
Commun Nonlinear Sci Numer Simulat 97 (2021) 105770 

Contents lists available at ScienceDirect 

Commun Nonlinear Sci Numer Simulat 

journal homepage: www.elsevier.com/locate/cnsns 

Research paper 

Particle-based numerical modeling of a thin granular layer 

subjected to oscillating flow 

B. Crespin 

a , b , M.G. Clerc 

c , G. Jara-Schulz 

c , ∗, M. Kowalczyk 

d 

a Université de Limoges, XLIM/ASALI, UMR CNRS 7252, Limoges F-870 0 0, France 
b Center for Mathematical Modeling, UMI (2807) UCHILE-CNRS, Santiago, Chile 
c Departamento de Física and Millennium Institute for Research in Optics, Facultad de Ciencias Físicas y Matemáticas, Universidad de 

Chile, Casilla Santiago, 487-3, Chile 
d Departamento de Ingeniería Matemática and CMM, Universidad de Chile, Casilla Santiago, 170-3, Chile 

a r t i c l e i n f o 

Article history: 

Received 11 September 2020 

Revised 11 January 2021 

Accepted 14 February 2021 

Available online 16 February 2021 

Keywords: 

Granular systems 

Self-organizations 

Numerical simulations 

a b s t r a c t 

Self-organization is observed in granular systems under permanent energy injection. Vari- 

ous aspects of this phenomena have been characterized in experimental studies, however, 

due to the partial access to the evolution of granular media, numerous details of this self- 

organization process are unknown. Here, we investigate a simple, particle-based model 

that captures the dynamics of a quasi-two-dimensional shallow granular layer subjected 

to an air flow oscillating in time. Based on the numerical simulations, we characterize the 

phase diagram, structure and dynamics of domain walls, attractive standing waves, and re- 

veal the origin of their wavelength. Our findings present a quite fair qualitative agreement 

with experimental observations. 

© 2021 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

The granular matter is made up of a large number of small, solid components that are big enough to neglect thermal

fluctuations, and which can flow like a liquid or remain still like a solid [1–5] . The dynamics of these media are mainly

governed by solid contacts, that is, friction and collisions. Common examples are sand, seeds, nuts, powders, pills, gravel 

and avalanches, to name a few [1–5] . Due to the properties shared with fluids and solids, granular media are characterized

by an intermediate behavior of matter between solid and liquid. In the last decades, much effort has been devoted to the

study of the phenomena exhibited by granular matter. However, the richness and complexity of its static and dynamical 

properties still present a major challenge in physics and engineering science. The fluidized granular matter has attracted 

the interest of the scientific community for its interesting and unexpected dynamics [1–5] . Due to the dissipative nature

of granular matter, to fluidize such a system external energy must be supplied, for example by mechanical agitation or an

up-flow of gas strong enough to counter gravity. This last mechanism of fluidization is used in the industry for mixing solid

particles with liquids or gases [6] . Indeed, it is of prominent technological importance in catalysis of gas-sphere reactors, 

transport of powders, and combustion of powders to mention a few [6] . From the point of view of the formation of the

dissipative structure [7–10] , fluidized granular media subjected to an oscillating flow have been shown to exhibit patterns, 

domain walls, convections, and localized structures, among others (see the textbook [5] and reference therein). 
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Fig. 1. A quasi-two-dimensional shallow granular layer subjected to an airflow oscillating in time with zero reference pressure P 0 = 0 . (a) Schematic dia- 

gram of the experimental Hele-Shaw cell consisting of granular layers set on a porous bottom subjected to a temporarily modulated airflow. (b) Temporal 

snapshots for a granular domains (kinks) t 1 < t 2 < t 3 . (c) Experimental phase diagram for the air pressure ( �P) versus the modulation frequency ( f 0 ) of the 

air flow. The symbols represent: ( •) the noise patterns regime (precursors), ( � ) the kink regime, and ( ∗) the homogenous fluidized regime. 

