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Macroscopic systems with injection and dissipation of energy exhibit intricate dissipative structures.
Labyrinthine patterns are disordered spatial structures arising into homogeneous media that show a short-range
order. Here, we investigate the stability properties, classification, and transitions of labyrinthine patterns.
Based on a prototype pattern forming model, we characterize the existence of three types of labyrinthine
patterns—fingerprint type, glassy, and scurfy—and reveal the bifurcation diagram. The defects density, free
energy, structure factor, and correlation length are used as order parameters.
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Nature is full of patterns such as dunes, animal fur, fish
skin, snowflakes, pigmentation on mollusk shells, fir waves,
mountain ripples, and clouds, which have attracted attention
due to their regularities or irregularities that generate the di-
versity of forms [1–5]. All these physical systems correspond
to macroscopic systems with injection and dissipation of en-
ergy. Out-of-equilibrium systems are characterized in general
by exhibiting pattern formation as a result of spontaneous spa-
tial breaking symmetry of a homogeneous state [1–5]. Near
this transition, the observed equilibrium patterns are generally
striped, hexagonal, square, and superlattice. A unified strategy
to describe the emergence and dynamics of these simple pat-
terns is the amplitude equations of critical modes [1–5]. By
increasing energy injection, pattern forming systems exhibit
more complex patterns, characterized by a large number of
defects. Indeed, far from the primary spatial instabilities, dis-
ordered patterns arise into homogeneous media. An example
of these types of complex patterns is the so-called labyrinthine
patterns. Figure 1 shows examples of labyrinthine patterns
observed in nature. These patterns have been observed in
mussel beds [6], cardiovascular calcification [7], phytomass
[8], microemulsions [9], fish skin [10], fluid convection [11],
Langmuir monolayer [12], magnetic fluids [13], chemical re-
actions [14], and cholesteric liquid crystals [15], to mention
a few. Hence, labyrinthine patterns are a robust phenomenon
of nature. Intuitively, in all the aforementioned systems, the
observed patterns are denominated labyrinths. However, a pre-
cise definition is not available. A proposition of a labyrinthine
pattern is a spatial state that shows a short-range order and a
powdered spatial spectrum [16]. Notwithstanding the above,
when one considers a hexagonal structure with defects, it
satisfies the previous definition and is not an intuitive labyrinth
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structure. The previous definition can be amended by specify-
ing that a single wave number characterizes short-range order.
The characterization of different types of labyrinth patterns,
their properties as a state of equilibrium, and transitions be-
tween them has not been established.

The purpose of this Rapid Communication is to de-
scribe different types of labyrinthine patterns and characterize
the transitions between them. Based on a prototype pattern
forming model, the Turing-Swift-Hohenberg equation, we
characterize the existence of three types of labyrinthine pat-
terns (fingerprint-type, glassy, and scurfy) and reveal their
transitions. The defects density, free energy, structure fac-
tor, and correlation length are used as order parameters.
Fingerprint-type labyrinths arise as a result of the emergence
of bound states between defects. This is a supercritical tran-
sition, which precedes freezing of the coarsening process
that characterizes striped patterns [17]. When increasing the
bifurcation parameter, the transition between the fingerprint-
type and glassy patterns is of the second-order type, which
is detected by means of the correlation length. The structure
factor allows us to characterize the transition between glassy
and scurfy labyrinthine patterns. Free energy allows us to en-
visage the complex organization of the different labyrinthine
patterns.

Let us consider a prototype model of pattern formation, the
dimensionless Turing-Swift-Hohenberg equation [18]. This
model equation accounts for the dynamics of a real order pa-
rameter deduced originally to describe the pattern formation
on Rayleigh-Bénard convection [18,19], which reads

∂t u = εu − u3 − ν∇2u − ∇4u, (1)

with u = u(x, y, t ) a real scalar field, and x, y, and t are
spatial coordinates, and time, respectively. ε is the bifurcation
parameter. The parameter ν stands for the diffusion coefficient
(ν < 0); when this parameter is positive (ν > 0), it induces
an antidiffusion process. Notice that the above model is the
simplest isotropic, reflection symmetry, and nonlinear equa-
tion that presents patterns and localized states [2]. In the last
decade, it has been established that Eq. (1) had already been
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FIG. 1. Labyrinthine patterns. (a) Chiral liquid crystal
labyrinthine pattern (courtesy of Gregorio Gonzalez). (b) Vegetation
patterns observed in Niger using Google Earth (coordinates
12◦27′50.61′′ N 3◦18′30.76′′ E). (c) Seafoam patterns (courtesy of
Randall Straka). (d) Giant puffer fish (courtesy of Chiswick Chap).

