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Localized standing waves induced by spatiotemporal forcing
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Particle-type solutions are observed in out-of-equilibrium systems. These states can be motionless, oscillatory,
or propagative depending on the injection and dissipation of energy. We investigate a family of localized standing
waves based on a liquid-crystal light valve with spatiotemporal modulated optical feedback. These states are
nonlinear waves in which energy concentrates in a localized and oscillatory manner. The organization of the
family of solutions is characterized as a function of the applied voltage. Close to the reorientation transition,
an amplitude equation allows us to elucidate the origin of these localized states and establish their bifurcation
diagram. Theoretical findings are in qualitative agreement with experimental observations. Our results open the
possibility of manipulating localized states induced by light, which can be used to expand and improve the
storage and manipulation of information.
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I. INTRODUCTION

One of the most attractive phenomena of macroscopic
systems is that when locally perturbed, they can exhibit
corpuscular or particlelike solutions [1–4]. Namely, local-
ized dynamical behaviors are observed, characterized by a
continuous parameter, its position, and discrete parameters
that account for mobility, charge, and width, among other
features. The most paradigmatic and pioneering example is
the observation of solitary waves when disturbing a water
channel—solitons [5–7]. During the last decade, a great effort
has been put into the extension of this soliton concept from
conservative systems to dissipative ones—dissipative local-
ized structures [1–4]. These scientific efforts have a twofold
purpose: on the one hand, fundamental to understand the
nature, dynamics, interaction, and mechanisms of creation and
annihilation of these intriguing particlelike behaviors, and on
the other hand, to generate possible applications in particu-
lar in the field of optical storage and transmissions [1–4,8].
The possibility that light can induce localized states, which
can be manipulated, stored, and retrieved, is fundamental for
future optical applications. Dissipative structures have been
observed in different fields, such as domains in magnetic
materials, chiral bubbles in liquid crystals, current filaments in
gas discharge, spots in chemical reactions and optical systems,
localized states in driven fluid surface waves, oscillons in
granular media, isolated states in thermal convection, solitary
waves in nonlinear optics, among others (see reviews [1–4],
and references therein). From a theoretical point of view, to
one-dimensional systems, localized states can be described,
geometrically speaking, as spatial trajectories that connect a
steady state with itself. Namely, they are homoclinic orbits
on the phase portrait associated to the stationary system (see
[9], and references therein). In two dimensions there is no
general geometric description of these localized structures,

except in the case that the solutions have axial symmetry [10].
In general, these two-dimensional solutions are commonly un-
derstood as a balance of the interface energy and the different
energy between the connected states [9].

The prerequisite to observe localized structures is the co-
existence of states. Depending on the type of states, localized
structures evidence different features [9]. In the case of uni-
form states, the localized structures usually have tails with
damped spatial oscillations. These solutions appear and dis-
appear by saddle-node bifurcations [1,4]. Various localized
states of different sizes can also coexist. These solutions as
a function of the parameters present an intricate bifurcation
diagram, denominating collapsed snaking [11,12]. This sce-
nario changes dramatically when a uniform and pattern state
coexist, giving rise to the localized patterns [13,14]. These
solutions are characterized by exhibiting a pattern surrounded
by a homogeneous state. A family of localized patterns can
coexist as a function of the physical parameters and present a
complex organization called the homoclinic snaking bifurca-
tion diagram [15]. The localized patterns and their bifurcation
diagram are a consequence of the interaction of fronts between
the states that constitute them [16]. Note that similar behavior
and characteristics exhibit the localized structures built up by
two patterns [17]. Experimentally, considering a liquid-crystal
layer with a photosensitive wall and a spatially modulated op-
tical feedback, localized patterns and their respective snaking
bifurcation diagrams were observed [18]. Note that spatial
forcing induces uniform states to become patterns, and there-
fore pinning between these patterns is responsible for the
emergence of these localized patterns [1–4,19]. Oscillatory
localized solutions in conservative systems—breathers or
oscillons—have also drawn community attention [6,7]. The
extension of these solutions in parametrically forced systems
has been theoretically predicted [20–22]. The experimental
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FIG. 1. Experimental localized standing wave state.
(a) Schematic representation of a liquid-crystal light valve
(LCLV) with optical spatiotemporal modulated feedback. SLM
accounts for the spatial light modulator, M are mirrors, PSB is
the polarized beam splitter, and V0 is the driven voltage applied to
LCLV. O is an optical objective, and FB is a fiber bundle. (b) shows
an experimental 3D-spatial view of a localized standing wave and
(c) shows a spatiotemporal evolution for the same structure. The
color scale shows the intensity of the detected light. This standing
wave was obtained at V0 = 2.800Vrms.