 

 

 

 

 

 

Self-organization can be studied through the use of a Hele-Shaw cell with time-periodic airflow for a quasi-two- 

dimensional granular bed deposited on a porous surface [11] . Fig. 1 a shows a schematic representation of this setup and

the typical self-organization patterns observed. For large enough flows, the interaction between the flow, gravity, and grains 

allows the granular medium to fluidize. That is, the particles of the granular medium are brought to permanent, random 

motion. By further increasing the intensity of the flow, the fluidized granular bed can exhibit patterns, domain walls, and 

complex spatiotemporal dynamics [11–16] , see Fig. 1 . Similar dynamics are observed when considering a thin channel with

a vertically excited granular medium [2,17–19] in which the energy is injected into the system through the collision of 

the grains with the walls of the container. Considering the non-inertial reference system fixed to the container, molecular 

dynamic simulations describe the vertically driven granular media. This type of strategy has been successful in understand- 

ing the internal dynamics of granular systems, which is difficult to access experimentally (see review [20] and references 

therein). Thanks to it was possible to understand the structure of convection rolls [21–25] , Faraday waves [26] , and phase

separation [27] . On the contrary, the internal dynamics of fluid-driven granular media has not been completely understood 

because the existing studies are mainly experimental and give only partial information about the granular dynamics. One 

strategy to understand and model these physical systems has been to consider particles as hard spheres immersed in a fluid,

which is governed by the fluid equations (Navier-Stokes) [28–30] . This allows to explain segregation [28] , convection and

fluidization [29] , and the formation of sand ripples [30] . The drawback of this approach is its complexity and high demand

for computational capacity, which limits the number of constituents of the granular medium. This work aims to present 

a simple, numerical model that captures the dynamics of a quasi-two-dimensional shallow granular layer subjected to an 

airflow oscillating in time. Based on particle-based numerical simulations, we characterize the phase diagram, structure 

and dynamics of domain walls (granular kinks), attractive standing waves (Faraday waves), and reveal the origin of their 

wavelength. The numerical findings exhibits an excellent qualitative agreement with the experimental observations. 
2 



B. Crespin, M.G. Clerc, G. Jara-Schulz et al. Commun Nonlinear Sci Numer Simulat 97 (2021) 105770 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Dissipative structures in a shallow granular layer subjected to an airflow oscillating in time 

A quasi-two-dimensional shallow granular layer subjected to an airflow oscillating in time experimental setup consists of 

a Hele-Shaw cell, depicted in Fig. 1 (a), made up of two glass plates 250 mm wide, 320 mm high, and separated in parallel by

a distance of 3.5 mm. A set of metal meshes placed between the plates serves as a porous bottom on which monodisperse

bronze spheres (diameter d = 350 m) are deposited, forming a thin granular layer the dimensions of which are 5 d high,

400 d long, and 10 d deep. The entire structure is mounted on an aluminum frame. 

The granular layer is forced by periodic airflow (similar to the ones described in [11–16] ), which comes from an air

compressor and is regulated by an electromechanical valve. The valve opens and closes following a voltage signal sent from 

a function generator through a power amplifier. A harmonic sinusoidal signal is sent with a frequency f 0 and a non-zero

offset. This generates a periodic pressure P (t) = P 0 + �P of the air, where P 0 is a non zero reference pressure and �P is

the amplitude of the modulated pressure through a periodic function with period 1 / f 0 [14] . The control parameters in our

experiments are f 0 and �P . For monitoring the spatiotemporal evolution of the granular layer and data acquisition, a CCD

camera is placed in front of the cell about 15 cm away and perpendicular to the Hele-Shaw cell. Images captured by the

camera have 780 × 200 px of size, with a conversion factor of 78 px/cm. The acquisition frequency was set at f 0 / 2 . The cell

is illuminated with white light from behind with an arrangement of led lights and a screen that diffuses the light, in order

to enhance the contrast between the motion of the grains and the background. 

