In the case
of two simple coupled oscillators in conservative systems, chaotic
behaviors are not observed due to conserved quantities. The cou-
pling of other oscillators or the inclusion of external forcing can
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induce chaotic behaviors [8-11]. A simple system of two coupled
conservative oscillators in optics is a nonlinear coherent coupler—
optical dimers—consisting of two coupled waveguides (see Fig. 1)
[12,13]. A dimer formed by photorefractive saturable waveguides
shows different equilibria with regular behaviors. Indeed, this sys-
tem is integrable [13], that is, the solutions can be expressed in
terms of integrals and the phase space can be characterized em-
ploying simple curves [14]. Namely, the phase space is of foli-
ated nature. Integrable systems are structurally fragile, that is, un-
der system modifications, integrability is lost and chaotic behavior
emerges.

The paper aims to investigate the effect of periodic spatial
modulations in an optical dimer composed of photorefractive sat-
urable waveguides. These spatial modulations are responsible for
the emergence of chaotic behaviors when light propagates along
these waveguides as a function of the initial condition and light
power. Adequate representation of the physical variables, frequency
spectra, and Poincaré sections allow us to reveal the complex dy-
namic behaviors.

The article is organized as follows. The spatial unmodulated op-
tical dimer model composed of saturable photorefractive waveg-
uides and its analytical characterization of dynamical behaviors
are presented in Section 2. Detailed characterization of the inte-
grable optical dimer dynamics employing the frequency spectrum
and phase space is presented in Section 3. In Section 4, the spa-
tial modulation of the dimer is incorporated, generating chaotic
behaviors. In addition, a detailed characterization of the frequency
spectrum and Poincaré sections for different powers are presented.
Conclusions are presented in Section 4.
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Fig. 1. Schematic representation of a saturable dimer, which is composed of two waveguides (represented by the red cylinders) separated by a given distance. z accounts for
the propagation direction along waveguides. Insets depict the symmetric and asymmetric mode profiles. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

2. Model of the spatial unmodulated optical dimer

Light propagation on an array formed by single-mode identi-
cal nonlinear photorefractive saturable waveguides (as sketched in
Fig. 1) is well described by a dimensionless saturable discrete non-
linear Schrodinger equation (s-DNLE) [13], which for two coupled
waveguides reads as

.8U1 Yuq
i vy, -
"oz = 1+ |uq|?
L0y yuz
B R R VTR o B 1
"oz t 1+ |uy|? ()

Here, up(z) corresponds to the fundamental mode complex am-
plitude at the n-th site (n=1 and 2); ¥ > 0 accounts for a fo-
cusing nonlinearity; V defines the coupling coefficient between
both waveguides, which decays exponentially with the distance be-
tween waveguides [16]. z is the dynamical variable in this model
and stands for the propagation distance along waveguides. Model
(1) possesses two conserved quantities, the Power

P(2) =Pi1(2) + P2(2) = |u1(2)|> + |u2(2) |2, (2)

and the Hamiltonian

= —V(wui +ust) + y log [(1+ [ [*) (1 + [uz )], 3)

which are useful to study the dynamical properties as well as to
check numerical accuracy. As the model (1) has two degrees of
freedom and two conserved quantities is fully integrable [14,15].
Therefore, we can find stationary (steady state) solutions analyt-
ically, in the linear and nonlinear regimes, of the form u,(z) =
Uy explirz], where A corresponds to the solution frequency and Uy
amplitudes are real. It is simple to show that complex solutions
only exist for two defined phases O or s, therefore, amplitudes
can be simply treated as real quantities. As a consequence, model
(1) reduces to two algebraic equations

YUi YU,
1+U2 1+U2

Notice that saturable models possess two linear regimes, at low
and high powers [17-19]. When light power is low, term 14 U2 ~

AU =VU, — AU, =VU; —

(4)

1 and equations are completely linear with two eigenfrequencies
given by A = £V — y, for symmetric (++) and antisymmetric (+—)
modes, respectively. Mode profiles are sketched as insets in Fig. 1.
On the other hand, when power is very high saturation term be-
comes negligible [1/(1+U?) « 1] and equations become linear
again. In this high-power regime, eigenfrequencies simply become
A ==V for ++ and +— modes, respectively. Both limits define the
existence region for solutions on a P versus A diagram [13,19].

