
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19324  | https://doi.org/10.1038/s41598-020-75165-8

www.nature.com/scientificreports

Topological transitions 
in an oscillatory driven liquid 
crystal cell
Marcel G. Clerc  1*, Michał Kowalczyk2 & Valeska Zambra1

Matter under different equilibrium conditions of pressure and temperature exhibits different states 
such as solid, liquid, gas, and plasma. Exotic states of matter, such as Bose–Einstein condensates, 
superfluidity, chiral magnets, superconductivity, and liquid crystalline blue phases are observed in 
thermodynamic equilibrium. Rather than being a result of an aggregation of matter, their emergence 
is due to a change of a topological state of the system. These topological states can persist out of 
thermodynamics equilibrium. Here we investigate topological states of matter in a system with 
injection and dissipation of energy by means of oscillatory forcing. In an experiment involving a liquid 
crystal cell under the influence of a low-frequency oscillatory electric field, we observe a transition 
from a non-vortex state to a state in which vortices persist, topological transition. Depending on 
the period and the type of the forcing, the vortices self-organise, forming square lattices, glassy 
states, and disordered vortex structures. The bifurcation diagram is characterised experimentally. 
A continuous topological transition is observed for the sawtooth and square forcings. The scenario 
changes dramatically for sinusoidal forcing where the topological transition is discontinuous, which 
is accompanied by serial transitions between square and glassy vortex lattices. Based on a stochastic 
amplitude equation, we recognise the origin of the transition as the balance between stochastic 
creation and deterministic annihilation of vortices. Numerical simulations show topological transitions 
and the emergence of square vortex lattice. Our results show that the matter maintained out of 
equilibrium by means of the temporal modulation of parameters can exhibit exotic states.

Solid, liquid, gas, and plasma are different states of the matter1 distinguished from each other by mechanical, 
optical, and other properties. Other examples of states of aggregation of matter include glassy and liquid crystal 
states. Still different are exotic states such as Bose–Einstein condensates2, superfluidity3, superconductivity6, 
chiral magnets4, and liquid crystalline blue phases5 that are a topological state rather than an aggregation of 
matter. The topological transitions of the matter were discovered at the beginning of the 70s by Berezinskii7 
and Kosterlitz and Thouless8, who showed that a low dimensional system described by a physical vector order 
parameter in thermodynamic equilibrium undergoes a transition from a homogeneous state without vorticity 
to a state in which vorticity persists. In the homogeneous state all vectors are unidirectionally ordered but under 
suitable conditions they realign forming regions where both their orientations and magnitudes vary. Because 
of topological constraints at some isolated points called vortices9 the vector field vanishes and the vector phase 
becomes undefined. The winding number (topological charge) is introduced to characterise the physical vector 
field around a vortex9. This number is an integer representing the total number of times that the vector field 
winds around the origin while varying along a closed, counterclockwise oriented curve around the singular point. 
Topological stability of the system implies that the total winding number of the system must be preserved which 
means that the vortices are created or annihilated by pairs of opposite topological charges. Vortices creations and 
and annihilation process are, respectively, due to thermal fluctuations and free energy minimisation10,11, hence at 
a critical temperature at which they are balanced the systems undergoes a topological transition7,8. Exotic states 
of matter such as Bose–Einstein, superconductivity, chiral magnets, and superfluidity are usually observed at low 
temperatures, however liquid crystalline blue phases have been observed at room temperature12.

An ideal material to investigate vortex dynamics are liquid crystals in thin films5,13. Liquid crystal cells under 
the effect of electric, magnetic, and electromagnetic fields can exhibit rich self-organisation such as patterns, 
traveling waves, defect dynamics, and spatiotemporal chaos (see review 14 and references therein). One of the 
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most studied vortices are the so-called umbilical defects or disclination lines5,13,15. In thermodynamic equilibrium 
and homogeneous media, the vortices tend to annihilate by pairs to minimise the free energy of the system. 
The above dynamics can be modified by means of incorporation of inhomogeneities, which can attract and trap 
umbilical defects16,17. Properly distributed inhomogeneities may permit the formation of topology lattice16. 
Likewise, considering inhomogeneous anchoring allows attracting and trapping umbilical defects and creating 
vortex lattices18,19. A similar effect can be achieved by the introduction of inhomogeneous electrodes20–23. The 
combined use of magnets and uniform electric field can induce umbilical defects and lattices24. The vortex lattices 
describe above are induced by the combination of the forcing and inhomogeneities. However, the emergence of 
spontaneous topological lattices has also been achieved by means of thermal gradients25 or by doping with ionic 
impurity21, which induces charge motions. This is known as the Carr-Helfrichh mechanism5. The movements 
of charges of the liquid crystal or incorporated (ions) can be responsible for the formation of spatial structures 
(see Rev. 14 and references therein).

