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Moving spiral wave chimeras
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We consider a two-dimensional array of heterogeneous nonlocally coupled phase oscillators on a flat torus
and study the bound states of two counter-rotating spiral chimeras, shortly two-core spiral chimeras, observed
in this system. In contrast to other known spiral chimeras with motionless incoherent cores, the two-core spiral
chimeras typically show a drift motion. Due to this drift, their incoherent cores become spatially modulated
and develop specific fingerprint patterns of varying synchrony levels. In the continuum limit of infinitely many
oscillators, the two-core spiral chimeras can be studied using the Ott-Antonsen equation. Numerical analysis of
this equation allows us to reveal the stability region of different spiral chimeras, which we group into three main
classes—symmetric, asymmetric, and meandering spiral chimeras.
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Spiral waves are ubiquitous in nature [1]. They can be
found in various biological and chemical systems, including
cardiac [2] and epithelial [3] tissues, mammalian neocortex
[4,5], spatially distributed cell populations [6,7], and oscil-
latory chemical reactions [8–12]. From a functional point of
view, rotating spiral waves are often associated with cardiac
arrhythmia and fibrillation [13]. Moreover, such waves have
also been observed in two-dimensional cilia arrays [14,15],
where they may be related to the transport function of the
corresponding tissue or cell colony [16].

Until recently, the mathematical description of spiral waves
was mainly based on multicomponent reaction-diffusion sys-
tems [17,18] with excitable or oscillatory local dynamics. The
effect of diffusion, in this case, guarantees that the spiral
wave profile is smooth everywhere, except the phase defect
at the tip of the spiral arms. However, is this a correct as-
sumption for biological systems that consist of individual
cells and are therefore inherently discrete? In general, these
systems can show more complicated dynamical patterns that
differ qualitatively from those in continuous media. A wide
variety of such unusual patterns has been recently discovered
in systems with nonlocal coupling [19–22]. For example, in
2003, Kuramoto and Shima reported the existence of strange
spiral waves in two-dimensional arrays of nonlocally coupled
limit-cycle oscillators [23,24]. The spiral arms of these waves
consist of synchronized/coherent oscillators and resemble the
spiral arms of usual spiral waves in continuous media. But
the dynamics of the oscillators close to the spiral defect (in
the so called spiral core) turns out to be spatially random-
ized and incoherent such that it masks the position of the
phase defect. Similar coexistence of coherent and incoherent
dynamics in a homogeneous oscillatory medium is currently
known as the chimera state (see Refs. [19–22] and references
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therein), therefore spiral waves with coherent spiral arms and
incoherent cores were called spiral wave chimeras [25] or
simply spiral chimeras.

So far, spiral chimeras have been observed as motion-
less patterns with fixed positions of their incoherent cores
and uniformly rotating coherent spiral arms. In particular,
one-core and multicore spiral chimeras were reported in two-
dimensional arrays with open boundary conditions [23–25]
and periodic boundary conditions representing a flat torus
[26–31] or a sphere [32,33]. Beyond phase oscillator mod-
els, the existence of spiral chimeras was also confirmed for
many realistic systems consisting of limit-cycle oscillators
[23,24,34–38], integrate-and-fire neurons [39,40], or even
locally chaotic dynamical units [41]. Moreover, recently spi-
ral chimeras were observed in laboratory experiments with
the discrete Belousov-Zhabotinsky (BZ) chemical oscillators
[42–44].

In this Letter, we show that spiral wave chimeras, in
general, do not need to be motionless. Even in transla-
tionally invariant systems with isotropic nonlocal coupling,
they can move along straight lines or more complicated
twisted trajectories. Similarly to moving spiral pairs in os-
cillatory continuous media [45], the simplest moving spiral
chimera looks like a bound state of two reflection-symmetric
counter-rotating spirals that move perpendicular to the line
connecting their cores. However, due to nonlocal coupling,
these chimera states acquire several remarkable properties.
First, their core regions are typically spatially modulated.
Second, the symmetry breaking in spiral chimeras occurs
quite differently than in continuous media [46,47]: Even
if the two spiral cores are nonidentical, they continue to
drift together. Moreover, in some cases, the direction of the
chimera’s movement turns out to depend smoothly on system
parameters. As a result, asymmetric spiral chimeras can move
in arbitrary direction, even along the line connecting their
cores.
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Model. We consider a two-dimensional array of phase os-
cillators {θ jk (t )}N

j,k=1 evolving according to

dθ jk

dt
= ω jk − 1

|Bσ ( j, k)|
∑

(m,n)∈Bσ ( j,k)

sin(θ jk − θmn + α).

