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Magnetic field-induced vortex triplet and vortex lattice in a liquid crystal cell
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Vortices are particle-type solutions with topological charges that can steer the dynamics in various physical
systems. By the application of electromagnetic fields onto a homeotropic nematic liquid crystal cell, we are able
to induce a vortex triplet that remains stable and trapped at a given location. For a low frequency of the driven
voltage, we observe that the vortex triplet is unstable and gives rise to the appearance of a topological lattice.
Based on an amplitude equation valid close to reorientational instability, it allows us to reveal the origin of the
vortex triplet and vortex lattice. Numerical simulations show a quite fair agreement with theoretical findings and
experimental observations.
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Continuous media are characterized by exhibiting different
robust phenomena such as waves, fronts, patterns, and dissi-
pative structures [1–4]. One of the most attractive dynamic
behaviors is particle-type solutions or localized structures,
where solitons are the paradigmatic example [5,6]. These dy-
namic behaviors are extended spatially; however, they exhibit
characteristics associated with particles such as a position,
amplitude, charge, width, among others. The localized struc-
tures are understood as patterns appearing in a restricted re-
gion of space [7–10]. Dissipative particle-type solutions have
been theoretically predicted and experimentally observed in
many fields of nonlinear science, such as laser physics, hydro-
dynamics, fluidized granular media, gas discharge systems,
chemical reactions, magnetic media, and biology (see the
reviews in Refs. [7–10] and references therein). Localized
structures can be created or destroyed by localized distur-
bances [7–11]. All these features change radically when one
considers particle-type solutions with topological charges,
called vortices [12]. Vortices are pointlike singularities that
take place in complex fields, which locally break the rotation
symmetry. They present zero intensity at the singular point
with a phase spiraling around it. The topological charge is al-
located by counting the number of phase jumps, while the sign
is given by the direction of the spiral rotation. Conventionally,
it is positive (negative) when the rotation is counterclockwise
(clockwise). As a consequence of the conservation of topo-
logical charge, vortices are created and annihilated by pairs
between opposite charges [12]. In addition, this conservation
precludes that a local disturbance would destroy vortices.
Indeed, the possession of a topological charge provides vor-
tices with a topological stability, as occurs with fundamental
particles [12]. A paradigmatic field model that presents vor-
tices is the Ginzburg-Landau equation [12,13]. This amplitude
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equation has been used to describe fluids, superfluids, super-
conductors, liquid crystals, granular matter, magnetic media,
and optical dielectrics, to mention a few [12–15].

A natural physical context where dissipative vortices are
observed is in liquid crystals [16,17]. Vortices in this context
are usually called umbilical defects or disclination lines. Con-
sidering a thin film of nematic liquid crystal with a negative
anisotropic dielectric constant and homeotropic anchoring,
applying a sufficiently large transverse electric field gener-
ates a molecular reorientation, known as the Fréedericksz
transition [18]. This transition is characterized by the spon-
taneous emergence of a vortex gas. Due to the attraction and
annihilation of vortex pairs, the system ultimately finds its
homogeneous equilibrium state, characterized by the fact that
the molecules in the bulk are misaligned from the applied
electric field [16,17]. These topological defects are of great
relevance because when interacting with light they can be
a source of optical vortex beams [19–22]. Alternatively, one
can induce umbilical defects by means of intense light beams
[23], photosensitive walls [21,24], or by means of external
magnetic and electric fields [25,26]. The combined action of
a distant magnetic ring with a uniform electric field into the
nematic cell enables the self-engineering of macroscopic q
plates [26]. The possibility of manipulating vortices allows
creating optical vortex lattices, which are useful for quantum
computation [27], image analysis [28], and generation and
data transmission [29].