This article aims to study topological transition with injection and dissipation of energy by means of oscil-
latory forcing. This type of physical context usually is denominated as out of equilibrium systems26,27. Based on 
an experiment involving a nematic liquid crystal cell under the influence of a low-frequency oscillatory electric 
field, we observe a transition from non-vortex state to a state in which vortices persist, topological transition. 
Depending on the frequency and the type of the forcing, the vortices self-organise forming square lattices, glassy 
states, and disordered vortex structures. Sawtooth and square forcing induce a continuous topological transition 
characterised by the emergence of vortices with a disordered structure. Theoretically, a stochastic amplitude 
equation allows us to reveal the origin of the transition in terms of the balance between stochastic creation 
and deterministic annihilation of vortices. The above scenario changes drastically, when considering harmonic 
forcing, the observed topological transitions are characterised by the emergence of regular square vortex lattices 
(discontinuous transitions). By modifying the voltage frequency, we observe discontinuous transitions to different 
regular lattice and to other types of glassy vortex lattices.To account for these intriguing phenomena, we have 
included inertia in the amplitude equation. Numerical simulations show the emergence of square vortex lattices.

Results
Experimental observations of a topological transition in a driven liquid crystal cell.  Liquid 
crystals are composed of rod-like organic molecules5,13,15 which, as a result of intermolecular interaction, for spe-
cific temperature ranges are arranged to have a similar molecular orientation. This results in a strong anisotropy 
of all their physical properties, especially optical characteristics28. The configuration of lowest energy is reached 
when all rod-like molecules are aligned along one averaged direction, orientational order without a positional 
one, denoted by the director vector n5,13,28. This state is usually called the nematic phase. In the case of a thin film 
with negative dielectric anisotropy and molecular anchoring perpendicular to walls of the sample, application 
of an electric field in the vertical direction leads to the appearance of vortices, umbilic defects or disclination 
lines5,13,15. These topological defects are the result of the competition between elastic and electrical forces. More 
precisely, the homeotropic anchoring imposes through elastic coupling that the molecules align in the orthogo-
nal (vertical direction) to the walls of the liquid crystal cell. On the other hand, when applying a vertical electric 
field, the molecules tend to be oriented orthogonally to the electric field (horizontal direction) because the liquid 
crystal has a negative dielectric constant. For voltages large enough to exceed the elastic resistance, Frédericksz 
voltage29, domains of molecules with different orientations are generated. These different molecular orientation 
domains are connected by means of vortices. Figure 1a schematically depicts different molecular orientations 
and how they connect with a vortex. Because the refractive index depends on the molecular orientation28 the 
polarization of the light as it passes through the liquid crystal sample is affected. Considering of the liquid crystal 
cell between two crossed polarizers allows the detection of the vortices since these correspond to the intercection 
of two black lines. Figure 1a shows two vortices.