For low power, model (1) transforms directly into a cubic dimer
model [10], in which —yun/(1+ |un|?) = y |unp|?un — yun. There-
fore, the dynamical picture is very well-known, including chaos
prediction [9-11,20,21]. In that case, for low power, there are
only two (++ and +-) fundamental nonlinear stationary solutions,
which become four at larger powers, with two degenerated and
equivalent asymmetric states bifurcating at the ++ (+—) solution
for positive (negative) nonlinearity. In that case, the asymmetric
solution is always stable, while the symmetric or asymmetric so-
lution loses stability and transforms into a hyperbolic point, been
responsible of generating chaotic dynamics.

Nonlinear stationary solutions for coupled Eq. (4) are found us-
ing a standard method based on equilibrium states [13]. Consider-
ing the ansatz U; = A and U, = aA, where A and « are real con-
stants. Inserting this ansatz in (4) and, after straightforward calcu-
lations, we obtain

yA? £ /y2A% —4V2(1 4 A2)2
2VA2(1 + A?)

We find four stationary solutions, where two of them are trivial
and have exactly the same form than the linear ones. Hence, these
solutions bifurcate at the linear modes at low power (A = £V —y),
while disappearing at high power (A = +V). For y > 0, the non-
trivial solutions («4) bifurcate from the symmetric solution ++ at
two different power regions which depend on nonlinearity y [13].
Although we can construct a P versus A diagram for all these so-
lutions, we focus on constructing an effective potential represen-
tation, which captures the main dynamical features of this model
and gives us all the dynamically connected nonlinear stationary so-
lutions as well. Using a reduced center of mass “x” as a key dy-
namical parameter, we simply define as X = P,/P. Note that the real

a==41 ay =

(5)
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Fig. 2. Contour plots for effective potential H(x, P) for different values of y: (a) 10, (b) 2, (c) 6, and (d) 15. V = 1. Color dots are explained in the text. Full (dashed) lines
correspond to stable (unstable) stationary solutions. The color scale is rainbow, with purple-blue (red) indicating lower (larger) values, with green intermediate values. Insets
in (a) show some spatial profiles at different x-values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

center of mass is simply defined as x=1+x x=0 (x =1) means
that all the power is at waveguide 1 (P = P;), while Xx=1 (x =2)
indicates that all the power is at waveguide 2. x=0.5 (x =1.5)
represents both, the ++ and +-— solution; however, as y > 0=
o > 0, we are only interested on the connection of nontrivial solu-
tions with symmetric (++) modes.

To characterize the dynamical features of this system, we con-
struct an effective potential H(x, P). From the definition of X, we
write u; =+/P(1—X) and uy = +/PX, in which we have selected
positive signs due to the focusing nonlinearity and the unstaggered
nature of solutions. Inserting these expressions into Eq. (3), we get
a simple form for the effective potential

H(R, P) = —2VP\/Z(1 — %) + y log[1 + P + P*%(1 — ®)]. (6)

We plot a normalized effective potential in Fig. 2(a) for y = 10, as
an example, as a function of x and P. To simplify the comparison at

different P values, we have normalized H(x, P) diving it by H(0, P),
to rescale values and simplify the analysis. We have also included
examples in Figs. 2(b)-(d) for other values of y, to compare main
phenomenological changes.