(1)

Here ω jk are natural frequencies of the oscillators drawn
randomly and independently from a Lorentzian distribution
g(ω) = γ /[π (ω2 + γ 2)], with width γ > 0, α ∈ (0, π/2) is
the phase lag parameter, σ ∈ (0, 1/2) is the relative coupling
radius, and

Bσ ( j, k) = {(m, n) : (m − j)2 + (n − k)2 � σ 2N2}
denotes the circular neighborhood of the point ( j, k) where
the distances m − j and n − k are considered mod N . The
interaction term in Eq. (1) is referred to as nonlocal coupling
and is normalized by the number of points |Bσ ( j, k)| in the
neighborhood Bσ ( j, k).

It is well known [30] that Eq. (1) supports different motion-
less chimera patterns, including stripe and spot chimera states
as well as four-core spiral chimeras. This Letter demonstrates
that the same equation also supports a qualitatively differ-
ent type of chimera states, called moving spiral chimeras.
Figure 1 provides several examples of such states in the ar-
ray of 1024 × 1024 oscillators (see also Ref. [48] for their
movies). The left column shows the phase snapshots, while
the right column shows the corresponding local order param-
eters calculated by

z jk (t ) = 1

|Bδ ( j, k)|
∑

(m,n)∈Bδ ( j,k)

eiθmn(t ), (2)

with δ = 1/(2
√

N ). By definition, the absolute value |z jk (t )|
measures the degree of synchronization between the neigh-
bors of the oscillator θ jk (t ). In particular, |z jk (t )| = 1 corre-
sponds to perfect synchrony of the phases, whereas |z jk (t )| ≈
0 stands for their complete disorder. Thus a chimera state is
characterized by the coexistence of nearly unit values |z jk (t )|
in the coherent region with relatively small values of |z jk (t )|
in the incoherent region. Notice that to find the positions of
incoherent cores it is convenient to use not the local order
parameter z jk (t ), but a mean field w jk (t ) computed by the
formula (2) with δ = σ . The modulus |w jk (t )| has pronounced
minima at the sites, which can be identified with the phase
defects of the corresponding spirals.

In our numerical simulations performed with a fixed-step
fourth order Runge-Kutta integrator, we have observed three
main types of moving two-core spiral chimeras:

(a) Symmetric spiral chimeras. These chimeras have in-
coherent cores of nearly the same shape and size. In the
graph of the local order parameter z jk (t ) each incoherent core
looks either as a circle with a phase defect in the middle, or
as a specific fingerprint pattern composed of curved stripes
corresponding to higher and lower local synchrony of the
oscillators. Symmetric spiral chimeras move strictly vertically
or horizontally.

(b) Asymmetric spiral chimeras. These chimeras have in-
coherent cores of different shapes and sizes. The cores move

FIG. 1. Moving spiral chimeras in Eq. (1) with α = 0.6 [(a) and
(b)], α = 0.7 [(c) and (d)], α = 0.8 [(e) and (f)], and α = 1.01 [(g)
and (h)]. Other parameters: N = 1024, σ = 0.25, and γ = 0.01. The
left and right columns show snapshots θ jk (t ) and the local order pa-
rameters |z jk (t )| computed by (2). The black curves show movement
trajectories of the incoherent cores.

along straight lines in a direction, which in general is neither
vertical nor horizontal.

(c) Meandering spiral chimeras. These are nonstationary
versions of asymmetric spiral chimeras. They move not as a
rigid body but rather as a periodically breathing pattern. Their
movement trajectories are not straight lines, but twisted curves
which can be thought of as a superposition of a uniform drift
and oscillatory motion.