Figure 1b shows the spatiotemporal evolution of vortex arrangements experimentally observed by applying a 
voltage V(t) = V sin(2π ft) with a given frequency f, i.e, harmonic voltage signal. To avoid charges accumulation 
effects in the thin film (capacity effects), a high frequency oscillatory electric field (kHz) is usually used. Under 
these conditions in a homogeneous liquid crystal cell the emergence of gas of disordered vortices is followed by 
the subsequent annihilation by pairs, and terminates in a homogenous, non-vortex state10,11,13. Thus the vortices 
are a transient phenomenon. Surprisingly, when the frequency of the electric field that we applied to the homo-
geneous liquid crystal cell decreases to fractions of Hz starting from a critical value of the frequency, the system 
exhibits a topological transition after which the annihilation and creation are balanced, and the vortices persist 
(see video 1 in supplementary materials). Hence, the bifurcation parameter of this transition is the frequency f 
of the driving voltage. Figure 2 shows the average number of vortices as a function of frequency counted stro-
boscopically in each oscillation cycle with the standard deviation determined along the way. This transition is 
obtained by considering a sawtooth signal for the voltage applied to the sample. From this chart, one deduces 
that the transition is of continuous nature (supercritical bifurcation) and that there is a critical frequency fc from 
which the number of vortices in average becomes permanent over time (frequency < fc ). We note that as the 
frequency decreases the number of vortices increases to a particular critical value and subsequently decreases 
monotonically until it vanishes at low frequencies, which is a manifestation of a sort of resonance for the process 
of creation and destruction of topological defects. Notice that periodically driven voltage only induces umbilical 
defects, no other defects are observed. The application of a low-frequency electric field induces charge move-
ments due to the weak anisotropic conductivity of the liquid crystal5. The accumulation of charges can induce a 
molecular reorientation, Carr-Helfrich mechanism5, which in turn modifies the interaction between umbilical 
defects and can even generate a lattice arrangement of them25.
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Using a thermal control microscope stage, the temperature of the liquid crystal sample can be changed and 
controlled adequately. When the temperature at which the experiments are made is varied, we observe that critical 
frequency transition fc grows monotonically with it as illustrated in Fig. 2c. The tendency to increase the transi-
tion frequency at higher temperatures is due to the increasing the rate of vortex creation (fluctuations), while 
the process of vortices annihilation remains unchanged (deterministic). Therefore, the topological transition 
induced by temporal voltage modulation is observed throughout the mesophase stability range of the nematic 
liquid crystal under study.

Theoretical description of the topological transition.  To understand the origin of this topological 
transition out of equilibrium, we consider a prototype model, the Ginzburg-Landau equation30, that describes 
the emergence of topological defects in fluids, superfluids, superconductors, liquid crystals, chiral magnets, flu-
idised anisotropic granular matter, and magnetic media9,30. The real Ginzburg-Landau equation describe the 
pattern formation in anisotropic media31. Likewise, this model describes vortex solutions in nematic liquid crys-
tal layers with external electric or magnetic forcing and homeotropic boundary conditions32–35, and the forma-
tion of spiral waves in a nematic liquid crystal subjected to a rotating magnetic32,34 or electric field33. Note that 
this Ginzburg-Landau equation with real coefficients is derived from the elastic theory of liquid crystals32–36. The 
order parameter accounts for the balance between the elastic and electric force. Besides, this model describes 
the process of interaction and annihilation of vortices at constant electric field and temperature11. To account for 
the additional ingredients of the observed topological transition (cf. Fig. 2), we must incorporate the oscillatory 
nature of the electrical voltage applied to the liquid crystal sample and include the inherent fluctuations due to 
temperature. This leads to the stochastic Ginzburg-Landau equation with oscillatory coefficients, that is,

where A(�r, t) is a complex order parameter, t and �r describe time and the transversal coordinate vector that 
characterises the thin film, µ0 is the uniform bifurcation parameter, γ and f are the amplitude and the frequency 
of the forcing, respectively, which account for the oscillatory electric field. The function µ(t) = µ0 + γ cos(2π ft) 
is the temporal modulated bifurcation parameter. By ∇2 we denote the Laplace operator. The constant T 
accounts for the thermal intensity and ζ(�r, t) is a spatiotemporal white noise of zero mean value, �ζ(�r, t)� = 0 , 
and no spatial or temporal memory. Namely, the stochastic term has the spatiotemporal correlation 
�ζ(�r, t)ζ(�r′, t ′)� = δ(�r − �r′)δ(t − t ′) where δ are Dirac delta functions. The real and imaginary part of Α account 
for the molecular reorientation averaged over the thickness in the x- and y-direction32–36. An umbilic defect 
corresponds to a zero of the amplitude. In order to compare with the experimental observations obtained by 
polarised optical microscope, one can consider the polarisation field defined by ψ(�r, t) = Re(A)Im(A)36, which 
vanishes when the complex field A is purely real or imaginary. Therefore the position of umbilic defects cor-
respond to the intersection of nullclines of ψ.
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Figure 1.   Liquid crystal cell under a temporarily modulated potential exhibits creation and self-organisation 
of vortices. (a) Schematic representation of the experimental setup. Liquid crystal cell (NLC) with homeotropic 
anchoring is illuminated by white light between two crossed polarisers ( P1 and P2 ). The horizontal snapshot 
shows a pair of vortices with opposite charges. The purple and red rods illustrate the average molecular 
orientation (director) and the core of the umbilical defect. (b) The temporal sequence of snapshots in the region 
of self-organised vortices, at frequency 0.335 Hz and voltage amplitude 13.5 Vpp. From experimental snapshots, 
both figures were created using Inkscape 1.0.