Critical points of H(x,P) are found directly from expression
(6), obtaining the nonlinear stationary solutions connected in pa-
rameter space (antisymmetric solution +— is dynamically isolated
for y > 0). A first solution corresponds to the symmetric one, for
which Xsym = 0.5. This mode exists for all powers, bifurcating at
zero power for A =V — y and disappearing at an infinite power for
X =V. The central vertical curve in Fig. 2 illustrates this symmet-
rical state. Its stability properties change depending on the level
of power and emergence of nontrivial solutions «... For y < 4, the
symmetric solution is always a minimum, been therefore always
stable. For y > 4, it evolves from been a minimum into a max-
imum and into a minimum again, modifying its stability conse-
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quently. After differentiating expression (6), we obtain two non-
trivial solutions

1 1 2
XZE:EE lfmyi, (7)

with yi =2 -2(1+P)V2+y,/y2—4(1+P)V2, which are lo-
cated symmetrically around the symmetric solution (x =0.5).
These nontrivial solutions are spatially asymmetric in terms of
amplitudes at each waveguide (x+ # 1) and are phenomenologi-
cally connected to localized nonlinear solutions of extended sys-
tems [17-19]. Considering their profile, we simply call them asym-
metric modes. Expression (7) imposes restrictions for analytical so-
lutions, considering that x is a real quantity. The first condition
we observe is that these solutions do not exist above the upper
bound P, = (y/2V)2 —1 (red dots in Fig. 2). Therefore, the con-
dition y > 2V is necessary in order to have asymmetric nonlinear
solutions (same condition is obtained when looking for opening a
“gap” in between linear modes: V — y < -V, which is a region in
parameter space where localized solutions exist [17-19]). Fig. 2(b)
shows that there is only one stationary solution for y =2V, the
symmetric mode. For P > P,;, only symmetric (and antisymmetric)
solutions exist, which is a signature of the saturable nonlinearity
and its tendency to become a linear system at high powers.

Additionally, we find two extra conditions which define the
bifurcation power for two different asymmetric solutions: P. =
y/V —-24+./(y/V —2)2—4. Power P_ represents the bifurcation
power for a standard asymmetric solution, similar to the one found
for a nonlinear cubic dimer [10]. Around this parameter region,
saturable phenomenology approaches to the nonlinear cubic one,
as we have described before. This new stable solution bifurcates
at P_ from the symmetric mode, which now becomes unstable: a
minimum is transformed into a maximum in the effective potential
representation. This bifurcation power is indicated by green dots
in Figs. 2(a), 2(c) and 2(d), been: 0.25, 0.54, and 0.15, respectively.
Because of the system symmetry, the asymmetric solution exist to
the right and to the left of X = 1/2 [using y_ in Eq (7)], positions
that correspond to two local minima in the potential representa-
tion. Therefore, this asymmetric mode is always stable in its whole
existence region: {P_, P}, denoted by full lines in Fig. 2.

Interestingly, an extra mode appears for a saturable system at
P, [replacing y. in Eq (7)], which is a fundamentally different re-
sult compared to a standard cubic dimer. For cubic nonlinearities,
the asymmetric mode exists from a given power threshold 2V/y
up to infinity, without any fundamental change in its dynamical
properties. However, for a saturable dimer, a second asymmetric
solution appears at power P, (see blue dots in Fig. 2). This solu-
tion is a connector mode or intermediate solution in between the
symmetric mode and the first stable asymmetric state. This solu-
tion appears as a maximum in the potential representation, been
always an unstable solution in its existence region {P,,P,,} and,
therefore, a new hyperbolic point for the system. Because of the
appearance of this second asymmetric state, the symmetric mode
becomes stable in the interval {P,, oo}. Consequently, we observe a
bistable regime where the symmetric and first asymmetric modes
are simultaneously stable, been both equilibria in the system for
the same level of power.

In brief, as a function of the power P and strength of saturation
y, the optical dimer presents regions of monostability and bistabil-
ity. These bistability regions appear and disappear due to pitchfork
and saddle-node bifurcations, as illustrated in Fig. 2.

3. Dynamic for an integrable dimer

We numerically integrate the set of Eq. (1), assuming a given
input condition, and study the dynamics of the optical dimer us-
ing two methods. The first one consists of computing the spectrum
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excited along the propagation coordinate z [23], which gives us in-
formation about the frequencies effectively excited or frequencies
decomposition during the dynamics for a different level of power.
We run the simulations up to a given propagation distance zmax,
long enough to allow the different frequencies to emerge. Figs. 3(a)
and 3(b) show two examples, for y = 10, where we excite the sys-
tem using a single-site and two-sites (symmetric) excitation, re-
spectively.