constructed by Turing, but was unpublished [19]. Note that
Eq. (1) was published 23 years after Turing’s death [18].
Observe that model equation (1) is of variational nature, that
is, ∂t u = −δF/δu where F is the Lyapunov function

F[u] =
∫∫ (

−ε
u2

2
+ u4

4
− ν

(∇u)2

2
+ (∇2u)2

2

)
dx dy.

(2)

Hence, the dynamics of model equation (1) is characterized
by the minimization of the free energy F .

A trivial solution of model equation (1) is the zero so-
lution, u(x, y, t ) = 0. This solution is stable for ε < εc ≡
−ν2/4. For ε = εc, the homogeneous solution becomes un-
stable and gives rise to the emergence of a striped pattern
with wavelength |�kc| = √

ν/2 [2,3]. This spatial supercritical
instability is characterized by the emergence of domains of
striped patterns with different orientations and the same wave-
length. These domains are randomly distributed. Defects that
reconcile different pattern orientations separate the domains.
These are local disclinations and extended grain boundaries;
both of amplitude and phase. Also, dislocations appear that
fix local discrepancies in wavelength (see textbook [3], and
references therein). The interaction of these defects causes
domains to grow over time. This process is self-similar, usu-
ally called coarsening process, which is characterized by
the grain-boundaries perimeter growing as a power law of
time t1/3 [17]. Note that phase separation in supersaturated
solids [20,21] and the formation of localized patterns in optics
[22,23] present a coarsening process, which is governed by
the same critical exponent. Hence, in a finite-size system, the
final equilibrium reached is a striped pattern (monodomain).
Figure 2(a) shows the typical observed striped pattern. The
orientation of these patterns only depends on the initial con-
dition. The modulus Fourier transform of this type of pattern
is characterized by exhibiting two maximums [see the upper
inset panel in Fig. 2(a)]. In order to describe the short-range
order of the pattern, we introduce the averaged windowed
Fourier transform by considering a large number of boxes of
the same length l , calculating the Fourier transform, rotating
the wave-vector space so that a peak of the transformation is

FIG. 2. Equilibrium patterns of the dimensionless Turing-Swift-
Hohenberg equation (1) with ν = 1. Surface plots of (a) striped
pattern ε = −0.22, (b) fingerprint-type labyrinthine pattern ε =
−0.16, (c) glassy labyrinthine pattern ε = 0.02, and (d) scurfy
labyrinthine pattern ε = 1.15. The upper and lower insets account for
the modulus of global and averaged windowed Fourier transforms,
respectively. λc and l are the critical wavelength (2π/|�kc|) and the
size of the window in the averaged windowed Fourier transform,
respectively.

always horizontal, and averaging over these transforms. The
lower panel of Fig. 2(a) illustrates this transform.

Unexpectedly, when the bifurcation parameter ε is in-
creased, the interaction of defects freezes [24], that is, the
defects present bound states. In this region of parameters,
starting with the zero solution perturbed with a small initial
noise, the system exhibits labyrinth solutions as equilibria.
Figure 2 shows the different labyrinthine patterns observed
in the Turing-Swift-Hohenberg equation. By using the global
and averaged windowed Fourier transform, we can verify that
the observed patterns are disordered and show a short-range
order characterized by a single wave number. All numerical
simulations were implemented using a pseudospectral code
with the Runge-Kutta order-4 algorithm. In the present study,
u = 0 with a small random disturbance is always considered
as the initial condition.