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:19324  | https://doi.org/10.1038/s41598-020-75165-8

www.nature.com/scientificreports/

In the high-frequency regime, f → ∞ , this model becomes the Ginzburg-Landau equation with real coef-
ficients. This equation is characterised by a constant effective bifurcation parameter µ0 + 3γ 2/2(2π f )2 obtained 
through the rapid oscillation method37. In this limit the vortices do not persist and the annihilation of the defects 
of opposite charges dominates their creation9,11, since the system tries to optimise the effective free energy. Fig-
ure 2b shows this happening for frequency values up to order one. In this regimen, for large enough temporary 
evolution, the number of vortices on average is zero. By decreasing the frequency further to a critical value fc , 
the average number of vortices stabilises over time. The topological transition obtained numerically using Eq. (1) 
has a qualitative behaviour similar to that observed experimentally, see top panels in Fig. 2. Notice that as the 
frequency decreases ( f < fc ) the number of vortices increases to a particular critical value and subsequently 
decreases monotonically until it vanishes at low frequencies, which manifests an excellent qualitative agreement 
with the experimental observations. Hence, experimentally and numerically a sort of resonance is observed for 
the process of creation and destruction of topological defects.

The simulation allows us to identify the location of the vortices through ±2π jumps of the phase of the 
amplitude. Comparing the evolution of the system and the profile of the bifurcation parameter function µ(t) two 
characteristic regions are identified. Namely, a creation and annihilation region. Creation of vortices occurs in the 
intervals of time where µ(t) is small and growing (red curve in Fig. 2d), these vortices later interact even when 
µ(t) < 0 (blue curve in Fig. 2d). The region of creation and annihilation are govern by stochastic fluctuations 
and deterministic evolution, respectively. The vortex creation time interval decreases as the forcing frequency 
increases and for high frequencies the creation process is inefficient. Hence, the persistence of vortices is a 
consequence of the balance between the processes of creation (stochastic) and their interaction (deterministic).

Topological transition with harmonic driven forcing.  In experiments we have implemented various 
types of periodic forcing among them harmonic, sawtooth, or square profiles and we have found, somewhat 
unexpectedly, different types of responses resulting in diverse transitions. As we have mentioned, low-frequency 