In the following, we outline the stability regions in the
parameter plane (α, σ ) for each of the above moving spiral
chimeras.

Methods. For every trajectory of Eq. (1), we can define a
piecewise-linear function ZN (x, y, t ) on the flat torus (x, y) ∈
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[−π, π ]2 such that

ZN (−π + 2π j/N,−π + 2πk/N, t ) = z jk (t ).

It is well known that in the continuum limit case, i.e., when
N → ∞, the long-term dynamics of ZN (x, y, t ) is asymptoti-
cally close to a solution z(x, y, t ) of the Ott-Antonsen equation

dz

dt
= −γ z + 1

2
e−iαGz − 1

2
eiαz2Gz, (3)

where z denotes the complex conjugate of z, and Gz is a
convolution term of the form

(Gz)(x, y, t ) = 1

π3σ 2

∫∫

|x−x′|2+|y−y′|2�π2σ 2

z(x′, y′, t )dx′dy′.

Note that the distance |x − x′|2 + |y − y′|2 in the above
integral has to be computed accounting for periodic boundary
conditions in the x and y directions. The derivation of Eq. (3)
is based on the invariant manifold reduction technique
suggested in Ref. [49] and its details can be found in
Refs. [21,50]. Thus, the existence and stability of moving
spiral chimeras in Eq. (1) can be studied using Eq. (3).

We discretize Eq. (3) on a uniform grid with 256 × 256
nodes, replace all integrals by trapezoid rule and carry out
direct numerical simulations of the resulting ordinary dif-
ferential equations using the Python RK45 solver from the
SciPy package with adaptive or fixed (dt = 0.1) time step.
We keep γ = 0.01 fixed and change parameters σ and α.
For every chosen pair (α, σ ) we integrate the discretized
version of Eq. (3) over 2 × 104 time units. The initial part
of the trajectory of the length 104 is discarded as a transient
and the remaining part of the length 104 is analyzed in the
following way.

We compute a mean field w(x, y, t ) = (Gz)(x, y, t ). In the
case of a two-core spiral chimera, this complex function has
exactly two phase defects where |w(x, y, t )| = 0. This allows
us to trace the trajectory of each defect and compute its instan-
taneous velocity v(t ) = (vx(t ), vy(t )). Though the trajectories
of two phase defects can be different, the long-time averages
〈vx〉 and 〈vy〉 calculated along one of the trajectories are the
same as those calculated along the other trajectory, therefore
we can define two scalars characterizing the spiral chimera
motion:

(i) the mean drift velocity s = |〈vx〉 + i〈vy〉|, and
(ii) the direction of drift motion

ψ = arg(〈vx〉 + i〈vy〉).

Obviously, for a symmetric spiral chimera, we must obtain
ψ = 0,±π/2, π , whereas all other values ψ are indications
of asymmetric spiral chimeras.

It turns out that all solutions of Eq. (3) corresponding to
two-core spiral chimeras assume one of the following two
forms. Symmetric and asymmetric spiral chimeras are de-
scribed by an ansatz

z(x, y, t ) = a(x − sxt, y − syt )ei
t , (4)

where a(x, y) is a complex amplitude and sx, sy, and 
 are
real constants. A symmetric spiral chimera is obtained if
sx = 0 and a(−x, y) = a(x, y) or if sy = 0 and a(x,−y) =

FIG. 2. Mean drift velocity s (d), direction of drift motion ψ

(e) and variance of the global order parameter �R (f) for two-core
spiral chimeras in Eq. (3) with σ = 0.25 and γ = 0.01. The black
and color dots in (d)–(f) correspond to symmetric and asymmetric
spiral chimeras, respectively. Three top panels exemplify solutions
z(x, y, t ) for α = 0.58 (a), α = 0.60 (b), and α = 0.63 (c). The black
curves in these panels show the trajectories of incoherent cores.

a(x, y). Otherwise the spiral chimera is asymmetric. The sec-
ond ansatz representing meandering spiral chimeras reads

z(x, y, t ) = a(x − sxt, y − syt, t )ei
t , (5)

where the amplitude a(x, y, t ) depends explicitly on time.
(Typically this dependence is periodic.) In order to distinguish
between cases (4) and (5) numerically one can compute the
difference �R = max

t
R(t ) − min

t
R(t ), where

R(t ) =
∣∣∣∣ 1

4π2

∫ π

−π

∫ π

−π

z(x, y, t )dxdy

∣∣∣∣
is the global order parameter. Then in the former case, one
obtains �R = 0, while in the latter case one gets �R > 0.
Therefore spiral chimeras described by formulas (4) and (5)
can be called stationary and nonstationary spiral chimeras,
respectively.