First of all, considering the excitation of a single waveguide
[Fig. 3(a)], we observe that for a low power regime both linear
frequencies are excited [see Fig. 3(a2)]. This is due to the exci-
tation of both linear eigenmodes simultaneously: “+0” = “++" +
“4+-"; ie. a single-site excitation. As the nonlinearity is positive,
frequencies are shifted to the right of the spectrum for an increas-
ing power, where the y +V symmetric mode is mostly excited.
However, there is an oscillation of the energy from one site to the
other as Fig. 3(a3) shows. For P > 1, the center of mass shrinks and
x — 1; i.e, the energy remains trapped at the input waveguide. This
is the well-known self-trapping transition [9,10,13,15,23-25], which
occurs above a given level of power. As it was shown in Fig. 2, the
asymmetric stationary mode bifurcates from the symmetric state,
which is corroborated dynamically in Fig. 3(a). Once the asymmet-
ric mode is excited, it governs the dynamics and the strong peak
in the spectrum corresponds to this state, with only few energy
been transferred into the second waveguide. Indeed, a single-site
excitation does not match exactly to the asymmetric stationary
mode; therefore, some part of the energy oscillates in between
both waveguides. As the effective potential (6) predicts, there is
a second bifurcation region which modifies the system dynamics.
Close to power P, (15.746, for y = 10) there is a regime where sat-
uration emerges and stabilizes the previously unstable symmetric
solution. Therefore, as the input condition corresponds to x(0) =1,
there is a transit in between two minima which induces an oscil-
lation of the center of mass as shown in Fig. 3(a3). This oscillation
continues for an increasing power, where for P > P, only the sym-
metric mode is excited because is the only remaining stationary
solution at larger power.

Fig. 3(b) shows similar diagrams but for a symmetric input con-
dition x(0) = 1.5. For low level of power, we observe how the sym-
metric mode rapidly unstabilizes and generate several harmonic as
shown in Fig. 3(b2). This is corroborated with the oscillation of x
shown in Fig. 3(b3) for low powers. Then, above P %~ 16, the sym-
metric solution stabilizes, that is, no harmonic are generated [see
Fig. 3(b2)] and the center of mass oscillation ends [see Fig. 3(b3)].

A second method corresponds to a Poincaré map [22], which
helps us to understand the overall system dynamics for longer
propagation distances. This is necessary to allow the energy to ex-
plore the full parameter space (initial conditions), in order to show
different stable equilibria and hyperbolic points. To implement this
map in our system, we construct a parameter space formed by the
center of mass x(z) and its derivative

_dx _ —2Im(uqu3)
Tdz P ’
where dx indicates a transversal velocity for which the center
of mass x changes along the propagation coordinate. As station-
ary solutions are naturally immobile, parameter space must show
these points as equilibrium and isolated points in the map. To
construct these diagrams, we initialize Eq. (1) using N = 101 in-
put conditions, which go from x(0) =1 to x(0) =2 as x(0) =1+
(j—1)/(N—=1),with j=1,...,N. Color code in Poincaré maps cor-
respond to a rainbow scheme, where red/orange increases up to
blue/purple, passing through greenish colors, for an increasing j-
value.

Fig. 4 presents four different examples at different level of
power to show the different phenomenological regimes for this

dx (8)
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Fig. 3. Optical dimer dynamics for input excitation (a) x(0) =1 and (b) x(0) = 1.5. (al1) and (b1) Dynamically excited spatial frequencies A are plotted for different input
power P. (a2) zoom of (al1) at indicated region, while (b2) shows (b1) on a saturated scale. (a3) and (b3) show x(zmax) versus input power P. Dashed lines indicates P = 15.