Figure 2.   Bifurcation diagram of topological transition out of equilibrium (a) experimental and (b) numerical 
using model Eq. (1). The experimental bifurcation diagram is obtained with a sawtooth forcing with a 
fixed amplitude voltage 15 Vpp. The insets (a) correspond to snapshots obtained in the respective voltage 
frequency using the crossed polarisers. The insets (b) correspond to the polarisation field ψ = Re(A)Im(A) 
obtained numerically from Eq. (1) at the respective frequency. (c) Critical frequency fc(T) as a function of 
temperature with a fixed amplitude voltage 15 Vpp. The insets account for the respective snapshots in the 
different temperatures. (d) Evolution of the temporal bifurcation parameter µ(t) and characterisation of the 
regimes of creation (red curve) and interaction (blue curve) of vortices. Insets show the amplitude phase 
arctan[Im(A)/Re(A)] obtained numerically in the different creation and interaction regimes. From experimental 
snapshots, both figures were created using Inkscape 1.0.
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voltages can induce charge movements that, in turn, induce molecular reorientation, Carr-Helfrich mechanism5. 
Hence, different types of driven voltages can induce different charge motions. In the case of a square profile sig-
nal, we have observed a continuous or supercritical topological transition (see Fig. 2a). Changing to a harmonic 
signal, we have detected a discontinuous transition with the non-vortex state being replaced by a vortex lattice 
with a square crystalline structure. Figure 3 shows a square vortex lattice and its respective bifurcation diagram 
corresponding to the out of equilibrium counterpart of the Abrikosov lattice38,39. The vortex lattice is not hex-
agonal like the one of Abrikosov as a consequence of the asymmetry between the opposite charges35. The model 
Eq. (1) only accounts for the topological transition from disordered vortices to non-vortex state. The origin of 
these square vortex lattices is probably associated with the coupling of elastic deformations, charge, and fluid 
motions. To account qualitatively of this coupling, we include phenomenologically in the model Eq. (1) inertia 
and anisotropic effects, that is, a second temporal derivative of amplitude A. Simulations of this model show the 
emergence of a square lattice, as seen in Fig. 4. The Ginzburg-Landau Eq. (1) is a model valid close to the reorien-
tational transition34,36. Its derivation is based on the assumption of slowly varying amplitude; however, when the 
system is periodically forced, the first and second temporal variations can be of the same order. Hence, the iner-
tia term phenomenologically accounts for the effects of movements of charges and liquid crystal inside the cell.

When decreasing the frequency, the square lattice undergoes a subcritical bifurcation leading to a square 
lattice of higher wavelength (see Fig. 3 and supplementary video 2). Increasing the frequency further the square 
lattice transitions to a glassy state (cf. Fig. 3 and supplementary video 3), in which the vortex structure does not 
have a precise unit cell. For even higher frequencies the system returns to the non-vortex state. Figure 3 sum-
marises the complexity of the topological transitions in the liquid crystal cell maintained out of equilibrium at 
room temperature. We speculate that the origin of the periodic structures we have discovered may be associated 
with the interaction between the vortices or the excitation of stationary waves51. However, experimentally we 
did not detect waves. A precise understanding of this is an open problem.

Discussion
Topological defects in liquid crystals are natural elements used for the generation of optical vortices18,22,40–42. As a 
matter of fact, optical vortices have attracted attention for their diverse photonic applications ranging from optical 
tweezers43,44, quantum computation45, enhancement of astronomical images46. In all these applications, optical 
vortex lattices are always involved and necessary47–50. These vortex lattices require sophisticated and complex 
experimental setup. Instead, vortex lattices that we observe emerge spontaneously in simple liquid crystal cells 
under the influence of an oscillatory voltage that do not require a complex structure of electrodes, inhomogenei-
ties, applications of thermal gradients, combined forcing of electric and magnetic fields, or photosensitive walls.

In conclusion, we have shown that exotic states of matter, topological lattices, with injection and dissipation 
of energy by means of oscillatory forcing. In a nematic liquid crystal cell under the influence of a low frequency 
oscillatory electric field, we have observed transitions from a non-vortex state to a state in which vortices persist. 
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Figure 3.   Experimental bifurcation diagram of topological transition out of equilibrium under harmonic 
forcing. The liquid crystal cell exhibits three states: non-vortex (NV), vortex lattice (VL), and glassy vortex (GV) 
states. The arrows indicate the direction of increase or decrease of the voltage. The insets show snapshots in the 
respective parameter ranges. From experimental snapshots, figures were created using Inkscape 1.0.
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The bifurcation diagrams and critical frequency as a function of temperature is revealed. Depending on the 
frequency and type of the forcing (harmonic, sawtooth, or square profiles), the vortices self-organise, forming 
square lattices, glassy states, and disordered vortex structures. Continuous topological transitions to disordered 
vortex structures are observed for sawtooth-type forcing (cf. Fig. 2). These transitions can be understood as the 
balance between stochastic vortex creation (thermal fluctuations) and deterministic interaction (vortex anni-
hilation). Unexpectedly, when considering harmonic forcing this scenario change drastically, the topological 
transitions are characterised by the emergence of regular vortex lattices (discontinuous transitions), like square 
lattices (see Fig.3). The emergence of these vortex lattices may be a result of the charge movements due to the 
weak anisotropic conductivity of the liquid crystal (Carr-Helfrich mechanism)5 and couplings with standing 
waves51. However, we observe complex structures of vortex lattices like glassy and disorder states (see Figs. 2 
and 3), which cannot be described as couplings of standing waves nor self-organisation of charges. The physical 
mechanism of the complex vortex structures observed is unknown. Because the phenomenon reported here 
is qualitatively well described by a universal model Eq. (1) and its respective extension Eq. (2), we expect that 
any temporally modulated vectorial field system of low dimensionality can exhibit topological transitions out 
of equilibrium. Note that the amplitude equations considered are perhaps the minimal models that describe 
topological transitions and the emergence of vortex lattices. The inertial amplitude equation, model (2), is a 
phenomenological description. The study of re-orientational instability considering first-principle models that 
include the director and the fluid dynamics, nematodynamics and hydrodynamics, is a strategy to derive inertial 
amplitude equation, work in this direction is in progress. The characterisation of the critical frequency and voltage 
as a function of liquid crystal features and cell configuration is an open question. Work in this direction also is 
in progress. Furthermore, these findings could be a starting point for understanding and controlling the exotic 
states of matter out of equilibrium by means of the temporal modulation of parameters. Because vortex lattices 
emerge spontaneously in single cells subjected to alternative low-frequency voltages, it opens up the possibility 
of new and fresh applications of the generation of optical vortices.