To verify that the labyrinthine patterns are equilibrium
states, we have conducted two analyses. First, monitoring the
evolution of free energy over time F[u(x, y, t )], which should
have the tendency to decrease and settle at an asymptotic
value. Indeed, the free energy decreases as the defects are
annihilated or reach their final position. Figure 3 shows the
evolution F[u] as a function of time. And second, by calculat-
ing the linear stability spectrum of the labyrinth solution (cf.
upper inset in Fig. 3). Both analyses allow us to conclude that
labyrinthine patterns are stable.
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FIG. 3. Temporal evolution of the free energy F [u(x, y, t )] for a
labyrinth state of the Turing-Swift-Hohenberg equation (1) with ν =
1 and ε = 0.02. The upper inset corresponds to the linear stability
spectrum of the labyrinth solution for large times. The lower insets
show the labyrinthine pattern for three different instances.

When defects begin to freeze, ε = εSFP, the system fea-
tures large domains of striped patterns mainly separated by
amplitude grain boundaries. We have called these structures
fingerprint-like labyrinthine patterns, due to their similarity to
fingerprints. Figure 2(b) shows a fingerprint-type pattern and
their respective Fourier transforms. To characterize the emer-
gence of these patterns, we have measured the defects density
fd , based on the orientational field of the pattern [25], as a
function of the bifurcation parameter. Figure 4(a) summarizes
fd as a function of the bifurcation parameter. Observe that
the transition between fingerprint-type and striped patterns is
of a supercritical type and described by a critical exponent
1/2, as shown by the continuous curve [cf. Fig. 4(a)]. Notice
that at this critical point, the striped patterns do not become
unstable, and even for higher bifurcation parameters, they
coexist with labyrinthine patterns. Likewise, if one calculates
the correlation length ξ [26] as a function of the bifurcation
parameter [see Fig. 4(a)], we observe that this length diverges
in the transition between fingerprint-type and striped patterns
with a −1/2 power law. When increasing the bifurcation
parameter, we observe that the rate of the defects density
decreases; particularly from ε > εFPG, no grain boundaries
were observed. Then, the patterns in this region are charac-
terized by presenting a large number of local defects. We
have termed this type of pattern as glassy labyrinths, due to
its amorphous structure. Figure 2(c) shows a typical glassy
labyrinthine pattern. The correlation length close to εFPG ex-
hibits a slight local maximum [cf. inset in Fig. 4(a)], which is
a peculiarity of glassy-type second-order transitions [27]. To
analyze this transition more carefully, we have monitored the
time evolution of the correlation length. Figure 4(b) shows the
evolution of the correlation length as a function of the bifur-
cation parameter. From this chart, we infer that the correlation
length variations are almost negligible for glassy labyrinthine
patterns. Indeed, the glassy state corresponds practically to an
instantly frozen state. In brief, the fingerprint-type and glassy
labyrinthine patterns can be distinguished by the prevalence

(a)

(b)

FIG. 4. Bifurcation diagram of labyrinthine patterns. (a) The
correlation length ξ and defects density fd as a function of the
bifurcation parameter ε. The circles (•) and triangles (�) account
for the correlation length and defects density, respectively. The error
bars account for the standard deviation obtained after analyzing
50 numerical realizations. εSFP and εFPG account for the transition
points between striped and fingerprint-type labyrinthine patterns, and
fingerprint-type and glassy labyrinthine patterns, respectively. The
solid curves describe the fitting for the defects density and correlation
length. The inset accounts for the magnification of the correlation
length close to the transition from fingerprint-type to glassy patterns.
(b) Temporal evolution of the correlation length ξ as a function
of the bifurcation parameter ε. The inset shows the initial ξ0 and
equilibrium ξ∞ correlation length difference as a function of the
bifurcation parameter.

of amplitude grain boundaries and the relaxation dynamics to
their respective equilibria.

By further increasing the bifurcation parameter, we ob-
serve that the glassy patterns maintain the same structure.
However, from a critical value, ε > εGS , we begin to find the
appearance of circular spots embedded in the labyrinth pat-
tern. We have called this type of structure scurfy labyrinthine
patterns. Figure 2(c) shows a typical scurfy labyrinthine pat-
tern. As a result of the presence of spots we are not able to
compute the defects density and correlation length. To analyze
the emergence of circular spots onto labyrinthine patterns, let
us consider the structure factor