In the regime of low pressure, initially static granular layer starts to fluidize at a critical pressure [11–16] and oscillates

with the forcing frequency while remaining flat. Fig. 1 c shows the phase diagram of this granular system, in which the violet

region represents the zone of the fluidized granular layer. A typical snapshot of the fluidized layer is included in the bottom

panel. As the pressure amplitude increases, the granular layer undergoes a destabilization through a parametric instability, 

which generates domain walls or granular kinks [15,16] , see Fig. 1 (b). This instability is of supercritical nature, that is, near

the transition, the height difference between domains is decreasing continuously as the square root [11,15,16] . Domains are 

characterized by exhibiting disordered patterns. Different domains separated by walls can coexist. Fig. 1 b shows a temporal 

sequence of two domains walls. The dynamics of the positions of the walls is characterized by random fluctuations and 

hopping dynamics of the interfaces. The orange region in Fig. 1 (c) illustrates the area where granular kinks are observed.

Notice that these granular domains are observed for lower pressure amplitudes if the modulation frequency of the air-fluid 

increases. Further increasing the pressure amplitude, the wall domains become unstable and give rise to granular patterns 

[16] . These patterns correspond to subharmonic standing waves, which are the granular equivalent of those observed by 

Faraday in a vertically driven water container [31] . The green region in Fig. 1 (c) shows the regime of parameters where

Faraday waves begin to be observed. These noisy patterns are usually referred to as precursors [32] and the top panel of

Fig. 1 (d) shows their typical representative. It is worth mentioning that in the case of small Hele-Shaw cells the domain

walls are not observed [14] and the fluidized granular layer undergoes a spatial parametric transition, which originates the 

Faraday waves. 

3. Particle-based numerical modeling 

In the following, we describe our model that simulates the behavior of the quasi-two-dimensional shallow granular layer 

subjected to an airflow oscillating in time. Then we give a complete description of the different stages of the algorithm. 

3.1. Numerical representation of a quasi-two-dimensional granular layer 

Granular materials can be modeled with a large collection of discrete elements represented by spherical particles [20–

22,26,27,33–35] . As mentioned before, models based on fluid equations and hard spheres, have been successful in explain- 

ing different phenomena [28–30] . However, their ability to reveal the mechanisms of emerging phenomena is limited, due 

to a large number of components. Other efficient implementations based on the discrete element method were proposed 

[36] and they are in fact similar to the molecular dynamics method used to study three-dimensional gravity-driven gran- 

ular flow of sand in a container [20–22,26,27,37] . Inspired by this last point of view we build a two-dimensional model

where each particle is described by a hard disc with constant mass and diameter, and varying physical quantities such as

its position and velocity (cf. Fig. 2 ) [38] . For the sake of simplicity, we have not considered rotation; that is, we model the

particles as rigid non-rotating solids. At each iteration of the simulation positions and velocities are updated using a fixed 

time step. Gravity is taken into account as a global external uniform force applied to all particles, which are constrained to

stay inside a rectangular simulation box. The position of the particles is described by two cartesian coordinates, respectively 

x, the horizontal and y, the vertical component. There is no long-range force between the particles and when two particles

collide a contact force is applied in order to conserve the linear momentum and account for the dissipation of the energy by

using a constant restitution coefficient [20–22,26–30] . In addition, we also include a force to account for the shear friction

between particles and simulate pile formation with a specific angle of repose. 

The simulation box is divided in columns, each particle being assigned to a single column based on its horizontal position

x, see Fig. 2 . The average height in each column is used to compute the instantaneous height of the granular medium

h (x, t) . Fig. 2 schematically illustrates the granular system and the algorithm used to evolve grains, where arrows attached

to the disks representing the particles account for their respective speeds and directions of propagation. The vertical lines 
3 
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Fig. 2. Schematic representation of the algorithm computation loop. (a) Positions and velocities, where disks represents the grains and arrows their re- 

spective velocities. � g and h m stand, respectively, for the gravity field and the critical height at which the drag force is negligible compared to the weight. 

(b) Computation of the average height in each column depicted with a blue segment line. (c) Use of collision rule for particles in contact. (d) Application 

of an upwards drag force, formula (1) , representing the injection of air. Red arrows account for particles under the influence of the drag force. (e) Update 

position and velocities. (f) Application of the horizontal force for particles in contact with the ground. 