Methods
Experimental description of the setup.  Figure 1a shows a schematic representation of the experimental 
setup. It consists of a liquid crystal cell composed of two glass slabs with 600 mm2 of cross-section separated by 
a distance of 15 µ m, a thin film of a transparent conductor, indium tin oxide (ITO), and a thin film of transpar-
ent polyimide that has been deposited on each of the interior walls. Transparent conductors are used as elec-
trodes. By rotation and evaporation, the polyimide molecules are oriented orthogonal to the surface, this layer 
allows the liquid crystal molecules anchoring orthogonal to the surfaces52, homeotropic anchoring. This cell 
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Figure 4.   Numerical square vortex lattice. Temporal sequence ( t1 < t2 < t3 ) of the amplitude module 
|A|, phase φ = arctan[Im(A)/Re(A)] , and polarisation field Re(A)Im(A) of model Eq. (2) with inertia and 
anisotropic coupling over a period, by µ0 = 0.6 , T = 0.03 , � = 1.4 , δ = 0.3 , γ = 3 , and f = 0.1 . From 
numerical simulations, figure was created using Inkscape 1.0.
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5B100A150UT180 manufactured by Instec, contains glass beads as spacers. It is filled by capillarity with BYVA-
01 (Instec) nematic liquid crystal that has negative anisotropy, ǫa = −4.89 at room temperature. An external 
electric field is applied in the vertical direction (z-axis) using a sinusoidal, sawtooth, or square voltage with 
amplitude 15 Vpp with low frequency. This voltage is produced by a function generator (Agilent 33521A) with 
a high voltage amplifier (Tabor Electronics 9200). The imaging system used is an Olympus BX51 microscope 
equipped with linear cross polarisers. The light from the microscope condenser illuminates the cell mounted 
on the microscope stage, and a CMOS camera (Thorlabs DCC1645C) is used to capture images. For studying 
thermal effects we used Leica DM2700 P microscope equipped with LTS420 hot stage.

Numerical simulations.  Numerical simulations of model Eq. (1) were implemented using a finite differ-
ences code with Runge–Kutta order-4 algorithm, with a 200×200 points grid, spacing dx = 0.5 , and temporal 
increment dt = 0.02 . Numerical simulations are performed with periodic boundary conditions and with an 
initial condition A = 0 . The stochastic noise ζ(�r, t) is generated through the Box-Muller transform of a uniform 
random number generator. Equation (1) with inertia and anisotropic effects reads

where � accounts for the rotational viscosity, δ stands for the difference of elastic constants32–35, the operator 
∂η,η = ∂xx − ∂yy + 2i∂xy describes the asymmetric coupling, and Ā is the complex conjugate of A. The results 
presented in Fig. 4 consider the same algorithm, boundary and initial conditions used in Eq. (1).
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