Results. Using the local order parameters from Fig. 1
as initial conditions and performing forward and back-
ward α-sweeps with the step dα = 0.002 for fixed coupling
radius σ = 0.25, we obtained a diagram shown in Fig. 2.
Note that two adjacent points were connected by a line only
in the case if the right point was obtained in the forward
sweep starting from the left point and vice versa. Moreover,
each sweep was stopped at the value α for which stable
two-core spiral chimeras ceased to exist. Figure 2 reveals
that stable symmetric spiral chimeras can be found for α ∈
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FIG. 3. The main panel (bottom left) shows the stability regions of the symmetric (I), stationary asymmetric (II), and meandering (III)
two-core spiral chimeras in the Eq. (3) with γ = 0.01. The boundaries of these regions consist of the dots, for which α sweeps were carried
out, and the interpolating lines. Additional panels exemplify solutions z(x, y, t ) for (α, σ ) = (0.7, 0.25) [(a) and (b)], (0.8,0.25) [(c) and (d)],
and (1.01,0.25) [(e) and (f)]. These parameters are indicated by diamonds in the stability diagram. The black curves in the panels (a)–(f) show
movement trajectories of the incoherent cores.

[0.57, 0.766], whereas stable asymmetric spiral chimeras can
be found in two disjoint intervals α ∈ [0.752, 0.852] and
α ∈ [0.878, 1.028]. Note that the ranges of symmetric and
asymmetric chimeras have a small overlap where both of
them coexist stably. Moreover, several other bi- and tristabil-
ity ranges can be found in the left and middle parts of the
diagram.

The branch of symmetric spiral chimeras consists of sev-
eral disconnected curves. The chimeras on the leftmost curve
are the fastest. Their core regions are simple patterns consist-
ing of two curved stripes corresponding to small values of
|z(x, y, t )|. On the second and third curves from above we find
spiral chimeras with core regions composed of three and four
stripes, respectively. The general rule is that for α increasing
from 0.57 to 0.734 the motion of spiral chimeras slows down,
while the number of stripes in their core regions grows. As
a result, these regions begin to look as intricate fingerprint
patterns. However, for α ≈ 0.734 the incoherent stripes merge
together and the core regions become circular-shaped, which
is typical for motionless spiral chimeras [27].

The branch of asymmetric spiral chimeras also consists
of several disconnected curves. All these spiral chimeras
have nonvanishing mean velocities s > 0.008 and their
core regions typically look as fingerprint patterns com-
posed of many incoherent stripes. The most prominent
feature of asymmetric spiral chimeras is that for suf-
ficiently large values α they become nonstationary and
transform into meandering spiral chimeras. For example,
Fig. 2 indicates that asymmetric spiral chimeras are station-
ary (�R = 0) for α ∈ [0.752, 0.792] (on the slowest part of
the branch only) and for α ∈ [0.996, 1.028]. For all other

phase lags these chimeras do not behave as rigidly moving
patterns, but breathe periodically on top of the uniform drift
motion.

Parameter sweeps similar to Fig. 2 were also performed
for other coupling radii σ varying from 0.14 to 0.4 with the
step dσ = 0.02. Thus we obtained a stability diagram shown
in Fig. 3. Our general observations can be summarized as fol-
lows. The branch of symmetric spiral chimeras has a similar
shape for all values σ , though it shifts to larger values α for
increasing coupling radius. Regarding the asymmetric spiral
chimeras, we found that their stability range has the maximal
size for small values σ and shrinks gradually for increasing
coupling radius until it eventually vanishes for σ > 0.34. We
also found that the size of the core region of a spiral chimera
typically increases with increasing parameters α and σ . How-
ever, the mean drift velocity s turns out to be more sensitive
to the changes of the coupling radius σ than to the changes
of the phase lag α. Notice that two-core spiral chimeras can
also be found for coupling radii smaller than 0.14, but in
this case their drift velocity decreases significantly and al-
most vanishes for σ � 0.1 such that they appear as pinned
spiral waves or spiral waves moving along closed circular
orbits.

