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Modulation instability (MI) in the presence of noise typically leads to an irreversible and complete
disintegration of a plane wave background. Here we report on experiments performed in a coherently
driven nonlinear optical resonator that demonstrate nonlinear localization of dissipative MI: formation of
persisting domains of MI-driven spatiotemporal chaos surrounded by a stable quasi-plane-wave back-
ground. The persisting localization ensues from a combination of bistability and complex spatiotemporal
nonlinear dynamics that together permit a locally induced domain of MI to be pinned by a shallow
modulation on the plane wave background. We further show that the localized domains of spatiotemporal
chaos can be individually addressed—turned on and off at will—and we explore their transport behavior as
the strength of the pinning is controlled. Our results reveal new fundamental dynamics at the interface of
front dynamics and MI, and offer a route for tailored patterns of noiselike bursts of light.
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Modulation instability (MI) is a universal process that
manifests itself in countless conservative and dissipative
physical systems [1–5], describing the instability of a plane
wave background to periodic perturbations. It is among the
most celebrated processes in nonlinear science, fundamen-
tally linked to the formation of patterns [6–8], solitons [9–
13], and rogue waves [14–18]. MI is also central to key
technological applications, including fiber supercontinuum
generation [19] and microresonator optical frequency
combs [20–22].
MI is typically examined via linear stability analyses that

consider the evolution of low-amplitude periodic perturba-
tions on a plane wave background. Recently, however, there
has been considerable interest in exploring MI dynamics in
the presence of strong localized perturbations that trigger
directly the nonlinear stages of MI [23–29]. These studies
reveal the formation of an expanding domain of spatio-
temporal complexity—surrounded by the residual plane
wave background—whose fronts propagate at quasiconst-
ant velocity [25–32]. An interesting question that arises is:
can the propagation of the fronts be arrested, and the
complexity born from MI consequently be confined within
a finite domain ad infinitum? For systems that have been
extensively studied to date—such as those modeled by the
conservative nonlinear Schrödinger equation (NLSE)—the
answer appears to be no. This is because unavoidable
broadband noise present in any real (laboratory) setting will
ultimately cause the plane wave background surrounding
the domain to undergo spontaneous MI. Indeed, sustain-
ment of persisting domains requires bistability between a

stable plane wave state and a spatiotemporally complex
state born from MI [33,34].
Here we experimentally demonstrate controlled non-

linear localization of MI in a bistable system that has
attracted significant recent attention in its own right [13,20–
22,30,31,35]—a coherently driven Kerr nonlinear optical
ring resonator. Specifically, we show that a shallow
modulation applied to the amplitude of the coherent driving
field can pin the fronts of a locally induced domain of MI-
driven spatiotemporal chaos [30,31], permitting persistent
nonlinear localization despite the fact that at all points the
driving exceeds MI threshold. Moreover, we show that the
domains can be individually addressed—turned on and off
at will—and we explore their transport behavior as the
strength of the pinning is controlled. Our results extend
experimental studies pertaining to the nonlinear stages of
MI [29] into dissipative systems [36], and could pave the
way for novel sources of laser light that produce custom-
izable patterns of noiselike bursts of light [37,38].
We first describe the nonlinear dynamics that underpin

our experiments. The coherently driven resonator system
pertinent to our study is modeled by the damped-driven
NLSE, which in dimensionless form reads [7,21,36,39]

∂ψðt; τÞ
∂t ¼

�
−1þ iðjψ j2 − ΔÞ þ i

∂2

∂τ2
�
ψ þ

ffiffiffiffi
X

p
: ð1Þ

Here ψðt; τÞ describes the slowly varying electric field
envelope inside the resonator, t is a “slow” time variable
that describes the evolution of ψðt; τÞ over consecutive
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round-trips, and τ is a spacelike variable that describes the
envelope’s profile over a single round-trip. The terms on the
right-hand side of Eq. (1) respectively describe dissipation,
Kerr nonlinearity, frequency detuning of the driving field
from a cavity resonance (Δ is the detuning parameter),
(anomalous) group-velocity dispersion, and coherent driv-
ing (X is the driving intensity). We note that the presence of
dissipation and driving renders Eq. (1) fundamentally
different from the conservative NLSE [40].
Localization ofMI (as defined in the context of this paper)

requires coexistence between a stable planewave state and a
spatiotemporally chaotic state born fromMI that can persist
ad infinitum [33,34]. The system described by Eq. (1)
provides such coexistence for detunings Δ≳ 4 [30,32]. In
this regime, the homogeneous steady-state solutions of
Eq. (1) display an S-shape characteristic of bistability