 

 

 

 

 

 

 

 

 

 

 

illustrate the limits of granular columns, and the blue horizontal line segments account for the average height. The effect 

of the oscillating airflow on particles is modeled by a drag force � f (t) induced on the particles [4] , which is effective if and

only if the average height in a column is below a control parameter h m 

. The drag force reads 

�
 f (t) = 

⎧ ⎨ 

⎩ 

F 

(
1 − y 3 

h 3 m 

)
ˆ y , y ≤ h m 

and sin (ωt) ≥ 0 , 

0 , y ≤ h m 

and sin (ωt) < 0 , 

0 , y > h m 

, 

(1) 

where F is a parameter representing the amount of air injected in the system, which we have denominated as pump force,

and T = 2 π/ω corresponds to the period where the airflow is applied. 

As in the experiment, the upward force is applied only during a limited number of iterations, with an input parameter

called N A , where T = N A dt and dt accounts for the interaction time. We note N F the total number of iterations for a complete

cycle : when the number of iteration reaches N F the whole process starts again. 

Hence, ω is computed as the ratio of the number of pushing iterations N A over the total number of iterations N F . The

parameter h m 

accounts for the critical height at which the drag force is negligible compared to the weight. Hence, the drag

force applied upwards is stronger for particles located near the ground, and quickly fades away until height h m 

is reached. 

Numerical simulations with different h m 

qualitatively show the same type of observed dynamic behavior. Hence, we have 

concentrated on modifying the numerical parameters equivalent to those controlled in the experiment. 

Recently, an interesting induced dynamics has been demonstrated when the granular bed granular layer assembly is 

tilted [11,39] . To account for any misalignment in mounting inclination, we include a constant external horizontal force 
�
 B = B 0 ̂  x . This force is applied when particles come in contact with the ground, and effectively mimics the way the particles

slowly drift left or right depending on the inclination. 

The main parameter of our algorithm is the threshold height h m 

(red line in the figures below) used to determine which

particles are pushed up and to simulate the injection of air. 

3.2. Simulation algorithm and parameters 

Our simulation is controlled by different parameters presented in the previous section. Constant parameters, such as the 

size of the vertical columns partitioning the simulation box, are fixed and tuned manually whereas variable parameters take 

values in a fixed range. Their complete list is reported in Table 1 , except for the mass of a particle which set to 1 for the

sake of simplicity. 

The main stages of the simulation algorithm are described below : 

(a) Initialization: each particle is given a random position and velocity obtained from a Gaussian distribution ( Fig. 2 a),

and the iteration number i is set to 0. 

(b) Assign each particle to the corresponding column, then compute the average height c y in each column. Fig. 2 b shows

an example with 3 columns, where the average height is depicted as a blue horizontal line. 
4 
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Table 1 

Table of parameters. 

Parameter Notation Constant value or range 

number of particles n [1200, 5000] 

time step dt 0.035 

gravity acceleration g 0.1 

critical height h m 60 

vertical pump force F [0, 2.5] 

horizontal force B 0 [–0.1, 0.1] 

num. of iterations for one cycle N F [85, 95] 

num. of pushing iterations N A 30 

diameter d 6 

size of partition columns S 8 

spring coefficient k 0.7 

friction coefficient f c 0.995 

restitution coefficient e [0, 1] 

 

 

 

 

 

(c) For each pair (p 1 , p 2 ) of particles: detect and handle possible overlaps using Algorithm 1 , in order to simulate near-

elastic collisions and pile formation (see Fig. 2 c where two particles in contact are represented in dark blue). 

(d) For each particle: if the iteration number i ∈ [0 , N A ] and the average height of the column assigned to this particle

c y < h m 

, then compute the drag force � f (t) for this particle using Eq. (1) . Fig. 2 (d) shows an example where only

particles marked in dark blue are modified. 