observation and mechanism that originates standing waves in
dissipative media are not established since a standing waves
coexistence with another state and pinning phenomenon is
required. These standing waves correspond to localized os-
cillatory patterns. Figure 1 illustrates an oscillatory pattern
experimentally observed. However, due to the oscillation, the
pinning effect or nucleation barrier is not expected.

This article aims to experimentally and theoretically in-
vestigate localized standing waves. Based on a liquid-crystal
light valve with spatiotemporal modulated optical feedback,
we observe a family of localized standing waves and the coex-
istence between them. Their bifurcation diagram as a function
of the driven voltage is revealed. Theoretically, based on an
amplitude equation valid close to reorientation molecular in-
stability, localized waves are observed, and the organization
of the family of these localized oscillatory patterns is estab-
lished. The amplitude equation allows us to settle the origin
of the blocking mechanism of domains between standing
waves. Theoretical and experimental findings show a quali-
tative agreement.

II. EXPERIMENTAL SETUP

A liquid-crystal light valve (LCLV) in an optically mod-
ulated feedback loop allows us to observe localized standing
waves (see Fig. 1). The LCLV is a flexible device that ex-
hibits bistability, pattern formation, and localized structures
when placed in an optical feedback [24]. The LCLV consists
of a nematic liquid crystal LC-654 (NIOPIK) with dielec-

tric anisotropy εa = 10.7 placed between two glass layers
separated by a distance d = 15 μm. Transparent indium tin
oxide electrodes and a photoconductive layer are deposed
on the glasses to subject the liquid crystal to a driven volt-
age. A dielectric Bragg mirror with optimized reflectivity for
632.8 nm light is placed in the back layer of the liquid-crystal
cell. The LCLV can be electrically addressed by applying an
oscillatory voltage V0 rms and frequency f = 1.0 kHz across
the liquid-crystal layer. Furthermore, the system is optically
forced with a He-Ne laser (λ0 = 632 nm). The LCLV is placed
in a 4 f optical configuration ( f = 25 cm), as indicated in
Fig. 1(a). The optical feedback circuit is closed with an optical
fiber bundle (FB) placed at a distance 4 f from the LCLV
front face. The optical fiber bundle injects the light into the
photoconductive layer, applying an additional voltage to the
liquid-crystal material depending on the light intensity. The
light entering the optical loop is spatiotemporally tailored
with a transmissive spatial light modulator (SLM) and the
polarizing beam splitter (PBS). Thus, the intensity profile of
the illumination before reaching the LCLV has the form

I =
{

I0 + I1 cos(ωt ) cos
(

2πx
λ

)
, |x| � x0 and |y| � y0

0, |x| > x0 and |y| > y0,

where I (x, y, t ) is the light intensity at a point (x, y) at instant
t in the LCLV layer front face, I0 a constant background
light intensity, I1 the modulated light amplitude intensity, ω

the oscillation frequency of the light, and λ the wavelength
of the illumination. x0 and y0 are parameters that character-
ize the illuminated channel (y0 < x0). All experiments were
conducted with ω = 0.5 rad/s and λ = 0.16 ± 0.01 mm. The
light injected into the LCLV is polarized in the y direction. The
LCLV boundary planar anchoring is 45◦ to the y axis. When
the voltage applied to the LCLV is above a threshold voltage
VT the liquid-crystal molecules undergo a reorientational tran-
sition following the electric field applied—the Fréedericksz
transition [23]. The molecular reorientation changes the bire-
fringence of the material, inducing a relative change in the
phase and polarization of the light reflected in the dielectric
mirror, which induces a modulation in the intensity coupling
the liquid-crystal orientation with the voltage exerted to the
liquid-crystal layer [24]. A small portion of intensity is ex-
tracted from the optical loop to perform the measurements
and monitor the system. The light intensity is recorded with
a CMOS camera. The different average molecular orientation
can be detected as different intensities in the light profile. All
experimental observations are conducted at room temperature
(20◦ C).