Conclusions. Discrete two-dimensional media made up of
oscillatory or excitable active units are found in many biolog-
ical systems. Above, we have shown that under the influence
of nonlocal coupling, these media can support moving spiral
wave chimeras with a complex distribution of synchronous
and asynchronous regions. Using the Ott-Antonsen equa-
tion (3), we computed stability diagrams for these chimera
states and found how the speed and the direction of their
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drift depend on system parameters. This information can be
used to search for moving spiral chimeras in experiments
similar to Refs. [42–44] or in the cilia carpet system studied
theoretically in Ref. [14].

Several interesting questions about the nature of moving
spiral chimeras still remain open. First, it seems likely that the
distinct solution curves in Fig. 2 are connected by unstable
solution branches. Moreover, it is unclear whether there is a
branch that connects the moving spiral chimeras with their
motionless counterparts. To answer these questions, one needs
to perform a more detailed analysis of traveling wave solu-
tions (4) in Eq. (3) by analogy with Refs. [51,52]. The same
approach can also be used to study the behavior of moving spi-
ral chimeras for small values of the coupling radius σ , which
we have not addressed in this Letter. Another challenging
problem is the rigorous mathematical description of moving
spiral chimeras in Eq. (1) with identical oscillators. It is known
[53,54] that in this case, Eq. (3) becomes singular and can
no longer be used. Finally, we emphasize that Eq. (1) can
show more complex moving spiral chimeras, see Fig. 4, which
also deserve consideration. We hope that further research
in the field will answer the above questions and, therefore,

FIG. 4. Four-core moving spiral chimeras in Eq. (1) with α =
0.8, σ = 0.2 (a) and α = 0.9, σ = 0.25 (b). For other parameters
and notations see Fig. 1.

improve our understanding of pattern formation in discrete
active media with nonlocal coupling.

Acknowledgment. The work of O.E.O. was supported by
the Deutsche Forschungsgemeinschaft under Grant No. OM
99/2-1. M.B.G. acknowledges the hospitality of the Univer-
sity of Potsdam during his research internship. M.G.C. thanks
for the financial support ANID-Millenium Science Initiative
Program–ICN17_012.

[1] K. Tsuji and S. C. Müller (eds.), Spirals and Vortices (Springer,
Cham, 2019).

[2] J. M. Davidenko, A. M. Pertsov, R. Salomonsz, W. Baxter, and
J. Jalife, Nature (London) 355, 349 (1992).

[3] G. Seiden and S. Curland, New J. Phys. 17, 033049 (2015).
[4] X. Huang, W. C. Troy, Q. Yang, H. Ma, C. R. Laing, S. J. Schiff,

and J.-Y. Wu, J. Neurosci. 24, 9897 (2004).
[5] X. Huang, W. Xu, J. Liang, K. Takagaki, X. Gao, and J.-Y. Wu,

Neuron 68, 978 (2010).
[6] J. Lechleiter, S. Girard, E. Peralta, and D. Clapham, Science

252, 123 (1997).
[7] J. Lauzeral, J. Halloy, and A. Goldbeter, Proc. Natl. Acad. Sci.

USA 94, 9153 (1997).
[8] A. M. Zhabotinsky and A. N. Zaikin, J. Theor. Biol. 40, 45

(1973).
[9] A. T. Winfree, Science 175, 634 (1972).

[10] A. S. Mikhailov and K. Showalter, Phys. Rep. 425, 79 (2006).
[11] V. K. Vanag and I. R. Epstein, in Self-Organized Morphology

in Nanostructured Materials, edited by K. Al-Shamery and J.
Parisi (Springer, Berlin, 2008), pp. 89–113.

