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Chains of coupled oscillators exhibit energy propagation by means of waves, pulses, and fronts.
Nonreciprocal coupling radically modifies the wave dynamics of chains. Based on a prototype model of
nonlinear chains with nonreciprocal coupling to nearest neighbors, we study nonlinear wave dynamics.
Nonreciprocal coupling induces a convective instability between unstable and stable equilibrium.
Increasing the coupling level, the chain presents a propagative pattern, a traveling wave. This emergent
phenomenon corresponds to the self-assembly of localized structures. The pattern wavelength is
characterized as a function of the coupling. Analytically, the phase diagram is determined and agrees
with numerical simulations.
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The dynamics of coupled oscillators have attracted the
attention of physics since its dawn. Phenomena like
synchronization [1], energy transfers from one oscillator
to another [2], or wave propagation [3] are paradigmatic
dynamical behaviors of coupled oscillators. In all the
above examples, the oscillators are usually coupled with
reciprocal elastic media. Namely, the elastic media are
characterized by applying a force of equal magnitude and
opposite direction to each of the coupled oscillators. Such
dynamical behavior is known as Maxwell-Betti reciproc-
ity [4–6]. Nonreciprocal behavior has been studied in
diverse physical fields considering asymmetric, nonlinear,
and/or nonreversible features in time. In optics, nonre-
ciprocal responses have been observed in birefringent
prisms [7], optomechanical resonators [8], and asymmet-
ric cavities [9]. In acoustics, an emitter and a receiver can
exhibit nonreciprocal behaviors in a resonant ring cavity
biased by a circulating fluid [10]. A similar phenomenon
is achieved for electrically driven nonreciprocity on a
silicon chip [11]. Nonreciprocal behaviors for the propa-
gation of electromagnetic waves have been accomplished
through the application of magnetic fields [12,13], angular
momentum [14], nonlinear coupling [15], and moving
photonic crystals [16]. In active matter, nonreciprocal
couplings are a rule rather than an exception [17,18].
Recently, through the use of mechanical metamaterials
[19,20], nonreciprocal coupling elements have been built
up. Namely, couplers that induce a force of different
magnitude to the coupled elements. Chains with nonre-
ciprocal couplings exhibit spatially asymmetric standing
[21] and nonlinear waves [20]; likewise, localized dis-
turbances tend to propagate more in one direction than
another [6–19,21].

In this Letter, we investigate the nonreciprocal coupling
effect on nonlinear waves. Based on a prototype model of a
nonlinear chain, the dissipative Frenkel-Kontorova model with
nonreciprocal coupling to nearest neighbors, a convective
instability between unstable and stable steady state is observed.
By increasing the level of nonreciprocity, the fronts between
these states change frommonotonous to nonmonotonous ones.
Unexpectedly, beyond a certain nonreciprocity level, fronts
become unstable and give rise to propagative patterns (traveling
waves), which corresponds to the self-assembly of localized
structures. The pattern wavelength is characterized as a
function of the couplings. A similar phenomenon is observed
in continuous models that include higher spatial derivatives
(order four) [22], which accounts for the larger-range coupling
and includes a characteristic length. This intrinsic length is the
main ingredient of the Turing mechanism of patterns [23,24].
The extension of this phenomenon to discrete systems
corresponds to a system coupled to first and second neigh-
bors. It is expected to observe patterns as a result of the
intrinsic length provided by more distant neighbors [23,24].
However, the presented pattern mechanism here with nonre-
ciprocal coupling only includes interaction to nearest neigh-
bors. Analytically, the phase diagram of the system is revealed,
which shows an excellent agreement with numerical
simulations.
Let us consider a dimensionless chain of N þ 1 dis-

sipative coupled pendulums (the dissipative Frenkel-
Kontorova model with nonreciprocal coupling [25]):

θ̈i ¼ ω2 sin θi − μ_θi þ ðD − αÞðθiþ1 − θiÞ
− ðDþ αÞðθi − θi−1Þ; ð1Þ
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where θiðtÞ is the angle formed by the pendulum and the
vertical axis in the i position at time t [cf. Fig. 1(a)]. ω and
μ are the natural frequency and the damping coefficient of
pendulums. D and α account for coupling elements
that have different left-to-right and right-to-left linear
responses. α accounts for the nonreciprocal coupling;
when α ¼ 0, the chain has a reciprocal coupling. D stands
for the linear deformation of an elastic material. α could
account for the linear deformations of a rubber nonrecip-
rocal torsion metamaterial [19] or a nonreciprocal robotic
coupling [21]. Figure 1 shows a schematic representation
of a chain of dissipative coupled pendulums. Note that
θi ¼ 0 and θi ¼ π describe the upside-down and upright
pendulum, respectively. Equation (1) is of Lagrangian
nature, which has the form