[Fig. 1(a)], with the upper branch exhibiting a Turing-type
dissipative MI that can give rise to complex behaviour with
chaotic spatiotemporal character [32,41]. Our numerical
simulations of Eq. (1) show that such spatiotemporally
chaotic behaviour persists only for driving intensities above
a certain, detuning-dependent threshold (X > Xs). For
driving intensities below the threshold (X < Xs), the spa-
tiotemporally chaotic state exists only as a transient; it
decays entirely to the homogeneous state for intermediate
values (Xc < X < Xs) while persisting localized structures
known as Kerr cavity solitons [22,31,42–49] can emerge for
lower values (X < Xc) (see Supplemental Material [50]).
For X > Xs, the stable plane wave state and the spatio-

temporally chaotic state that emerges fromMI can both exist
in quasi-steady-state. However, the former is found to
exhibit metastability at the expense of the latter [30,31]: a
sufficiently strong localized perturbation that switches the
stable planewave state to the modulationally unstable upper
state results in the nucleation of an expanding domain
of spatiotemporal complexity [see Fig. 1(b)]. Thanks to
the bistability, the modulationally stable plane wave
background that surrounds the domain will not undergo
MI even in the presence of broadband noise; the domain
walls (fronts) that segregate the different states move with
quasi-uniform velocity until the spatiotemporally chaotic
state fills the entire system [31,32,53]. (See Supplemental
Material [50] for a discussion on the front velocity.)
To arrest the front motion—and hence realise persisting

localization—we leverage the fact that the spatiotemporally
chaotic state decays to the stable plane wave background
for X < Xs. Specifically, we apply a periodic modulation
atop the cavity driving field,

X → XðτÞ ¼ X0½1þ ε cosðωτÞ�; ð2Þ

whereX0 is the average intensity of the drive, and ε andω are
the depth and frequency of the modulation, respectively. By
choosing ε and ω such that XðτÞ < Xs across a sufficient
interval around theminima of the drive, the spatiotemporally
chaotic state born fromMI is forced to remain confined in the
vicinity of the maximum of the drive, where it is locally
induced [see Fig. 1(c) and Supplemental Material [50] ].
The modulation effectively prohibits the expansion of the
domain due to the decay of perturbations entering the
XðτÞ < Xs region. We must emphasize that these dynamics
occur despite the fact that the driving field exceeds at all τ the
absolute threshold of MI: it is the bistability and the
nonlinear dynamics of the system that permit the localiza-
tion of MI. We also note that the dynamics of the confine-
ment appear different from the usual dynamics that underpin
localization in large classes of configurations, where (inter-
nal or external) modulations pin the fronts that segregate the
two states by unfolding the system’s Maxwell point [34,53–
57]; here, in contrast, our simulations suggest that the
localization can be interpreted in terms of the instability

(a)

(b) (c)

FIG. 1. (a) Intensity levels of the steady-state plane wave
solutions of Eq. (1) for a detuning Δ ¼ 9 as a function of the
driving intensity X. (b) Results obtained by numerically integrat-
ing Eq. (1) with the split-step Fourier method with a homo-
geneous driving intensity X ¼ 75. The initial condition
corresponds to the low-level homogeneous state superimposed
with a localized perturbation, and gives rise to a uniformly
expanding domain due to MI. (c) Numerical simulation results,
showing how the expansion of the MI-induced domain can be
arrested by a modulated driving field (X0 ¼ 60, ω ¼ 2π=50,
ε ¼ 0.25). Top panels in (b) and (c) highlight the driving profile
XðτÞ while black and blue horizontal curves in (c) show Xs ¼ 53
and Xc ¼ 40 (values pertinent to Δ ¼ 9), respectively.
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of the spatiotemporally chaotic state in theXðτÞ < Xs region
(see also Supplemental Material [50]).
For experimental demonstration, we use a dispersive