[12] G. Ertl, Science 254, 1750 (1991).
[13] R. A. Gray, A. M. Pertsov, and J. Jalife, Nature (London) 392,

75 (1998).
[14] N. Uchida and R. Golestanian, Phys. Rev. Lett. 104, 178103

(2010).
[15] R. Golestanian, J. M. Yeomans, and N. Uchida, Soft Matter 7,

3074 (2011).
[16] W. Gilpin, M. S. Bull, and M. Prakash, Nat. Rev. Phys. 2, 74

(2020).
[17] A. T. Winfree, Chaos 1, 303 (1991).
[18] D. Barkley, Phys. Rev. Lett. 72, 164 (1994).
[19] M. J. Panaggio and D. M. Abrams, Nonlinearity 28, R67 (2015).
[20] E. Schöll, Eur. Phys. J. Spec. Top. 225, 891 (2016).
[21] O. E. Omel’chenko, Nonlinearity 31, R121 (2018).

[22] S. Majhi, B. K. Bera, D. Ghosh, and M. Perc, Phys. Life Rev.
28, 100 (2019).

[23] Y. Kuramoto and S. Shima, Prog. Theor. Phys. Suppl. 150, 115
(2003).

[24] S. I. Shima and Y. Kuramoto, Phys. Rev. E 69, 036213 (2004).
[25] E. A. Martens, C. R. Laing, and S. H. Strogatz, Phys. Rev. Lett.

104, 044101 (2010).
[26] P.-J. Kim, T.-W. Ko, H. Jeong, and H.-T. Moon, Phys. Rev. E

70, 065201(R) (2004).
[27] O. E. Omel’chenko, M. Wolfrum, S. Yanchuk, Y. L. Maistrenko,

and O. Sudakov, Phys. Rev. E 85, 036210 (2012).
[28] M. J. Panaggio and D. M. Abrams, Phys. Rev. Lett. 110, 094102

(2013).
[29] J. Xie, E. Knobloch, and H.-C. Kao, Phys. Rev. E 92, 042921

(2015).
[30] C. R. Laing, SIAM J. Appl. Dyn. Syst. 16, 974 (2017).
[31] O. E. Omel’chenko, M. Wolfrum, and E. Knobloch, SIAM J.

Appl. Dyn. Syst. 17, 97 (2018).
[32] M. J. Panaggio and D. M. Abrams, Phys. Rev. E 91, 022909

(2015).
[33] R.-S. Kim and C.-U. Choe, Phys. Rev. E 98, 042207 (2018).
[34] X. Tang, T. Yang, I. R. Epstein, Y. Liu, Y. Zhao, and Q. Gao,

J. Chem. Phys. 141, 024110 (2014).
[35] B.-W. Li and H. Dierckx, Phys. Rev. E 93, 020202(R) (2016).
[36] A. V. Bukh and V. S. Anishchenko, Chaos Solitons Fract. 131,

109492 (2020).
[37] I. A. Shepelev, A. V. Bukh, S. S. Muni, and V. S. Anishchenko,

Regul. Chaotic Dynam. 25, 597 (2020).
[38] V. Maistrenko, O. Sudakov, and Y. Maistrenko, Eur. Phys. J.

Spec. Top. 229, 2327 (2020).
[39] A. Schmidt, T. Kasimatis, J. Hizanidis, A. Provata, and P. Hövel,

Phys. Rev. E 95, 032224 (2017).
[40] G. Argyropoulos and A. Provata, Front. Appl. Math. Stat. 5, 35

(2019).