III. EXPERIMENTAL LOCALIZED STANDING WAVES

When optical feedback is homogeneous (I1 = 0), we can
characterize the bistability cycle between the planar and re-
oriented state [25–27]. Black asterisks and circles account
for homogeneous states in the bifurcation diagram shown in
Fig. 2(a). The lower and upper branches account for the planar
and reoriented states, respectively. When considering the spa-
tiotemporal forcing (I1 �= 0), the planar and reoriented states
become standing waves. The bifurcation diagram between the
standing waves shifts to the left with respect to the coexistence
region between homogeneous states [see the red asterisks and
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FIG. 2. (a) Bifurcation diagram of localized waves. Average light
intensity over a cycle I as a function of the driven voltage V0. H and
SW account for uniform states and homogeneous standing waves (at
I1 = 0.056 mW), by increasing (I) or decreasing (D) the voltage in
the experiment. LS n-m accounts for the localized standing wave with
n and m bump in an oscillation cycle. (b) Spatiotemporal evolution,
initial (t1) and final (t2) states for different localized standing waves.
Left and right panels account for localized standing wave 3-3 and
1-2, respectively. (c) Experimental expansion, V0 = 2.878Vrms (left),
and contraction, V0 = 2.700Vrms (right), of the localized structure.
The top and bottom panels are instantaneous profiles and spatiotem-
poral diagrams, respectively. The arrows indicate the propagation of
the upper standing wave.

circles in Fig. 2(a)]. Hence, the system exhibits a bistability
between the standing waves and then one would expect to find
localized standing waves between these states. Employing
the spatial light modulator, we can control the initial condi-
tion and induce localized waves. Figure 1 shows a localized
standing wave and its respective spatiotemporal evolution. By
changing the initial condition, thanks to the spatial light mod-
ulator, we observe a family of localized oscillatory patterns
with different widths. Figure 2(b) shows different localized
standing waves and their respective spatiotemporal diagrams.
Note that there are solutions that connect an even (odd) num-
ber with another one of the oscillations after one cycle [cf.
left panels of Fig. 2(b)] and also there are solutions with even
and odd oscillations after one cycle [see the right panels of
Fig. 2(b)]. Monitoring the total intensity, we have character-

ized the bifurcation diagram of the localized standing waves.
Figure 2(a) summarizes the diagram found. This diagram is
characterized by exhibiting a snakinglike bifurcation diagram
[15]. A similar bifurcation diagram was observed for localized
patterns in a LCLV with spatial modulated optical feedback
[18]. When the driven voltage V0 decreases (increases) and
crosses a critical value, the localized standing waves disappear
as these localized solutions begin to contract (expand) [see
Fig. 2(c)].

IV. THEORETICAL DESCRIPTION OF LCLV WITH
SPATIOTEMPORAL OPTICAL FEEDBACK

The liquid-crystal light valve experiment is shown
schematically in Fig. 1(a). The polarized light of intensity
Iin is generated by a He-Ne laser and expanded by a Kepler
telescope for later tailoring by the spatial light modulator,
producing a spatiotemporal modulated light with the profile
Iin(x, t ) = I0 + I1 cos(ωt ) cos(2πx/λ), where x accounts for
the transverse coordinate in the direction that LCLV is il-
luminated, I0 a constant background light intensity, I1 the
modulated light amplitude intensity, ω the oscillation fre-
quency of the light, and λ the wavelength of the illumination.
Subsequently, the ray of light crosses the polarizer beam
splitter to meet the liquid-crystal light valve, crossing it and
reflected by the dielectric mirror. As a result of this process,
the light acquires a phase shift φ = β cos θ that depends on
the average tilt of the molecules of the liquid crystal θ (x)
[28], β ≡ 2dk0	n, where d is the liquid-crystal cell thickness,
k0 = 2π/λ0 is the optical wave number, λ0 is the wavelength
of the beam, and 	n is the refractive index difference between
the ordinary and extraordinary axis. Subsequently, the light
beam is re-injected into the back of the LCLV, which contains
a photoconductor. Namely, the feedback loop is closed by an
optical fiber bundle and is designed to avoid the diffraction
effect, and polarization interference is present [24,28,29]. The
light intensity Iw reaching the photoconductor is given by
[24,29]