L ¼
X
i

�
_θ2i
2
− ω2 cos θi −

D − α

2
ðθiþ1 − θiÞ2

�
eμtΛi;

where Λ≡ ðD − αÞ=ðDþ αÞ. Thereby, the dynamics of
Eq. (1) is steered by a principle of least action. To figure
out the nonreciprocal chain dynamics, we consider the
overdamped limit of the dissipative Frenkel-Kontorova

model (see the Supplemental Material [26]). Then Eq. (1)
can be approximated by

_θi ¼ ω2 sin θi þ ðD − αÞðθiþ1 − θiÞ − ðDþ αÞðθi − θi−1Þ:
ð2Þ

A similar model was proposed to study coupled
Josephson junctions [29]. Two evident extended steady
states correspond to the uniform upside-down and upright
pendulums. To study the dynamics of nonlinear waves
between these two states, we consider the boundary
conditions being Dirichlet [θ0ðtÞ ¼ 0] and Neumann
[θNðtÞ ¼ θN−1ðtÞ] on the left and right flank of the chain,
respectively.
In the reciprocal limit α ¼ 0, considering all upside-

down pendulums as an initial condition, slightly tilting a
pendulum generates a nonlinear wave that propagates
from the upright to the upside-down pendulums with a
well-defined speed. This nonlinear wave is known as π
kink [30]. The front speed is characterized by exhibiting
a weakly oscillatory behavior [30,31]. π kinks are
persistent in the presence of nonreciprocal coupling.
Figure 1 shows the profile of a π kink wave and its
respective spatiotemporal diagram. These diagrams were
obtained by means of numerical simulations. All the
numerical simulations presented were conducted by a
fourth-order Runge-Kutta integration method. As a
result of nonreciprocal coupling, the speed of the π kink
decreases when α is increased. π kinks that invade the
upside-down pendulums are observed in zone I of Fig. 2.
The previous dynamical behaviors change when consid-
ering large enough α through an absolute convective
instability [32]; the upside-down pendulums invade
upright ones [see Fig. 1(c)]. These fronts are observed
in zone II on the bifurcation diagram in Fig. 2.
To characterize the absolute convective instability, we

use the same strategy presented in [30]. Let us introduce the
ansatz θiðtÞ ¼ AekðiþhvitÞ for the tail of the front to
determine the average front speed hvi, where k accounts
for the front steepness. The average front speed hvi satisfies
(see the Supplemental Material [26] for details)

hvðkÞi ¼ ω2 − 2D
k

þ 2

�
D coshðkÞ − α sinhðkÞ

k

�
: ð3Þ

Bounded disturbances induce fronts propagation into the
unstable state with the minimum front speed vmin as a
function of the steepness, i.e., vmin ¼ hvðk ¼ kcÞi,∂khvðk ¼ kcÞi ¼ 0, and ∂kkhvðk ¼ kcÞi > 0 [22]. The
absolute convective instability corresponds when the
minimum speed is zero [32]. Using this condition, we get

D ¼ α2

ω2
þ ω2

4
: ð4Þ

(a)

(b) (c)