This Rapid Communication aims to show that a vortex
triplet is induced by the combined action of a close magnetic
ring and oscillatory electric field into a nematic liquid crystal
layer. The vortex triplet is characterized by a positively
charged vortex in the center and two vortices on its flanks of
opposite charges. Namely, the triplet has a positive total topo-
logical charge consistent with that enforced by the magnetic
ring. The vortex triplet is a consequence of the structure of
the magnetic protuberance at the ring center, vertical electric
field, and inherent anisotropy of the liquid crystal. For a low
frequency of the driven voltage, we observe that the vortex
triplet is unstable and gives rise to the appearance of a topo-
logical lattice. An amplitude equation allows us to explain the
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FIG. 1. Schematic representation of the experimental setup.
(a) Vertical description of the experimental setup. NLC accounts for
the nematic liquid crystal cell, d is the thickness of the cell, ITO
accounts for the transparent electrode (indium tin oxide), Vω(t ) is a
harmonic voltage applied to the liquid crystal layer, where ω is the
voltage frequency, MR is the magnetic ring of thickness h and inter-
nal and outer radius Rin and Rout, WLS is the white light source, P and
A stand for polarizers, which are crossed, O accounts for the objec-
tive, and CMOS is the complementary metal-oxide-semiconductor
camera. The rods represent the average direction of molecules, di-
rectors. (b) Three-dimensional schematic representation of the liquid
crystal cell under the influence of electric and magnetic fields.

emergence of a vortex triplet and vortex lattice. Numerical
simulations show a good agreement with experimental
observations.

Experimental setup. Figure 1 shows a schematic repre-
sentation of the experimental setup. To study the vortex
dynamics, we consider a cell composed of two thin glass
layers separated by a thickness of d = 75 μm, which is chem-
ically treated on its interior walls to have a homogeneous
homeotropic anchoring and with transparent electrodes in-
cluded [indium tin oxide (ITO) with a thickness of 0.08 μm].
This cell has been filled by capillarity with a nematic liq-
uid crystal LC-BYVA-01-5G (Instec) with negative dielectric
anisotropy εa = −4.89, birefringence �n = ne − no = 0.1,
rotation viscosity γ = 204 mPa s, splay and bend elastic
constant, respectively, K1 = 17.65 pN and K3 = 21.39 pN,
and negative magnetic anisotropy χa (not yet measured). All
experiments were conducted at a room temperature of 21 ◦C.
A neodymium magnetic ring of 3200 G with a rectangular
transversal section, outer radius Rout = 7 mm, internal radius
Rin = 2 mm, and thickness of h = 5 mm is put on top of the
nematic liquid crystal cell (cf. Fig. 1). The sample with the
magnetic ring is introduced in an Olympus B×51 microscope
and it is sandwiched between two linear cross polarizers. A
sinusoidal voltage of intensity V0 = 7.95 Vpp, near the reori-
entational transition, and a Fréedericksz voltage VFT = 6.57
Vpp, with a frequency of ω = 100 Hz is applied to the sample.
The system is illuminated by a white light (halogen lamp).
The temporal evolution of the liquid crystal cell under the
simultaneous effects of the electric and magnetic field is
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FIG. 2. Magnetic ring-induced vortex triplet in a nematic liquid
crystal layer. (a) Snapshot of a vortex observed close to the Fréed-
ericksz transition V0 = 6.3 Vpp. (b) Snapshot of the vortex triplet
observed above the orientational transition V0 = 7.95 Vpp. (c) A
temporal sequence of snapshots of the emergence of vortex triplet
formation t0 < t1 < t2, far from the orientational transition V0 =
15.0 Vpp.

monitored by a complementary metal-oxide-semiconductor
(CMOS) camera (Thorlabs DCC1645C), which allows us to
observe the central zone of the magnetic ring.