(e) For each particle: update velocity and positions using a simple first order scheme: 

�
 v (t + dt) = 

�
 v (t) + ( � f (t) + g ̂  y ) dt, 

�
 p (t + dt) = 

�
 p (t) + 

�
 v (t ) dt , (2) 

where g represents gravity. As shown in Fig. 2 (e), all particles are modified during this step. 

(f) For each particle: if the particle collides with the left, right or top walls, a simple elastic collision is applied. If it col-

lides with the ground, the constant horizontal force � B = B 0 ̂  x is applied towards the left or right to implicitly represent

the inclination of the simulation box, as shown on Fig. 2 f for one particle marked in dark blue. 

(g) go back to the beginning of the computation loop (step b) and increase the iteration number by i = (i + 1) mod N F . 
Algorithm 1 Collision handling of two particles with positions � p 1 , � p 2 and velocities � v 1 , � v 2 . 
Require: diameter d, spring coefficient k , friction f c , restitution e 

�
 p 12 ← 

�
 p 2 − �

 p 1 
d 12 ← | � p 12 | 
if d 12 < d then 

{Minimum translation distance} 

�
 m ← 

�
 p 12 ((d − d 12 ) /d 12 ) 

{Modify positions} 

�
 p 1 ← 

�
 p 1 − �

 m / 2 

�
 p 2 ← 

�
 p 2 + 

�
 m / 2 

{Impulse} 

a ← atan 2( � p 12 ) 
�
 i ← d ( cos (a ) , sin (a )) 

�
 i ← k ( � i − �

 p 12 ) 

{Modify velocities} 

�
 v 1 ← 

�
 v 1 −�

 i 

�
 v 2 ← 

�
 v 2 + 

�
 i 

{Reduce horizontal velocity based on angle a } 

f a ← f c (1 − ( (a + π/ 2) 2 / (π/ 2) 2 )) 

if a < 0 then 

v 1 x ← v 1 x f a (1 − e ) 

else 

v 2 x ← v 2 x f a (1 − e ) 

end if 

end if 

5 
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Fig. 3. Numerical analysis of particle-based model of quasi-two-dimensional shallow granular layer subjected to an airflow oscillating in time. (a) Numerical 

phase diagram for the pump force F versus the parameter ω. The error bars account for the standard deviation obtained in determining critical points. The 

light blue, yellow, and light red colors represents regions of the parameter space where, respectively, motionless granular layer, domains walls, and standing 

waves are observed. Temporal sequences of images for an oscillatory granular bed (b), granular domain (c), and standing wave (d) with t 1 < t 2 < t 3 . 

 

 

 

 

 

 

 

 

 

 

 

 

Since we use a time-step procedure (and not an event-driven algorithm), there is a possibility that particles overlap 

each other during the simulation. This case is handled in Algorithm 1 , where additional friction is added to prevent the

simulation from becoming unstable. 

4. Numerical results 

In numerical simulations, we have considered that h m 

is greater than the motionless flat granular layer deposited at the 

bottom of the cell. For a very small strength of the pump force F, we observe that the granular layer remains motionless.

Only few particles on the top of the surface of the granular medium are stirred. As the strength of the pumping increases,

the granular layer fluidizes and oscillates with the frequency of forcing. Fig. 3 (b) illustrates a temporal sequence of the

typically observed images. As the frequency of the forcing cycle increases, we observe that the region where the oscillatory 

granular bed is observed decreases (cf. Fig 3 ), which is consistent with the experimental observations (see Fig. 1 ). At this

stage the uniform granular bed is stable. However, increasing the intensity of the pumping to a critical value, we observe

the appearance of domains that oscillate out of phase. The origin of this instability is of parametric nature [40] ; monitoring

the Fourier transform we observe the emergence of the mode with an ω/ 2 frequency [38] . Experimentally, an analogous

phenomenon is observed [15] . Namely, the parametric instability causes the emergence of domain walls or granular kinks 

in a quasi-two-dimensional shallow granular layer subjected to an air flow oscillating in time. Fig. 3 (c) depicts a temporal

sequence of the numerical granular kink. We observe that the maximum height difference between the domains decreases 

as one approaches the bifurcation point. Indeed, this parametric bifurcation is of the second-order type. It is important 

to mention that in the course of increasing the strength of the airflow, the domains exhibit a wavelength (cf. Fig. 3 c).