Iw(θ ) = Iin(x, t )

2

∣∣(1 + e−iβcos2θ
)∣∣2

= Iin(x, t ){1 + cos(β cos2 θ )}. (1)

As long as Iin is sufficiently small (Iin ∼ mW/cm2), the ef-
fective voltage, Veff, applied to the liquid-crystal layer can
be expressed as Veff = 
V0 + αIw(θ ), 0 < 
 < 1 is a transfer
factor that depends on the electrical impedances of the pho-
toconductor, dielectric mirror, and liquid crystal, while α is
a phenomenological dimensional parameter that describes the
linear response of the photoconductor [24]. In our experiment

 = 0.3 and α = 5.5 V cm2/mW. Therefore, the dynamics
exhibited by the LCLV with optical feedback, is that the
liquid-crystal molecular orientation changes the phase of light
emerging from the LCLV which, due to the optical feedback,
induces a voltage that reorients the liquid-crystal molecules.
Thanks to the optical circuit, the liquid-crystal molecular ori-
entation self-induces a nonlinear spatiotemporal dynamics.

Our liquid-crystal light valve constitutes a nematic liquid
crystal. These soft materials are high viscosity fluids. Hence,
the dynamics of the average director tilt θ (x, t ) is described
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by a nonlocal relaxation equation of the form [24,29,30]

τ∂tθ

= l2∂xxθ−θ+
{

0, V0 � VFT,

π
2

(
1 −

√

VFT


V0+αIw (θ,x,t )

)
, V0 > VFT,

(2)

with VFT ≈ 3.2Vrms the threshold for the Fréedericksz tran-
sition, τ = 30 ms is the liquid-crystal relaxation time, and
l = 30 μm the electric coherence length. From here on,
we will consider that V0 > VFT, in the case of considering
the system without spatiotemporal forcing (I1 = 0). The av-
erage director tilt equilibrium θ0 for voltages lower than that
of the Fréedericksz transition is null (θ0 = 0), and for higher
values it is

θ0 = π

2

(
1 −

√

VFT


V0 + αIw(θ )

)
, (3)

where {V0, I0} are the experimental control parameters. In
other words, these are the parameters that are modified to
characterize the dynamics of the system. To figure out the
dynamics of model Eq. (2), we study its dynamics around
the emergence of bistability, i.e., when the system becomes
multivalued or exhibits a nascent of bistability [31]. When the
function θ0(V0, I0) has a saddle point at V0 = Vc and I0 = Ic,
this function becomes multivalued. Around the saddle point
θ0(Vc, Ic) = θc creates two new extreme points that determine
the size of the bistability region. To find the saddle points, we
have to impose the conditions

dθ0

dV0

∣∣∣∣
{Vc,Ic}

= 0,
d2θ0

d2V0

∣∣∣∣
{Vc,Ic}

= 0, (4)

and, after straightforward algebraic calculations, we obtain the
relations [30]

Ic = π2VFT

αβ(π/2 − θc)3 sin(2θc) sin (β cos2 θc)
,

3 = (θc − π/2)[2 csc 2θc + β sin 2θc cot(β cos2 θc)]. (5)

The first expression gives the critical value of I0 for which
θ0 becomes multivalued. The second expression is an alge-
braic equation that depends only on the parameter β and
determines all the points of the nascent of bistability. Notice
that only half of them have physical significance because the
other half corresponds to negative values of the intensity. By
taking into account the constraint that the intensity must be
positive and considering that the cotangent function is π peri-
odic, we have that the actual number of points of the nascent
of bistability is equal to the next smallest integer of β/2π . β

is about 54, for the values considered in our experiment; then
one expects to find eight points of the nascent of bistability
in the entire (V0, I0) parameter space, a prediction that is
confirmed by the experiment [24].