Experimental observations of the vortex triplet. When the
liquid crystal sample is only under the influence of the mag-
netic field, there is no light transmission. Hence, the torque
generated by the magnetic field is not capable of overcoming
the elastic resistance; namely, the considering magnetic ring is
not capable of inducing the molecular reorientation. In order
to generate this reorientation, a voltage drop is included or-
thogonal to the sample of the form Vω(t ) = V0 cos(ωt ). Due to
negative electrical anisotropy and the simultaneous presence
of the electric and magnetic field, we observe the reorienta-
tion transition for voltages less than the Fréedericksz voltage
(critical voltage for the reorientation instability purely induced
by an electric field). By increasing the magnetic intensity by
using magnets of different thicknesses, we observe a transition
of molecular reorientation for lower voltages. Unexpectedly,
close to the reorientation instability, the emergence of a vortex
with a thick core in the center with a ring near to the inner
radius of the magnet is observed. Figure 2 shows the typically
observed vortices. By increasing the voltage, we have a better
resolution to observe the emergent structure that is made up
of a positive vortex in the center and two vortices on its lateral
flanks of opposite charges, a vortex triplet [cf. Fig. 2(b)]. By
turning off the voltage and then considering a higher voltage,
the vortex structure emerges with a ring characterized by ex-
hibiting multiple vortices with alternating topological charges.
Subsequently, these vortices are annihilated by pairs, and only
two survive in the antipodes (see the bottom panels in Fig. 2).
The vortex triplet is the equilibrium state of the system.
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FIG. 3. Schematic representation of the magnetic field structure
of a magnetic ring with a rectangular cross section. (a) Three-
dimensional representation of the magnetic field. The curves account
for the lines of the magnetic field. Dashed lines account for the
structure of the magnetic field within the magnetic protuberance.
(b) Two-dimensional representation of the magnetic field of the ring
onto the nematic liquid crystal layer. The rods stand for the average
direction of molecules.

An intuitive explanation of the appearance of a vortex
triplet. The induced vortex triplet is determined by the
structure of the magnetic field generated by the magnetic
ring. Since the magnet has a north and south pole parallel to
the liquid crystal sample and a rectangular cross section, a
magnetic protuberance is observed at the center of the ring
[30]. Figure 3 schematically shows the magnetic structure of
a ring with a rectangular cross section. Dashed curves account
for the magnetic protuberance. This magnetic protuberance
is a consequence of the boundary condition imposed by
the ring’s inner wall on the magnetic field. Liquid crystal
molecules tend to orient orthogonally with the magnetic
field as a consequence of the negative anisotropic magnetic
susceptibility [16,17]. When considering the liquid crystal
sample inside the magnetic protuberance, it naturally induces
a positive vortex at the center and also a circular defect line
that circumscribes the vortex [cf. Fig. 3(b)]. However, for
homeotropic anchoring conditions, a defect line is unstable
and always stabilizes in a set of vortices with alternating
charges along the line [16,17,31]. Indeed, one expects this
line to stabilize in vortices and, ultimately, only a few vortices
to survive along the line. Observe that when the sample stands
outside the magnetic protuberance, one only observes a single
vortex, and there is no ring to circumscribe it [26]. Indeed,
this can be accomplished by moving the liquid crystal sample
away from the magnet.

Theoretical description of a vortex triplet. The structure of
the magnetic protuberance can be modeled in a first approx-
imation by the magnetic field of a cylindrical magnet of the
form

�B(ρ, z) = m

[
(3z2 − σ )ẑ

(ρ2 + z2)5/2
− l2

0 ẑ − 3zρρ̂

(ρ2 + z2)3/2

]
+ b0ẑ, (1)

where σ > 0, l0, and b0 are phenomenological dimensional
parameters (m2, m, and T, respectively) that account for the
geometric features of the magnet ring, m is a constant that
has a dimension of permeability per magnetic moment, and
{z, ρ, θ} are the cylindrical coordinates. The origin of the
coordinate is fixed at the center of the magnetic ring. Note that
as a result of the azimuthal symmetry of the ring, the magnetic
field does not depend on the θ coordinate.

To shed light on the mechanism of the creation and pin-
ning of vortices, we derive a model in the vicinity of the

reorientational transition. As nematic liquid crystal molecules
are weakly tilted from the axis ẑ, the backflow effects can
be neglected [17,21,24]. The molecular reorientation of the
liquid crystal is described by the director vector �n when the
temperature is constant [16,17]. The dynamic of the director
is characterized by minimizing the Frank-Ossen free energy

F =
∫

dV

{
K1

2
(∇ · �n)2 + K2

2
[�n · (∇ × �n)]2

+ K3

2
[�n × (∇ × �n)]2 − εa

2
( �E · �n)2 − χa

2
( �B · �n)2

}
, (2)

where {K1, K2, K3} are the liquid crystal elastic constants,
and �E and �B are the electric and magnetic field, respectively
[16,17]. We consider a uniform vertical electric field �E =
Ezẑ = Vω(t )/dẑ and a magnetic field �B = Bzẑ + Bρρ̂ given by
formula (1).