Kerr resonator constructed from an 85-m-long segment
of standard single-mode optical fiber (SMF-28) that is
looped on itself with a 95∶5 coupler [see Fig. 2(a) and
Supplemental Material [50] ]. The resonator additionally

includes a 99∶1 coupler through which the intracavity
dynamics are monitored. It has an overall finesse of about
40, corresponding to 60 kHz resonance width. We coher-
ently drive the resonator with a train of flat-top, 6.5-ns-long
pulses, obtained by amplitude modulating a continuous
wave (cw) distributed feedback fiber laser at 1550 nm with
the help of a signal derived from a pulse pattern generator
[PPG 1 in Fig. 2(a)]. The PPG is referenced to an external
clock with frequencies between 1 and 3 GHz, and we
carefully adjust the clock frequency so as to synchronize
the repetition rate of the driving pulse train with the 420-ns
round-trip time of the resonator. (Small residual desynch-
ronizaton is unlikely to significantly affect the dynamics.)
Using this same clock signal, we are able to synchronously
imprint sinusoidal modulation atop the nanosecond pulses
with variable modulation depth ε and frequency ω. The
modulated nanosecond pulses are finally amplified to about
5.7 W (average power level across a single pulse, corre-
sponding to X0 ≈ 60) before being launched into the cavity.
At this point, we must emphasize that our system is
fundamentally different from the recirculating fiber loop
used, e.g., by Kraych et al. to study nonlinear stages of
conservative MI [29]: our system is far-from equilibrium,
its dynamics dominated by dissipative effects [coherent
driving and losses as described by Eq. (1)], while the
experiment of Kraych et al. essentially samples conser-
vative dynamics described by the NLSE.
To experimentally identify the regime where persistent

MI-driven spatiotemporal chaos and stable planewave states
coexist, we leverage the underlying hysteresis behavior
(Figs. 2(b) and 2(c); see also Ref. [32]). Specifically, for
fixed driving intensity, the two states coexist over a narrow
region of cavity detunings just above the up-switching point
Δ↑ that marks the beginning of plane wave bistability
[Fig. 2(b)] [30,31]. We use the detuning control scheme
introduced in Ref. [58] to first actively stabilize the detuning
at a value Δ < Δ↑, where the chaotic state is the only state
available.We then slowly increase the detuning lock point so
as to identify the value at which that state falls down to the
homogeneous state. By slightly reducing the detuning from
this value,we are able to initialize the experiment on the low-
level homogeneous state in the coexistence region [see
Fig. 2(c)].
Once the system is prepared, we deterministically induce

a localized domain that undergoes MI. This is achieved by
using a second pulse pattern generator [PPG 2 in Fig. 2(a)]
and an electronic switch [SW] to imprint a single pertur-
bation pulse atop the modulated driving field. As in the
simulations shown in Figs. 1(b) and 1(c), the perturbation
locally switches the stable plane wave state to the modula-
tionally unstable upper state, inducing MI.
Figure 2(d) shows experimentally measured dynamics

when MI is induced in the absence of driving field
modulation (ε ¼ 0). The results shown were derived from
a single long oscilloscope trace recorded at the 99∶1

osc.

OUTPUT
99/1

INPUT
95/5

OSA

clockPPG 1

PPG 2
SW

6.5 ns

AMAM

EDFA

DETUNING
CONTROL

85-m-long
fiber cavity

PD
(a)

(b)

(d) (e)