V=1 y =10, Zmax = 100.

system. At low power [see Fig. 4(a) for P = .1], we observe a sin-
gle fixed point at x = 1.5, which corresponds to the symmetric sta-
ble solution, i.e. an isolated center equilibrium. All orbits around it
describe a closed trajectory, indicating an oscillating behavior for
any input condition different to x = 1.5. For powers in the interval
{P_,P.}, the symmetric solution becomes unstable and transforms
into an hyperbolic point at x = 1.5, while the asymmetric modes
emerges as new center points [see Fig. 4(b) for P = 10]. In Fig. 2(a)
we see that, when bifurcating, the asymmetric solution rapidly
modifies its center of mass close to waveguides 1 and 2. In fact,

for P > 1, the shift in position (with respect to waveguides) is less
than 0.02. For P = 10, stationary solutions are located in x = 1.016
and x = 1.984 [obtained directly from expression (7)], correspond-
ing to the two fixed points shown in Fig. 4(b). All this dynamics is
well-known and identical to the one for the cubic dimer [9-11].
For powers in the interval P <P < P,,, we expect that satu-
ration starts affecting the dynamics. In this parameter region, we
expect to observe three fixed points: two stable asymmetric solu-
tions around a third stable symmetric solution at x = 1.5. In addi-
tion, we naturally expect two hyperbolic points connecting the sta-
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Fig. 4. Poincaré maps, phase space {x, dx}, for different power P: (a) 0.1, (b) 10, (c) 18, and (d) 30. V=1, y =10, zmax = 1000 for (a) and 5000 for (b)-(d). (e1)-(e2)
Waveguide power |u;,(z)|? at the last part of propagation for (a)-(d) cases, respectively, with x(0) = 1.25 as indicated by black circles.

ble modes. Fig. 4(c) shows this phenomenology for P = 18, where
fixed points are located at x =1.02, 1.5, and 1.98, while hyper-
bolic points at x = 1.22, and 1.78. Finally, for P > P, we expect to
observe a kind of linear behavior, due to the saturation and dis-
appearance of asymmetric solutions. The only stationary solution
remaining corresponds to the symmetric one, been therefore an
isolated fixed point. This is well described in Fig. 4(d) for P = 30.
Figs. 4(e1)-(e2) show some dynamical examples at the end of the
computed trajectory, where regular and predictable oscillatory be-
havior is observed in all cases for the same input condition, but for
different power and, therefore, different dynamical regimes.

When the optical dimer presents bistability between different
stable equilibria, their stability regions are circumscribed by the
heteroclinic and homoclinic orbits [22], as shown in Figs. 4(b) and
4(c). These orbits are generated from the hyperbolic points and
connections between them. The chaos theory initiated by the pi-
oneering works of Poincaré shows that disturbances of a dynami-

cal system, for example periodic forcing, induce chaotic behaviors
around heteroclinic and homoclinic curves [22].

4. Chaos on a saturable optical dimer

In order to observe a chaotic dynamics on a dimer system,
we must introduce an external driving that turns model (1) into
a non-integrable system. Namely, we must remove a conserved
quantity. In a photonic platform, we could induce parametric
changes by varying fabrication parameters. Coupling V can be spa-
tially modulated by changing the distance in between waveguides,
and nonlinearity y can be adjusted as well by varying the pulse
energy of the femtosecond laser used for waveguide writing [16].
However, this technique is implemented in silica-like materials
which have a nonlinear cubic response. Saturable systems are com-
monly studied on photorefractive materials, for example a SBN
crystal [15]. The nonlinear coefficient y can be controlled by an ex-
ternal voltage applied on one crystal axis, which allows the study
of linear and nonlinear dynamics at a very low level of optical
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Fig. 5. (a), (b) and (c) Dynamically excited spatial frequencies A as a function of
input power P, for a single site excitation x(0) = 1, for {y;, w} = {0.2, 1} (a), {0.2, 2}
(b), and {1, 1} (c). (a1) shows the excited spectrum for P € {0, 30}, normalized with
the maximum peak at every P. (a2), (b2) and (c2) show zooms at bifurcation power
region P_, while (a3), (b3) and (c3) at the multi-stable region ~ {P,, P,;,}, both on a
saturated scale. V =1, yp =10, zmax = 100.

power. As this voltage is externally applied, it can be varied on
a controlled oscillatory way. Therefore, we can study the effect of
having an oscillatory nonlinearity on model (1), for which we con-
sider