FIG. 1. Nonreciprocal coupled chain of pendulums and front
propagation. (a) Schematic representation of a chain of pendulums
coupledwith a nonreciprocal material. θiðtÞ is the angle formed by the
pendulum and the vertical axis in the i position at time t. Yellow
cylinder accounts for a nonreciprocal metamaterial. Instantaneous
profile and spatiotemporal evolution of π kink obtained for Eq. (2)
with ω ¼ 1, D ¼ 4, α ¼ 1 (b), and α ¼ 2.5 (c).
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Figure 2 shows the bifurcation diagram of the overdamped
Frenkel-Kontorova model, Eq. (2). The dashed blue curve
accounts for the previous expression. Notice that for largeD
coupling, the system is adequately described by the con-
tinuous limit, the dissipative sine-Gordon equation with
advection, where the dynamic behaviors described above are
expected. Surprisingly, as α increases further, the fronts
exhibit a transition from monotonous to nonmonotonous
fronts. Figure 3 shows the typical nonmonotonous front
observed and its propagation. These fronts are observed in
zones III and IV of the phase diagram shown in Fig. 2. In
zone III (IV), the upside-down (upright) state propagates into
the upright (upside-down) one. The transition of monoto-
nous to nonmonotonous front is characterized by the fact that
the speed curve hvðkÞi, Eq. (3), ceases to have a minimum,
which becomes an inflection point. Indeed, the minimum is
now in the complex plane of k, where the imaginary part
corresponds to the spatial oscillations observed in the front
profile (cf. Fig. 3). By imposing that hvðk ¼ kcÞi stops
having a minimum, we obtain

2D − ω2

arctanhðDαÞ
¼ 2α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
D
α

�
2

s
: ð5Þ

ForD < ω2=2, an explicit solution of the above transcendent
equation is D ¼ α. Notice that this relationship corresponds

to each oscillator being only coupled to its left neighbor.
Furthermore, when D < α, springs toward the right side are
not of restoring nature, that is, their elastic constant is
negative. The above is unacceptable for mechanical springs.
However, this type of coupling can be achieved through the
use of nonreciprocal robotic metamaterials [21]. For
D > ω2=2, an explicit analytic expression is not accessible.
Note that the curve obtained parametrically, Eq. (5), is
slightly below the straight line D ¼ α. Figure 2 illustrates
these curves by means of the purple and orange dashed lines,
respectively. D ¼ α ¼ ω2=2 is a critical point where the
different transition curves converge, which is represented by
a star in the phase diagram of Fig. 2. From nonmonotonous
fronts where the upside-down pendulum state invades
upright ones, unexpectedly, as D decreases, the emergence
of a traveling wave is observed (see Fig. 4). Note that these
patterns are characterized by connecting the vertical pendu-
lum to itself. These propagative waves are observed in zone
Von the phase diagram of Fig. 2. As α is increased or D is
decreased, the wavelength of the propagative pattern λ
decreases as illustrated in Fig. 4(c). To characterize the
pattern emergence instability curve, we consider nonmonot-
onous fronts where upside-down pendulums invade upright
ones. The average front speed hvðkcÞi is the global minimum
as a function of steepness. Using the previous conditions in
Eq. (3) after straightforward calculations (for details, see
the Supplemental Material [26]), we obtain the relation
D ¼ ω2=2. The red dashed horizontal line in Fig. 2 outlines
the wave instability curve. Increasing the number of

FIG. 2. Phase diagram of the overdamped Frenkel-Kontorova
Eq. (2) with ω ¼ 1. In zone I, the upright pendulums invade the
upside-down ones. This process is reversed in zone II. The blue
curve, Eq. (4), is the analytical absolute convective instability
between the upright and upside-down pendulums. The purple
(D ¼ α) and orange curves account for the monotonous to
nonmonotonous front transition, using Eq. (3). The star symbol
(☆) accounts for the critical point ðα ¼ 1=2; D ¼ 1=2Þ where the
critical curves converge. Red and green curves separate the
localized structures’ self-assembly region. The red curve was
obtained using formula D ¼ 1=2. The green curve is achieved
through divergence of the self-assembly wavelength. All circles
are obtained by means of numerical simulations.

(a) (c)

(b) (d)

FIG. 3. Nonmonotonous fronts of the overdamped Frenkel-
Kontorova Eq. (2) with ω ¼ 1. Profile (a) and spatiotemporal
evolution (b) of a nonmonotonous front propagates from upside-
down pendulums into upright ones for D ¼ 1 and α ¼ 1.25. v
and v0 account for the speeds of different fronts. Profile (c) and
spatiotemporal evolution (d) of a nonmonotonous front propagate
from upright pendulums into upside-down pendulums for
D ¼ 0.25 and α ¼ 0.325.