To study the dynamics of the director, we will use the
strategy, amplitude equation, presented in Ref. [24] and ref-
erences therein. Close to the reorientational instability we use
the ansatz

�n =

⎛
⎜⎜⎝

γ Re(A)
a sin

[
π
d (z + h

2 )
]

γ Im(A)
a sin

[
π
d (z + h

2 )
]

1 − γ 2|A|2
2a2 sin2

[
π
d (z + h

2 )
]

⎞
⎟⎟⎠ + HOT, (3)

where A accounts for the amplitude of the critical mode,
a2 ≡ [(K1 − K3)(π/d )2 − 3εaE2

z − 3χaB2
z ]/4 is a normaliza-

tion constant, and HOT stands for high-order terms in the
critical amplitude. Using the above ansatz, Eq. (3), on the
Frank free energy (2) and minimizing after straightforward
calculations, one gets the amplitude equation (the dimension-
less topologically driven Ginzburg-Landau equation)

γ0∂t A = μ(ρ)A − |A|2A + ∇2A + δ∂ηηĀ + f (ρ)eiθ , (4)

where the spatial coordinates have been scaled by �r →
�r√2/(K1 + K2), μ(ρ) = μ0 + μ1(ρ) is the inhomogeneous
bifurcation parameter, μ0 ≡ −K3(π/d )2 − εaE2

z is the bi-
furcation parameter related to the electrical Fréedericksz
transition, μ1(ρ) ≡ χaB2

z (ρ, z0) is the inhomogeneous mod-
ification of the reorientational transition, z0 is the height
of the liquid crystal sample, δ = (K1 − K2)/(K1 + K2) ac-
counts for the elastic anisotropy of the liquid crystal, and
∂η ≡ ∂x + i∂y is a differential operator in the complex plane;
note that the Laplacian satisfies ∇2 = ∂η,η̄, and f (ρ) =
4χaa1/4Bρ (ρ, z0)Bz(ρ, z0)/(γπ ) accounts for the strength of
the topological forcing. Notice a similar equation has been
derived for liquid crystals with photosensitive walls but with a
Gaussian forcing [21,24], in which vortex induction has been
demonstrated through the light-matter interaction. Figure 4
shows in the left panels the bifurcation parameter and the
forcing as a function of the radial coordinate. Notice that the
vortices are placed at the zeros of the forcing. f (ρ) is annulled
at the origin and in the circumference of radius ρ∗. In the
regime below the electrical Fréedericksz transition, μ0 � 0,
the system exhibits an analytical approximation of the form
A ≈ f (r)eiθ /μ0 [32]. Indeed, this solution is characterized
by exhibiting a vortex at the center and also a circular de-
fect line that circumscribes the vortex. Figure 4(c) shows
numerical simulations of Eq. (4) for μ0 < 0. From the po-
larized field ψ (x, y) ≡ Re(A)Im(A) (top panel) [24], we only
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FIG. 4. Numerical simulation of a vortex triplex obtained from
the topologically driven Ginzburg-Landau Eq. (4) with z0 = 28,
σ = 28, m = 13 000, l0 = 1, b0 = 0, γ0 = 1, and δ = 0.1. Profile of
the inhomogeneous bifurcation parameter μ(ρ ) (a) and topological
forcing strength f (ρ ) (b) as a function of the radial coordinate.
Contour plot of the polarized field ψ (x, y) = Re(A)Im(A) (top panel)
and phase field �(x, y) = arctan[Im(A)/Re(A)] (bottom panel) of
the complex amplitude A, below μ0 < 0 (μ0 = −1) (c) and above
μ0 > 0 [μ0 = 0.2 (d) and μ0 = 3.0 (e)] the Fréedericksz voltage.
Inserted circles highlight phase singularities.