Y = v (2) = yo + yisin(wz). (9)

Following previous analysis, we take 5 = 10 and vary y; and
w as control parameters in order to study the emergence of chaos.
First of all, we compute the frequency spectrum for different in-
put conditions. Fig. 5 summarizes the obtained results. Along this
section, we consider three cases as examples: a weak-slow (ws)
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{y1, 0} ={0.2,1}, a weak-fast (wf) {y1,w} ={0.2,2}, and strong-
slow (ss) {y1, w} = {1, 1} perturbations. Our idea is to see the main
effects of varying the strength and frequency of nonlinear mod-
ulation. Naturally, Figs. 5(al)-(c1) show a similar result than the
one shown in Fig. 3(a), where we observe the four main regimes:
excitation of low-power symmetric and antisymmetric modes, bi-
furcation of asymmetric solutions, multi-stable region, and exci-
tation of high-power symmetric and antisymmetric modes again.
However, if we zoom up the dynamically more interesting regions
[low power at Figs. 5(a2),(b2) and (c2), and intermediate power
Figs. 5(a3), (b3) and (c3)], we realize that the nonlinear modula-
tion introduces the generation of new harmonics which could be
of great relevance for perturbing the stability and propagation of
different input conditions. These figures are color saturated in or-
der to show more details in the spectrum, although these details
are weak with respect to main frequencies.

We nicely observe how the nonlinear modulation destabi-
lizes the region where transitions are happening: P~ P_ and P ~
{P;,P,p}, generating a kind of continuous excitation of frequencies
in the transitions regions. We notice that this continuous genera-
tion increases in terms of affected power interval for an increasing
modulation from ws — wf — ss, in both power regimes. Therefore,
we expect a more chaotic scenario for an increasing forcing of the
system. However, although this is an obvious conclusion, we also
notice that when power is above P ~ P,;,, system stabilizes again
without any relevant harmonic generation and observed instabil-
ity. On the contrary, we observe a high-power linear regime, which
is a saturable signature, been completely different to the standard
cubic phenomenology ocurring at larger power levels.

To deepen the analysis, we construct different Poincaré maps
(following the same scheme than in the previous section in terms
of input conditions) at different level of power, for the same three
different nonlinear modulation parameters (ws, wf, and ss regimes),
in which each point of the phase space {x, dx} is obtained strobo-
scopically after a period T = 27 /w. Fig. 6 shows results for P = 10
after propagating the equations up to zmax = 5000 [different col-
ors represent a different input conditions from x(0) = 1.0 (red)
to x(0) = 1.5 (violet)]. At this level of power, we expect a sys-
tem presenting two fixed and one hyperbolic points as shown in
Fig. 4(b). For a soft modulation (sw), Fig. 6(a) shows the broaden-
ing of the region close to the original hyperbolic point at x = 1.5
(green colors). This is a clear manifestation of the chaotic behav-
ior that emerges from the explosion of the homoclinic curve, ho-
moclinic entanglement [7,22]. Therefore, an initial condition in this
region of the phase space is exponentially sensitive; if one starts
from an almost symmetric initial condition, after evolving, it will
not be possible to predict whether the light intensity is concen-
trated in the left or the right waveguides. Although the trajectories
tend to mix in this region, their size is small. Indeed, the chaotic
region is a delimited zone of phase space, which is fractal in nature
[7].