(c)

cw laser
1550 nm

FIG. 2. (a) Schematic diagram of the experimental setup.
Amplitude modulator (AM), Erbium-doped fibre amplifier
(EDFA), oscilloscope (osc.), optical spectrum analyzer (OSA),
photodetector (PD). (b) Illustration of a nonlinearly tilted cavity
resonance. Stable plane wave state and persisting spatiotemporal
chaos can coexist for detunings slightly above the beginning of
plane wave bistability (magenta shaded region). (c) Experimental
measurement of the hysteresis around the up-switching point.
Solid curves show the mean intensity of the intracavity field as
the pump-cavity detuning is increased (red curve) or decreased
(blue curve). Shaded regions correspond to one-quarter of the
standard deviation of the recorded intensity, highlighting the
incoherent (coherent) character of the state born from MI (plane
wave). (d),(e) Concatenation of oscilloscope traces, showing how
a perturbation pulse permits the deterministic excitation of a
localized domain. In (d) the driving field exhibits no modulation
and the MI domain expands uniformly. In (e), a modulation with
ε ¼ 0.25 applied on the driving field arrests the expansion,
localizing the spatiotemporal complexity.
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coupler of our cavity by dividing the trace into segments
that approximately span one cavity round trip; Fig. 2(d) is
the vertical concatenation of the resulting segments [59].
The addressing pulse is launched into the cavity around
round trip 200, and gives rise to a spatiotemporally
complex domain that expands quasilinearly. (Note that
the ringing at the trailing edge of the data arises from the
impulse response of the photodetector used.) We then
repeat the experiment with the modulation depth set to
ε ¼ 0.25 and frequency ω ¼ 2π × 2.9 GHz (corresponding
to a modulation period of 350 ps). Results are shown in
Fig. 2(e), evidencing the formation of a localized domain
that remains confined within a single modulation cycle of
the drive. Corresponding numerical simulations that use
experimental parameters display similar behavior, and
further reveal that the emergent localized state consists
of chaotically fluctuating pulsations with picosecond dura-
tions (see Supplemental Material [50]).
Once excited, the localized domains can persist for

several minutes (limited only by our ability to maintain
system stability), corresponding to tens of millions of
characteristic cavity photon lifetimes (or tens of gigameters
of propagation distance). They can also be deterministically
erased by applying a localized dip on the driving field at the
position of the domain. Figures 3(a) and (b) show measured
and simulated dynamics of such an erasure event, respec-
tively, with ε ¼ 0.25 and ω ¼ 2π × 2.7 GHz. In contrast to
excitation—which can be achieved by means of just a
single addressing pulse—we have found that erasure
generally requires the dip to be synchronously applied
for several round trips across the entire domain. Note that
the simulation results shown in Fig. 3(b) were obtained by
numerically integrating the dimensional variant of Eq. (1)

using parameters that correspond to our experiments; the
raw simulation data was subsequently convolved with an
80 ps response function to mimic our experimental detec-
tion scheme (see Supplemental Material for raw simulation
data [50]).
The excitation and erasure processes can also be applied

in parallel, allowing for the individual and simultaneous
addressing of several spatiotemporally chaotic domains.
Figure 3(c) shows experimentally measured dynamics
when three domains—associated with three adjacent modu-
lation cycles of the drive—are turned on and off. As can be
seen, the addressing of one domain does not affect its
neighbours. While similar individual addressing has
been previously demonstrated for spatial [11] and
temporal cavity solitons [13,60], the results shown in Fig. 3
represent—to the best of our knowledge—the first dem-
onstrations of such addressing for spatiotemporally chaotic
states born from MI.
In addition to individual addressing, the characteristics

and dynamics of the localized domains can be controlled by
manipulating the modulation applied on the driving field.
On the one hand, adjustment of the frequency ω of the
modulation naturally offers a straightforward route to
control the size of the domain, as illustrated in Figs. 4(a)–
4(c). Herewe show experimentally observed localization for

(a) (b) (c)

FIG. 3. (a) Experimental results, showing how a dip perturba-
tion permits the deterministic erasure of a chaotic domain.
(b) Numerical simulation results corresponding to the experi-
ments shown in (a). The simulation results were obtained from
integration of Eq. (1) and subsequently convolved with an 80 ps
detector response function to facilitate comparison with our
experiments. (c) Experimental demonstration of individual and
parallel addressing of three localized MI domains. Solid green
circles (black crosses) highlight roundtrips and locations where
pulse (dip) perturbations are added on the driving field. Color bar
for all panels is the same as in Figs. 2(d) and 2(e). Note the
different axis limits in (a),(b), and (c).