detect the central vortex with a cross shape. The ring that
circumscribes the central vortex is not detected because it has
a small amplitude. This ring is only detected in the phase field
�(x, y) = arctan[Im(A)/Re(A)] (bottom panel), and it has
two singularities of opposite charges in its antipodes. Numer-
ical simulations of model Eq. (4) were conducted considering
a triangular finite-element code with adaptive spatial and tem-
poral steps, and a simulation box of dimensions 300 × 300
with a Neumann boundary condition was considered. Increas-
ing the bifurcation parameter, the central vortex swirls, and
the ring that encloses the amplitude notoriously shows two
vortices of opposite charges at the antipodes [see Fig. 4(d)],
which is what we observe in experiments (cf. Fig. 2). Starting
from A = 0 and considering a larger bifurcation parameter,
we see the vortex emerge at the center with a circular defect
line that destabilizes into a set of vortices that begin to interact
and annihilate in pairs [see Fig. 4(e)]. Note that a similar phe-
nomenon is observed in the experiment [cf. Fig. 2(c)]. Hence,
model Eq. (4) describes the emergence of a vortex triplet in-
duced by the combined action of a magnetic ring and electric
field into a nematic liquid crystal layer (see Figs. 2 and 4).

Unexpectedly, when we decrease the frequency to a frac-
tion of Hz, experimentally, the vortex triplet is destabilized
from both the central vortex and the ring that circumscribes
it by the induction of vortices, resulting in a front of vortices
invading the system, as it is illustrated in Fig. 5 (see Videos
1 and 2 in the Supplemental Material [33], which are in real
time). The vortex lattice corresponds to the equilibrium state
of the system. Notice that the vortex lattice is characterized
by vibrating at the frequency of the electrical forcing. The
emergence of the vortex lattice is due to the combined effect
of the oscillatory and magnetic electric field. Indeed, the mag-
netic and electric field or thermal gradient can couple with the
fluid and generate charge movements [34–38], a Carr-Helfrich
type mechanism [17], that affect the stability of the triplet.
When the low-frequency oscillatory behavior of the electric
field Ez(t ) is included, one cannot neglect the inertia in the

t1 t2 3
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-2 2x,y
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(d) (e)0 1

FIG. 5. Vortex lattices. (a)–(c) A temporal sequence of snapshots
of the emergence of a vortex lattice from a vortex triplet t1 < t1 <

t3, with V0 = 9.0 Vpp and ω = 10 mHz. (d), (e) Numerical temporal
sequence of a vortex lattice, τ0 < τ1, obtained from the amplitude
Eq. (5) with z0 = 15, σ = 2000, m = 1000, l0 = 1, b0 = 0.55, γ0 =
0.5, δ = 0.8, � = 1, and ω = 1.

dynamics of the director. Then the amplitude equation takes
the form

∂tt A + γ0∂t A = μA − |A|2A + ∇2A + δ∂ηηĀ + f (ρ)eiθ , (5)

where μ = μ0 + μ1(ρ) + � sin(2ωt ). For large γ0 and high
frequencies, this model equation is approximated by Eq. (4).
Namely, this model presents a triplet vortex solution. How-
ever, when the frequency is decreased, the amplitude A begins
to oscillate. For a critical frequency, the ring around the vortex
becomes unstable. This instability generates the emergence
of vortex pairs. Figure 5 shows the typically observed vortex
lattice structure and the triplet that becomes unstable (see
Video 3 in the Supplemental Material [33]).

In summary, the combined effect of the magnetic field
of a magnetic ring and the uniform electric field onto a
homeotropic nematic liquid crystal cell induces a stable vortex
triplet and vortex lattice. An amplitude equation allows us to
reveal the origin of the vortex triplet and the emergence of the
vortex lattice. Theoretical findings show a quite fair agreement
with experimental observations. The generated vortex lattices
are obtained in a simple configuration that does not require
a complex structure of electrodes, inhomogeneities, applica-
tions of thermal gradients, or photosensitive walls. The char-
acterization and properties of vortex lattices are in progress.

The observation of vortex lattices as a consequence of
oscillatory fields corresponds to a topological transition out
of equilibrium. Hence, the presence of a constant electric
or magnetic field is not relevant for the observation of a
topological lattice [35–38]. It is expected that this type of
phenomenon can be generic in systems that present vortices.
Our finding enables another avenue of topology transitions in
systems driven by periodic forcing.
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