S(k) =
∫ π

−π

∣∣∣∣ 1√
π

∫
u(x, y, t )ei�k�rdx dy

∣∣∣∣k dθ, (3)

where k = |�k| and θ are the polar coordinate representation
of wave-vector space �k. The typical structure factors S(k) for
the different labyrinthine patterns are shown in the insets of
Fig. 5. Note that for fingerprint-type and glassy patterns only
one dominant peak is observed, while for scurfy labyrinthine
patterns there are two peaks. This second peak close to
k = 0 is a consequence of the effect of circular spots and
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(a)

(b)

FIG. 5. Characterization of labyrinthine patterns. (a) The nor-
malized area difference between the peaks, 
(ε) ≡ (

∫ ∞
ko

S dk −∫ ko

0 S dk)/
∫ ∞

0 Sdk as a function of the bifurcation parameter. The
insets correspond to normalized structure factors at different val-
ues of the bifurcation parameter. The continuous curve 
(ε) ≈
|ε − εSD|0.26 accounts for the fitting obtained for the area difference
near the disappearance of the scurfy patterns. εGS and εSD stand
for the transition points between glassy and scurfy labyrinths, and
scurfy labyrinths and their disappearance, respectively. (b) Free en-
ergy F of the different equilibria as a function of the bifurcation
parameter ε. The solid curve accounts for the energy of the striped
pattern. The circles account for the different labyrinthine patterns
(◦ fingerprint-type, ◦ glassy, and ◦ scurfy). The error bars show the
standard deviation obtained from 30 realizations. Insets stand for the
magnification of the chart in the respective regions.

localized structures. Introducing the normalized area differ-
ence between the peaks,


(ε) ≡
∫ ∞

ko
S(k)dk − ∫ ko

0 S(k)dk∫ ∞
0 S(k)dk

, (4)

one can monitor the emergence of the second peak, where
ko is an intermediate wave number between peaks. Figure 5
shows the evolution of the area difference 
 as a function of

ε. This indicator presents a sharp decrease at ε = εGS . For
εGS < ε < εSD, we observe scurfy labyrinthine patterns. In
this region of parameters, we observe that the labyrinthine
patterns coexist with the uniform state and localized structures
[28,29]. Hence, εGS accounts for the transition between glassy
and scurfy labyrinthine patterns. When ε > εSD, the scurfy
labyrinthine patterns become unstable by shrinking, and form-
ing a gas of localized spots. The inverse process, that is, how
a labyrinthine pattern is generated deterministically from a
localized structure, is well known as invagination [29]. Close
to the disappearance point of the labyrinthine patterns, we find

(ε) satisfies a power law 1/4 [see Fig. 5(a)].

The Turing-Swift-Hohenberg model equation (1) is vari-
ational. Then, we can use the free energy F to characterize
different equilibria. Figure 5(b) illustrates the free energy F
of the different equilibria as a function of the bifurcation
parameter ε. From this chart, we conclude that the striped pat-
tern is the most stable state. The fingerprint-type labyrinthine
patterns are the most stable labyrinthine state. Note that close
to εFPG, the energy of fingerprint-type labyrinths merges with
the energy of glassy and scurfy ones. The energy of the
glassy labyrinths is always less than the energy of the scurfy
labyrinths. Therefore, considering different initial conditions,
the system presents a large number of equilibria with varying
levels of energy.

In conclusion, out-of-equilibrium systems exhibit compli-
cated disordered patterns. One of the patterns observed in
various physical contexts is the so-called labyrinth pattern.
We establish these labyrinthine patterns as a spatial state that
shows a short-range order characterized by a single wave
number and a powdered spectrum. The consideration of a
local single wave-number behavior allows the distinction be-
tween labyrinths and disordered hexagonal patterns, the latter
characterized locally by three wave numbers. Based on a pro-
totype pattern forming model, the Turing-Swift-Hohenberg
equation, we investigate the stability properties, classification,
and transitions between labyrinthine patterns. The observa-
tion of three types of labyrinthine patterns—fingerprint-type,
glassy, and scurfy—are established. The density of defects,
free energy, structure factor, and correlation length allow us to
reveal the bifurcation diagram. The mentioned order param-
eters, except free energy, together with techniques of global
and averaged windowed Fourier transforms can also be used
to characterize stationary labyrinths and their transitions in
nonvariational systems [16,30].
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