The yellow zone in Fig. 3 accounts for the region in the parameter space where we numerically observe the numerical

granular kinks. This region has a tendency to slope with the frequency of forcing, in an analogous way to what was observed

experimentally. By increasing the magnitude of the pump force even more, we observe that the granular domains become 
6 
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Fig. 4. Granular kinks. (a) Snapshot of a granular kink with horizontal setup. x 0 and v account for the position and speed of the granular kink. (b) 

Probability density distribution of granular kink displacements �x ≡ x 0 (t i +1 ) − x 0 (t i ) . Purple and yellow vertical rectangles account for the probability 

distribution obtained experimentally and numerically, respectively. (c) Experimental diagram of the average velocity 〈 v 〉 versus inclination angle γ of the 

experimental setup. Inset accounts for a magnification of the pinning region. (d) Numerical diagram of the average velocity 〈 v 〉 versus horizontal force 

B 0 . Inset accounts for a magnification of the pinning region. (e) Numerical image of a granular kink. Gray discs represent the individual particles. The 

continuous red curve is the average height. The blue arrows show the velocity of particles. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

 

 

 

 

unstable, and a standing wave emerges, with a well-defined wavelength, Faraday instability [31] . Fig. 3 (d) shows a sequence

of temporal images of the Faraday waves observed in the numerical simulations. The phase diagram found numerically is 

shown in Fig. 3 a. This diagram is in excellent qualitative agreement with the one observed experimentally (see Fig. 1 ). The

numerical bifurcation diagram was obtained by performing 20 numerical realizations for each point of the parameter space. 

The error bars shown in this figure account for the standard deviation obtained in determining critical points. Therefore, the 

proposed model adequately accounts for the self-organizing patterns observed experimentally. 

4.1. Numerical granular kinks 

One of the most intriguing dynamic phenomena are the granular kinks [11,15,16] , (see Fig. 1 b and Fig. 4 ). They cor-

respond to particle-type states that are localized and described by continuous parameters such as their position [41,42] . 

The position of the granular kink x is defined as the spatial location that corresponds to the average height between two
0 
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Fig. 5. Numerical Faraday waves. Profile of the fluidized granular layer for e = 0 (a) and e = 1 (b). (c) Wavelength λ as a function of the restitution 

coefficient e . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

consecutive domains (cf. Fig. 4 a). Recently, it has been shown experimentally that the displacement of the kink position, 

�x ≡ x 0 (t i +1 ) − x 0 (t i ) , satisfies a bell-shaped distribution [11] . The origin of this dynamical behavior is associated with the

inherent fluctuations of the granular medium and the structure of the granular kink. Numerically, we have studied the evo- 

lution of the displacement distribution, and we have found a similar dynamical behavior to that observed experimentally. 

Fig. 4 b shows the distribution and comparison of the displacement of the granular kink experimentally and numerically. 

As a function of the energy injection, strength, and period applied, we observe that the fluidized state may or may not be

more dilute. The interface characterizes more diluted states exhibits greater fluctuations. For example, in the experimental 

snapshot and numerical simulation shown in Figs. 4 a and 4 e, respectively, it is clearly observed that in the former, the

granular bed is more diluted; that is, a higher energy injection is considered. 

Another relevant phenomenon observed in granular kinks is the pinning-depinning transition [11] . This phenomenon is 

related to the fact that by tilting the experimental set-up in a range of small angles, the kink fluctuates erratically, and

its average speed 〈 v 〉 is small (pinning region). However, starting from a critical value, granular kinks propagate in a more

ballistic way (depinning region) that is, except for small random fluctuations, with a well-defined speed which increases 

proportionally to the angle. Fig. 4 c shows the experimental pinning-depinning transition of a granular kink. To account for 

the tilt of the experimental setup, we have included the horizontal force B 0 when particles collide with the ground. In a

range of small strength of B 0 , we observe that the granular kinks have small average speeds (pinning region). However, from

a critical strength B 0 , granular kinks begin to propagate with remarkable speed (depinning region). This speed increases 

linearly with the intensity of the force (see Fig. 4 d). Therefore, numerically we observe a pinning-depinning transition, 

similar to that observed experimentally. 