By inspecting three specific input conditions [black curves in
Figs. 6(d)-(f)], we observe that close to the original fixed point
(triangle and circle) the energy remains oscillating stable around
this point. However, close to the hyperbolic point (square, chaotic
region), we observe that the energy goes back and forward from
sites 1 and 2, which is in agreement with the broadening of the
greenish region. Fig. 6(b) shows an essentially similar result than
Fig. 6(a); however, we observe that the previously chaotic (green)
region starts to become mixed with orange and blue colors. This
is an indication of a chaotic tendency due to the effective con-
nection of trajectories for different input conditions. Blue curves
in Figs. 6(d)-(f) show this, where for x(0) = 1.1 there is a sta-
ble oscillatory trajectory, but for x(0) = 1.3 there is a jump into
waveguide two and then back to waveguide one again. Hence, in
the last case the trajectory is not bounded to the left fixed point
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Fig. 6. Poincaré maps for power P =10 and {y;, w} = {0.2,1} (a), {0.2,2} (b), and {1,1} (c). (d), (e) and (f) show x(z) at the end of propagation, for input conditions
x(0) = 1.1 (d), 1.3 (e), and 1.49 (f), as indicated by triangles, circles and squares, respectively. Black, blue, and red curves correspond to the same parameter used in (a),
(b), and (c), respectively. V =1, yp = 10, zmax = 5000. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

and goes back and forward from one site to another. Then, for an
input condition closer to the hyperbolic point [x(0) = 1.49], we ob-
serve in Fig. 6(f) that energy got trapped at the left fixed point
and remains oscillating around it, although this is not a stable ob-
servation as it is shown around z = zmax — 10, where it was close
to jump into the other site, something that probably happens be-
fore or will occur afterwards. Finally, for this level of power, a ss
regime shows a strong mix of trajectories in Fig. 6(c). We observe
a clear emergence of fully developing chaos, where essentially only
red and violet trajectories at the left and right fixed points, respec-
tively, are stable, as Fig. 6(d) shows by red lines. Likewise, when
the input condition moves away from fixed points, trajectories are

simply chaotic and the energy goes back and forward in a non triv-
ial way [see red lines in Figs. 6(e) and (f)].

All the described phenomenology is akin to the cubic dimer
one, because at this level of power the system behaves as a Kerr
system. The saturable nature of our model appears in the multi-
stable regime, for example as shown in Fig 4(c). There, three fixed
and two hyperbolic points define a completely different scenario.
Fig. 7 shows our compiled results for P = 18, and ws, wf, and ss
regime. In the first two regimes, we observe a kind of similar re-
sult, but presenting different patterns at the Poincaré section. Close
to the three fixed center points, there are stable trajectories as
shown in Figs. 7(a) and (b), by red, green and violet colors. These
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regions of the phase space are characterized by the fact that the
trajectories can be foliated (islands), whereas in chaotic regions
this is not possible. In the ws regime, we observe a clear separation
of dynamics. We observe how for an input condition x(0) = 1.1,
at weak modulation (ws), trajectory is stable around the left fixed
point as black lines show in Fig. 7(d). However, when increasing
the input condition to x(0) = 1.3, we observe a mixed dynamics
in Fig. 7(a), which is an indication of chaos, where the energy
goes back and forward in a non trivial form [see black curve in
Fig. 7(e)]. Then, close to the new fixed point [x(0) = 1.49], we ob-
serve a perfectly bounded trajectory in Fig. 7(f), for both, ws and

wf, regimes, shown by black and blue curves, respectively. Coming
back to x(0) = 1.3, but now for a wf regime, we observe a bound
and stable oscillation in turn the central fixed point [see blue curve
in Fig. 7(e)]. Interestingly, the same input condition in a ws regime
indicated chaos. Therefore, we observe how a faster modulation in-
duces a new control of stable trajectories, where the central stable
region around the fixed point x = 1.5 has increased. However, an
input condition x(0) = 1.1 shows a not bounded trajectory, with
the energy oscillating from one site to the other [see blue curve in
Fig. 7(d)]. In a wf regime, we observe that the region in between
fixed points is more colored, with almost all colors mixed in phase
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space, what is a clear manifestation of chaos. We also observe the
appearance of isolated closed trajectories (“islands”), as an indica-
tion of a periodic dynamics; however, these trajectories are not
reached by trivial input conditions, considering that we can only
set the input center of mass in an experiment. Finally, we observe
that a strong modulation (ss) regime, at this level of power, only
shows a chaotic behavior, with the whole phase space covered by
mixed trajectories. Examples are shown by red lines in Figs. 7(d)-
(f), where we observe a non trivial dynamics with exchange of en-
ergy between sites and kind of short bound oscillation around left
and right fixed points.