PHYSICAL REVIEW LETTERS 126, 194102 (2021)

194102-3



oscillators N close to the horizontal line, numerically, we
observe that the wave exhibits a complex spatiotemporal
dynamics. The origin and the characterization of the com-
plex spatiotemporal behavior is in progress.
The transition between fronts and large wavelength

waves (zones IV and V) cannot be obtained employing
asymptotic analytical calculations due to its nonlinear
nature. To determine this bifurcation, we numerically
compute the curve of divergence of the pattern wavelength.
Figure 2 illustrates this curve by means of green dots. Video
in the Supplemental Material [26] illustrates the different
observed nonlinear waves [33]. To shed light on the nature
of the observed patterns, we perturb the periodic solution in
a localized manner. The spatial oscillations with a length
small enough compared to the pattern shrink and disappear,
generating a hole in the pattern that propagates without
deformation. In contrast, oscillations with a wavelength
longer than the pattern, even several wavelengths, propa-
gate as a localized state, a pulse. Figure 5 illustrates the
scenario described above. A pattern made up of an
extended periodic state is characterized by healing the
disturbances and recovers the pattern characteristic wave-
length [23,24]. However, patterns composed by the
assembly of localized structures are characterized by
exhibiting various wavelengths and configurations,
depending on the initial condition [33]. When one regards
a localized solution as an initial condition, it is propagated
and advected. Because of the fixed boundary condition,

localized structures of equal size begin to be emitted from
the left flank, forming the propagative pattern. Therefore,
the observed propagative pattern corresponds to a self-
assembly of propagative localized structures (cf. Fig. 5).
The origin of the emergence of the observed pattern is

that the front between the upright and upside-down pen-
dulums has a well-defined periodic length when it tends to
the fixed edge, left flank. This front profile engenders
alternation of domains of the π and −π states. Indeed, it
locally generates a 2π kink gas. The interaction between
these particle-type solutions is responsible for localized
states [34]. Moreover, their interaction is characterized by
exhibiting a family of localized solutions displaying a
complex bifurcation diagram, a collapsed snaking bifurca-
tion. Spontaneously from the left edge, there is an emission
of localized solutions of one width. However, all localized
solutions with greater width are observed (stable) when
adequate initial conditions are considered.
When inertia is included, i.e., in the underdamped

regime, the phenomena presented above persist. In fact,
the phase diagram presented in Fig. 2 is slightly modified
(for more details, see the Supplemental Material [26]).
In conclusion, based on a prototype model of a non-

linear oscillator chain with a nonreciprocal coupling to
nearest neighbors, a convective instability between unsta-
ble and stable equilibrium is studied. By increasing the
level of nonreciprocity coupling, fronts between these
states exhibit a transition from monotonous to nonmo-
notonous fronts. Unexpectedly, as the level of nonreci-
procity increases, fronts become unstable and give rise to
propagative patterns with a wavelength controllable by
coupling, which corresponds to self-assembly of localized
structures. Analytically, the phase diagram of the system
is revealed.

(b)

(a)

FIG. 4. Self-assembly of localized structures and the wave-
length surface map for the overdamped Frenkel-Kontorova
Eq. (2) with D ¼ 0.4, α ¼ 0.5, and ω ¼ 1. (a) Spatiotemporal
evolution and respective profiles in two instants of time, t1 ¼ 120
and t2 ¼ 395. v accounts for the traveling wave velocity.
(b) Wavelength surface map for the D and α parameter space.

(a)

(b)

(c)

FIG. 5. Self-assembly of localized structures obtained for the
overdamped Frenkel-Kontorova Eq. (2) with D ¼ 0.25, ω ¼ 1,
and α ¼ 0.425. (b) Spatiotemporal evolution of Eq. (2) with
initial condition top panel (a) and final state bottom panel (c). v
stands for the speed of the ensemble of localized structures.
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Because of the universal nature of the model under study,
we expect that the presented findings are generic. Namely,
we expect to observe the self-assembled localized struc-
tures in various nonlinear oscillators with nonreciprocal
coupling. Josephson junctions, coupled with nonreciprocal
robotic elements or computer-assisted coupling, are pos-
sible experiments that could display the proposed phenom-
ena. In the case of considering large deformations of rubber
nonreciprocal metamaterial, one would expect a nonrecip-
rocal nonlinear coupling. The study of this type of coupling
on the dynamics of waves is a work still in progress. In the
continuous limit, the nonreciprocal coupling is only
responsible for the absolute convective instability between
fronts. Instead, the emergence of self-assembly of localized
structures is a peculiar phenomenon of nonreciprocally
coupled to nearest neighbor systems.
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