An unsolved question is what is the internal granular structure of the granular kinks. As the experiment is not per-

fectly two-dimensional, this characterization is a thorny task since only particles in the foreground can characterize their 

position and speed. In the case of a vertically driven granular medium (oscillating container), experiments with perfectly 

two-dimensional granular media are possible [19] . In this type of experiment, the formation of convection rolls in the struc-

ture of granular kink has been established (heaping process). Our numerical simulations allow us to reveal the structure of 

granular kink by characterizing the position and velocity of the particles (see Fig. 4 e). The domains have a periodic veloc-

ity structure, but the system does not exhibit roll formation [38] . Presumably, this is due to the presence of fluid passing

through the granular bed (experimentally) and the force that pushes the particles into the bulk of the granular medium 

(experimentally and numerically). In experiments and numerical simulations with a vibrating container, where convection 

is observed, the force is only injected into the particles in contact with the container (external granular layers energy injec-

tion). Experimental work to verify this prediction is in progress. 

4.2. Numerical faraday waves 

As we have previously mentioned, for sufficient large strength of the forcing the system exhibits standing or Faraday 

waves, see Fig. 1 . One of the unknown characteristics of these intriguing patterns is how they originate and what gov-

erns the length of the observed patterns. Usually, the wavelength is the competition of difference of scales of different

transport processes, commonly denominated as Turing mechanism [43] , or the stability exchange of spatial modes [44] . 

Fig. 5 summarizes how the wavelength changes with the restitution coefficient e . When increasing the restitution coefficient 

the wavelength increases. At first approximation, the wavelength is proportional to the coefficient of restitution. Physically, 

this phenomenon can be understood as a consequence of the fact that by increasing the coefficient of restitution, the par-

ticles can travel greater distances horizontally after a collision. As a matter of fact, changes in the transport mechanisms 

on the surface of the fluidized granular layer, allow the particles to be displaced at larger distances. Hence, the balance

between the distances that the particles in the top granular layer can reach and the energy exchange fixes the wavelength

of the Faraday waves. 
8 
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5. Conclusions and remarks 

Granular systems kept out of thermodynamic equilibrium by means of energy injection exhibit complex dynamic be- 

haviors. A global understanding of these phenomena lacks a unified description due to the absence of fluid type theory. 

This is the principal difficulty in understanding and comparing them with molecular fluids. One strategy to achieve progress 

in this direction is to establish minimal models that describe well the dynamics and taking them as the point of depar-

ture, through coarse-graining processes, derive macroscopic models. The fundamental, intermediate step is to derive these 

minimal microscopic models and compare with experimental findings. 

A natural strategy of describing granular media is by considering molecular dynamics due to their elemental constituents’ 

simple interaction rules. In fluid-driven granular systems, this strategy should be complex since the dynamics at the mi- 

croscopic level are described by particles and fluid equations. This methodology has successfully explained segregation, 

convection, fluidization, and the formation of sand ripples. However, given its complexity, this type of approach is not ef- 

ficient to obtain a minimal microscopic model. Particle-based numerical simulations are one of the efficient strategies in 

this direction. Motivated by this idea, we have proposed here a minimal numerical model that captures the dynamics of a

quasi-two-dimensional shallow granular layer subjected to an air flow oscillating in time. We have determined the phase 

diagram, the structure and dynamics of domain walls, the presence of the Faraday waves, and we have explained the origin

of their wavelength. Our findings are in a very good qualitative agreement with experimental observations. 

From this type of model, a kinetic theory can be established, within which the appropriate macroscopic physical quanti- 

ties (mass density, granular height field, kinetic energy, and so forth) and the governing equations could be identified. Work 

in this direction is in progress. 
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