10

Finally, to show the saturable nature of our model Eq. (1), we
increased the power up to P =30, where saturation comes into
play and determine the dynamics with an isolated fixed point at
x = 1.5, as shown in Fig. 4(d). In this regime, the dynamics is gov-
erned by symmetric and antisymmetric solutions only, which are
the only fixed points in a high-power linear regime. Therefore,
we mostly observe oscillation in turn this fixed point, as shown
in Figs. 8(a)-(c) for x(0) = 1.3 (circles) and x(0) = 1.49 (squares),
with simple oscillatory dynamics and a well defined period [see
Figs. 8(e) and (f)]. Dynamics becomes more complex close to the
previous left and right fixed points, which now do not exist any-
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Fig. 9. Dynamical examples for an input excitation x(0) = 1.1. Four files correspond to powers P = .1,

{0.2,2} and {1, 1}, respectively. V =1, y5 = 10, zZmax = 50.

more, but we find a non simple dependence in the effective poten-
tial at this region, as shown in Fig. 2(a). Derivative at these regions
change, although no critical points (hyperbolic or center points)
are found, but inflection points. We observe this complexity for an
input condition x(0) = 1.1 in all regimes, where we nevertheless
observe a quite periodic, but not trivial, oscillation, as shown in
Fig. 8(d). Islands appear at intermediate and strong regimes, with
some chaotic mixing regions in between those islands. This is an
interesting feature of this model, because although stationary so-
lutions at this level of power behave as linear ones, they are still
nonlinear effects which could manifest chaos as we clearly show,
for example, in Fig. 8(c), where there is a broad chaotic region with
several colors mixed. Only single-site input conditions could circu-
late through the system without noticing the effective potencial, as
shown in Figs. 8(a)-(c) by broader trajectories which mix red and
violet colors only.

1

10, 18, 30, while three columns correspond to {y;, w} = {0.2,1},

5. Conclusions and remarks

Coupled waveguides as a function of the initial condition and
power of the injected light exhibit complex dynamic behaviors. We
show that simply considering a saturable optical dimer with spatial
modulation exhibits chaotic behaviors. By using frequency spectra
and Poincare sections, we give evidence of the complex dynam-
ics exhibited by this simple system. Because of the saturable non-
linearity that characterizes the optical dimer under study, chaotic
behaviors are exhibited only in an intermediate power range. The
origin of the chaotic behavior is due to the entanglement of the
homoclinic and heteroclinic curves associated with the hyperbolic
points that separate the stable equilibria of the saturable optical
dimer.

Using our previous findings, we would like to explore a possi-
ble application considering the saturable properties and the acti-
vation of chaotic dynamics using an external driving mechanism.
Nowadays, the encrypted transmission of information is a key goal
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for increasing digital demand, including different transactions re-
quiring a high degree of security. Hence, the ability to send infor-
mation in a codified way is mandatory. Our saturable system has
the particularity of presenting linear regimes at different levels of
power and, therefore, we could have a controlled output below and
over a defined power threshold, while having a chaotic and hard
to predict regime at an intermediate level of power. As this sys-
tem has only two degrees of freedom, the energy could only tran-
sit from one site to another, but the output could change abruptly
on a chaotic regime. This could be interpreted as a non-controlled
output for an eavesdropper, for example. This is similar to the Al-
ice and Bob idea on quantum information [26], and as soon as the
emitter and receiver knows the correct protocol, in our case de-
fined with the level of power used in the system, the information
will be securely transferred.

Fig. 9 shows some examples, varying different parameters,
power P in rows and {y;,w} in columns. As we clearly observe,
low and high power regimes show a controlled oscillatory out-
put, but intermediate powers show a non periodic dynamics which
could produce confusion on an eavesdropper. As the system tends
to be chaotic in an intermediate power regime, this produces peri-
odic and non-periodic output patterns which could be really hard
to predict due to the non-integrability of model (1) + (9). There-
fore, we can use the chaotic regime to occult information, consid-
ering the optical power as external control of the system. Work in
this direction is in progress.
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