Close to the nascent of bistability point (I0 ≡ Ic and V0 ≡
Vc) and considering the ansatz

θ (x, t ) ≈ θc + �(x, t )/�0, (6)

where �2
0 ≡ 2β cos 2θc cot(β cos2 θc) + (4 + β2 sin 2θc)/3 −

2/(π/2 − θc)2, into Eq. (2) and developing in Taylor series
by keeping the cubic terms, assuming spatial forcing as a

perturbative effect (I1 � 1), after straightforward algebraic
calculations, we obtain

∂T � = η + μ� − �3 + ∂XX � + γ sin(ωt ) cos(κx), (7)

where

η ≡ αδ(π/2 − θc)3

π2VFT

[
I0 − Ic + αδ

V0 − Vc

2

]
, (8)

μ ≡ 12


π2VFT

[
(π/2 − θc)2(V0 − Vc)

+
(

π2VFT

12
− (π/2 − θc)2

)
I0 − Ic

Ic

]
, (9)

γ ≡ αδ(π/2 − θc)3

π2VFT
I1, (10)

T ≡ t

τ
, (11)

X ≡ x

l
, (12)

δ ≡ [1 − cos(β cos2 θc)], (13)

κ ≡ 2π

λ
. (14)

Therefore, close to the nascent of bistability, model Eq. (2)
can be approximated by a simple bistable model Eq. (7),
which describes the dynamics observed around this critical
point. η and μ are bifurcation parameters [32], η controls the
bistability region, and μ accounts for the transition between
equilibria. The third and fourth terms on the right-hand side of
Eq. (7) account for nonlinear elasticity and diffusive coupling,
respectively. The last term accounts for the spatiotemporal
forcing, where κ = 2π/λ.

V. THEORETICAL LOCALIZED STANDING WAVES

The homogeneous solutions of the unforced model Eq. (7)
describe the nascent of bistability (cusp catastrophe) [32].
Namely, the system has a region of the parameter space η-μ,
where it exhibits bistability. Nevertheless, in this region, no
stable localized structures are observed. This scenario changes
radically when one considers the spatiotemporal forcing (γ �=
0). Figure 3 shows the typical localized standing waves nu-
merically observed and their respective bifurcation diagram.
The conducted numerical study considers simulations of
model Eq. (7) with Neumann boundary conditions. Integration
was implemented using a fourth-order explicit Runge-Kutta
scheme with a fixed time-step size and a finite difference
scheme in space with a centered stencil of three grid points.

To shed light on the origin of the observed localized states,
let us consider the high-frequency limit ω → ∞ [33], where
analytical calculations are most accessible. Considering the
following ansatz �(x, t ) = u(x, t ) − γ cos(kx) cos(ωt )/ω in
Eq. (7), κ = k, and taking into account the dominant terms,
one gets

∂t u = η + μ̃u − u3 + ∂xxu + γ (k2 − μ)

ω
cos(kx) cos(ωt )

− 3γ 2

4ω2
cos(2kx)u, (15)
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FIG. 3. Localized standing waves obtained by numerical simu-
lations of the bistable model Eq. (7) with μ = 1.0, λ = 0.035, ω =
0.53, and γ = 0.5. (a) and (b) Localized standing wave profiles and
spatiotemporal diagram between 1-2 and 2-3 bumps in an oscillation
cycle. The middle panels account for the spatiotemporal evolution
of the localized standing waves. δ and 	 account for the position
and width of localized standing waves. (c) Bifurcation diagram of
model Eq. (7) with μ = 1.0, λ = 0.07, ω = 4, and γ = 2. Total area
‖�(t )‖ = ∫

�(x, t )dx/L as a function of the bifurcation parameter
η. L is the system size. �1 and �2 account for the upper and
lower standing extended waves, respectively. LS n-m accounts for the
localized standing wave with n and m bump in an oscillation cycle.