(a)

(d) (e)

(b) (c)

FIG. 4. (a)–(c), Experimental results, showing the emergence of
localized domains born from MI for three different modulation
frequencies applied on the driving field: (a), 0.96; (b), 1.9; (c),
2.9 GHz. For each case, the modulation depth ε ≈ 0.25. The top
panels show oscilloscope recordings of the driving field intensity
profiles. (d) Experimentally observed discrete transport of do-
mains, realized with an intermediate modulation depth ε ≈ 0.20
and a modulation frequency of 2.7 GHz. (e) Numerical simu-
lation results corresponding to experiments in (d). Color bar for
all panels is the same as in Figs. 2(d) and 2(e).
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three different modulation frequencies as indicated; for each
case, the domain remains localized over a single modulation
cycle of the drive (see also Supplemental Material on how
the choice of ω can impact on the localization dynamics
[50]). Adjustment of the modulation depth ε on the other
hand allows to control the strength with which the fronts are
pinned, and therefore the robustness of localization. As the
modulation depth is increased from zero, we observe a
crossover from quasi-linear expansion [Fig. 2(d)] to com-
plete localization [Fig. 2(e)]. Interestingly, for intermediate
modulation depths, our experiments reveal long-timescale
discrete expansion, where the domains born fromMI remain
localized for extended periods but eventually undergo an
abrupt expansion to fill the neighboring cycle of the
modulated drive. Experimental results illustrating these
dynamics are depicted in Fig. 4(d): we see that the initial,
central domain remains localized for about 700 000 round-
trips (corresponding to more than 100 000 cavity photon
lifetimes), yet eventually undergoes an abrupt expa-
nsion. Though experimental imperfections—such as pump-
cavity desynchronization or pump inhomogeneities—can
influence the specific features (e.g., give rise to additional
asymmetries, see Ref. [56]), they do not appear to funda-
mentally underpin the dynamics; indeed, as illustrated in
Fig. 4(e), similar behaviour is observed in our simulations of
Eq. (1) that ignore all such imperfections. In loose analogy
with quantum tunneling (or a particle with a deterministi-
cally fluctuating energy in a periodic potential), these
observations suggest that there is a finite probability that
a domain will become delocalized through discrete expan-
sion, but with the probability per unit slow time decreasing
near exponentially as the modulation depth increases (see
also Supplemental Material [50]). We also note that the
discrete expansion behavior can be considered a manifes-
tation of pinning-depinning transitions that are central to
front dynamics encountered in numerous nonequilibrium
systems [53–56,61–64], here driven (predominantly) by
deterministic fluctuations of the spatiotemporally chaotic
state.
In summary, we have experimentally and numerically

studied the nonlinear stages of dissipative modulation
instability in a system with plane wave bistability—a
coherently driven Kerr resonator. We have shown that
the interplay between bistability, complex spatiotemporal
dynamics, and inhomogeneous driving can give rise to
persisting localized domains of MI-driven spatiotemporal
chaos that can be turned on and off at will. It is worth noting
that, while in our work the localization is achieved by
modulating the driving field amplitude, similar dynamics
should be possible by modulating the cavity detuning Δ
[65] or the phase of the driving field [66].
It is interesting to speculate whether (and to what extent)

the rich theoretical insights developed in the context of
conservative NLSE systems [23–28] can be applied to
elucidate the dynamics observed in our work. Moreover,

we envisage that, by leveraging recent advances in ultrafast
optical metrology [35,67], our system could allow for the
monitoring of the picosecond-scale internal structure of the
localized states in real time, thus permitting, e.g., exper-
imental analyses of the states’ Lyapunov exponents [32]
and trajectories of the underlying attractors. We also note
that the localized states observed in our system bear some
resemblance to so-called chimeralike states [68–70]—
spatiotemporal patterns characterized by the coexistence
of coherent and incoherent domains in coupled systems—
hinting at potential connections between the universal
nonlinear phenomena of MI and chimeras. Finally, besides
advancing our fundamental understanding of spatiotempo-
ral complexity andMI, our system offers a route to generate
customized patterns of noiselike pulses on demand [37,38],
and could help elucidate instability dynamics that impact
applications such as microresonator optical frequency
combs [22,71].
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