L022203-5

https://doi.org/10.1038/355349a0
https://doi.org/10.1088/1367-2630/17/3/033049
https://doi.org/10.1523/JNEUROSCI.2705-04.2004
https://doi.org/10.1016/j.neuron.2010.11.007
https://doi.org/10.1126/science.2011747
https://doi.org/10.1073/pnas.94.17.9153
https://doi.org/10.1016/0022-5193(73)90164-1
https://doi.org/10.1126/science.175.4022.634
https://doi.org/10.1016/j.physrep.2005.11.003
https://doi.org/10.1126/science.254.5039.1750
https://doi.org/10.1038/32164
https://doi.org/10.1103/PhysRevLett.104.178103
https://doi.org/10.1039/c0sm01121e
https://doi.org/10.1038/s42254-019-0129-0
https://doi.org/10.1063/1.165844
https://doi.org/10.1103/PhysRevLett.72.164
https://doi.org/10.1088/0951-7715/28/3/R67
https://doi.org/10.1140/epjst/e2016-02646-3
https://doi.org/10.1088/1361-6544/aaaa07
https://doi.org/10.1016/j.plrev.2018.09.003
https://doi.org/10.1143/PTPS.150.115
https://doi.org/10.1103/PhysRevE.69.036213
https://doi.org/10.1103/PhysRevLett.104.044101
https://doi.org/10.1103/PhysRevE.70.065201
https://doi.org/10.1103/PhysRevE.85.036210
https://doi.org/10.1103/PhysRevLett.110.094102
https://doi.org/10.1103/PhysRevE.92.042921
https://doi.org/10.1137/16M1086662
https://doi.org/10.1137/17M1141151
https://doi.org/10.1103/PhysRevE.91.022909
https://doi.org/10.1103/PhysRevE.98.042207
https://doi.org/10.1063/1.4886395
https://doi.org/10.1103/PhysRevE.93.020202
https://doi.org/10.1016/j.chaos.2019.109492
https://doi.org/10.1134/S1560354720060076
https://doi.org/10.1140/epjst/e2020-900279-x
https://doi.org/10.1103/PhysRevE.95.032224
https://doi.org/10.3389/fams.2019.00035


BATAILLE-GONZALEZ, CLERC, AND OMEL’CHENKO PHYSICAL REVIEW E 104, L022203 (2021)

[41] C. Gu, G. St-Yves, and J. Davidsen, Phys. Rev. Lett. 111,
134101 (2013).

[42] S. Nkomo, M. R. Tinsley, and K. Showalter, Phys. Rev. Lett.
110, 244102 (2013).

[43] J. F. Totz, J. Rode, M. R. Tinsley, K. Showalter, and H. Engel,
Nat. Phys. 14, 282 (2017).

[44] J. F. Totz, M. R. Tinsley, H. Engel, and K. Showalter, Sci. Rep.
10, 7821 (2020).

[45] I. S. Aranson, L. Kramer, and A. Weber, Phys. Rev. E 47, 3231
(1993).

[46] I. S. Aranson, L. Kramer, and A. Weber, Phys. Rev. E 48, R9(R)
(1993).

[47] I. Schebesch and H. Engel, Phys. Rev. E 60, 6429 (1999).

[48] See the Supplemental Material http://link.aps.org/
supplemental/10.1103/PhysRevE.104.L022203 for movies
showing the dynamics of spiral wave chimeras in Figs. 1(a),
1(e), and 1(g).

[49] E. Ott and T. M. Antonsen, Chaos 18, 037113 (2008).
[50] C. R. Laing, Physica D 238, 1569 (2009).
[51] O. E. Omel’chenko, Nonlinearity 33, 611 (2020).
[52] C. R. Laing and O. E. Omel’chenko, Chaos 30, 043117

(2020).
[53] O. E. Omel’chenko, J. Phys. A: Math. Theor. 52, 104001

(2019).
[54] J. Xie, E. Knobloch, and H.-C. Kao, Phys. Rev. E 90, 022919

(2014).

L022203-6

https://doi.org/10.1103/PhysRevLett.111.134101
https://doi.org/10.1103/PhysRevLett.110.244102
https://doi.org/10.1038/s41567-017-0005-8
https://doi.org/10.1038/s41598-020-64081-6
https://doi.org/10.1103/PhysRevE.47.3231
https://doi.org/10.1103/PhysRevE.48.R9
https://doi.org/10.1103/PhysRevE.60.6429
http://link.aps.org/supplemental/10.1103/PhysRevE.104.L022203
https://doi.org/10.1063/1.2930766
https://doi.org/10.1016/j.physd.2009.04.012
https://doi.org/10.1088/1361-6544/ab5cd8
https://doi.org/10.1063/1.5143261
https://doi.org/10.1088/1751-8121/ab0043
https://doi.org/10.1103/PhysRevE.90.022919