where u(x, t ) accounts for the average temporal evolution
of � over the ω frequency and μ̃ ≡ μ − 3γ 2/4ω2. The last
two terms on the right-hand side stand for the dominant
corrections. As a result of the rapid oscillations, the
bifurcation parameter μ̃ is renormalized, explaining the
shift of the experimental bifurcation diagram to the left with
respect to the coexistence region between homogeneous
states (see Fig. 2). The first and last corrections account
for spatiotemporal and space forcing, respectively. This last
term is responsible for a nucleation barrier and the pinning
phenomenon between the two equilibria. Systems with this
type of spatial forcing are well known to exhibit localized
structures [16–18,34]. With the unperturbed system (γ = 0)
near the Maxwell point, the system exhibits domain walls of
the form uF (x − x0) = √

μ̃ tanh[
√

μ̃(x − x0)/2]. Localized
standing waves can be built up as the interaction of two
successive domains of the form [16]

u = uF

(
x − δ(t ) + 	(t )

2

)
− uF

(
x − δ(t ) − 	(t )

2

)

−
√

μ̃ + w, (16)

where δ(t ) and 	(t ) account for the centroid and width of
the localized standing wave (cf. Fig. 3), and w(δ,	, t ) is a
small correction function. Introducing the previous ansatz
in Eq. (15), linearizing in w, and applying a solvability
condition after straightforward calculations, we obtain the
equations for the position and width of the localized standing
wave:

δ̇ = b cos(2kδ) sin(k	) − c sin

(
k	

2

)
sin(kδ) cos(ωt ),

	̇ = −a2e−√
μ/2	 + η̃ + b sin(2kδ) cos(k	)

+ c cos

(
k	

2

)
cos(kδ) cos(ωt ). (17)

The full and lengthy expressions of the coefficients
{a, b, c, η̃}, as a function of the LCLV parameters, will be
reported elsewhere. Notice that b and c are, respectively,
proportional to (γ /ω)2 and γ /ω. The first equation accounts
for the dynamics of the position of the localized solution
induced by spatiotemporal forcing. As a result of the forcing,
the system exhibits positions where the localized structure is
fixed [δn = 2πn/k, n = 1, 2, . . .; see right panel Fig. 2(b)] and
oscillatory [δn = π (2n − 1)/2k, n = 1, 2, . . .; see left panel
Fig. 2(b)]. Equilibrium position disturbances are characterized
by oscillations damped toward equilibrium. The second equa-
tion accounts for the family of localized standing waves. The
first, second, third, and fourth terms, respectively, account for
the interaction of the domains, the difference in energy of the
equilibria, the nucleation barrier induced by the forcing, and
its temporal modulation. The first three terms account for the
bifurcation diagram with a snakinglike bifurcation diagram
[15]. Figure 3(c) shows the numerical bifurcation diagram of
the localized standing wave. The last term accounts for the
width oscillations, which are observed in the experiment (see
Fig. 2) and numerical simulations (cf. Fig. 3). The snakinglike
bifurcation diagram in the numerical analysis is completely
vertical [15]; however, experimentally, it is usually tilted
due to imperfections and neglected variables [18,34,35].
When voltage or η is decreased (increased), the localized
standing waves disappear by a saddle-node mechanism that
causes the localized solutions to begin to contract (expand)
[see Figs. 2(c) and 4 for experimental and numerical results,
respectively].

FIG. 4. Destabilization of localized standing waves. Numerical
expansion, η = −0.04 (a), and contraction, η = 0.04 (b), of the
localized standing wave of model Eq. (1) by μ = 1.0, λ = 0.035,
ω = 0.53, and γ = 0.5.
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VI. CONCLUSIONS

We have shown the existence, dynamical evolution, and
bifurcation diagram of localized standing waves in a liquid-
crystal light valve with spatiotemporal modulated optical
feedback in which a light beam induces a family of localized
standing waves. Our results show the possibility of manip-
ulating localized states induced by light, which can be used
to extend and enhance previously developed schemes for
information storage and retrieval as elementary pixels [36]
as well as all-optical image processing [37]. Likewise, the
different states found can allow the efficient use of multiple

information channels. The use of spatiotemporal forcing can
provide a systematic way of inducing localized structures in
optical bistable systems [38], such as semiconductor and fiber
cavities.
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