
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF OPTICS B: QUANTUM AND SEMICLASSICAL OPTICS

J. Opt. B: Quantum Semiclass. Opt. 6 (2004) S169–S176 PII: S1464-4266(04)72481-7

REVIEW ARTICLE

Localized structures and their dynamics
in a liquid crystal light valve with optical
feedback
S Residori1,5, A Petrossian2, T Nagaya3 and M Clerc4
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Abstract
In this article we review the conditions for the appearance of localized states
in a nonlinear optical system, with particular reference to the liquid crystal
light valve (LCLV) experiment. The localized structures here described are
of dissipative type; that is, they represent the localized solutions of a
pattern-forming system. We discuss their features of stable addressable
localized states, and we show that they dispose themselves on the nodes of
highly symmetric lattices, as obtained by the introduction of an N -order
rotation angle in the optical feedback loop. The stability is lost either on
increase of the input light intensity or by the introduction of an extra small
angle of rotation. The complex spatio-temporal dynamics that follows is
characterized by oscillations in the position of the localized states. We
discuss the origin of this permanent dynamics in relation to the
non-variational character of the LCLV system, underlining the general
character of such complex behaviours of localized states.

Keywords: nematic liquid crystals, localized structures, spatiotemporal
phenomena

1. Introduction

Non equilibrium processes often lead in nature to the
formation of spatially periodic and extended structures, so-
called patterns [1]. The birth of a pattern from a homogeneous
state takes place through the spontaneous breaking of one or
more of the symmetries characterizing the system [2]. In some
cases, it is possible to localize a pattern in a particular region
of the available space, so that we deal with localized instead of
extended structures. From a theoretical point of view, localized
structures in out of equilibrium systems can be seen as a sort

5 Author to whom any correspondence should be addressed.

of dissipative solitons [3]. Experimentally, during the last few
years localized patterns or isolated states have been observed
in many different fields. Examples are domains in magnetic
materials [4], chiral bubbles in liquid crystals [5], current
filaments in gas discharge experiments [6], spots in chemical
reactions [7], oscillons in granular media [9], localized fluid
states in surface waves [8] and in thermal convection [10], and
solitary waves in nonlinear optics [11–18]. All these localized
states can be considered to belong to the same general class
of localized structures; that is, they are patterns that extend
only over a small portion of a spatially extended system.
The mechanisms of localization of spatial structures rely on
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two main ingredients: the bistability, either between two
homogeneous states or between a homogeneous state and a
spatially periodic one, and the existence of an intrinsic spatial
length, which is necessary to stabilize a localized state and
which determines its typical size [19].

In optics, solitary waves were first predicted to appear in
bistable ring cavities [11]. Then, localized states have been
largely studied not only for their fundamental properties but
also in view of their potential applications in photonics [20–
23]. Sometimes named as cavity solitons, optical localized
structures have been observed in photorefractives [24], in lasers
with a saturable absorber [25], in liquid crystal light valves
(LCLVs) with optical feedback [12–16], in Na vapours [26],
and more recently in semiconductor micro-cavities [18].

In order to take advantage of localized structures for
photonics applications, it appears essential to understand the
conditions for their stable localization as well as their intrinsic
dynamical behaviour. Most of the theoretical models proposed
up to now, for example in optics [27] and in chemistry [28],
consider localized structures as the stationary solutions
of a corresponding variational system whose dynamics is
characterized by the minimization of a Lyapunov functional.
The associated dynamics is a transient relaxation to the global
minimum, corresponding to the most stable stationary state.
Nevertheless, localized structures may in general appear in a
system that are of non-variational type [3]. As a consequence,
it is generically expected that localized structures show
permanent dynamics, such as propagation and oscillations
of their positions [29], in analogy with other non-variational
effects such as phase turbulence [30], propagation of Ising–
Bloch walls, predicted in oscillatory media [31] and observed
in liquid crystal experiments [32], and rotation of spirals in
excitable media [33].

In this article we review the conditions for the appearance
of localized states in a nonlinear optical system, with particular
reference to the liquid crystal light valve experiment. In this
system the bistability between homogenous states results from
the subcritical character of the Fréedericksz transition, when
the local electric field, which applies to the liquid crystals,
depends on the liquid crystal reorientation angle [35, 36]. In the
optical feedback loop, the bistability is present together with a
pattern forming diffraction length. This assures the presence of
the two necessary ingredients, bistability and a critical length
scale, for the appearance of localized structures [12–15].

Here, we present the features of stable localized structures
as single addressable elements, disposing themselves on
the nodes of highly symmetric lattices, as obtained by the
introduction of an N -order rotation angle in the feedback loop.
As we have recently shown, the stability is lost either on
increase of the input light intensity or by the introduction of
an extra small angle of rotation [16], and the complex spatio-
temporal dynamics that follows is characterized by oscillations
in the position of the localized states. Recently, we have
proposed that the origin of the permanent dynamics is related
to the non-variational character of the LCLV system [34]. New
results are presented in this paper, showing that the N -order
configurations of localized structures becomes unstable for a
slight increase of the input pump intensity.

The article is divided as follows. The experiment is
presented in section 2, and in section 3 we show ordered and
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Figure 1. The experimental set-up: the LCLV is illuminated by a
plane wave; the wave, reflected by the dielectric mirror inside the
LCLV, is sent back to the photoconductor through the optical fibre
bundle. � is the angle of rotation of the fibre with respect to the
front side of the LCLV. �n is the liquid crystal nematic director; Pin

and Pfb are the input and feedback polarizers; L1 and L2 are two
confocal 25 cm focal length lenses. −L is the free propagation
length, negative with respect to the plane on which a 1:1 image of
the front side of the LCLV is formed.

symmetric configurations of localized structures observed in
the presence of an N -order rotation feedback. In section 4,
we present a mechanism of structure destabilization through
the introduction of a non-local shift in the optical feedback
loop [16]. Section 5 contains new results on the intrinsic and
permanent dynamics that characterize the localized structures
for increasing input light intensity. In section 6 we present
a theoretical model that we have recently derived and that
leads to a Lifshitz normal form equation [34]. Section 7 is
the conclusions.

2. Description of the experiment

The experiment, shown in figure 1, consists of an LCLV
with optical feedback, as it was originally designed by the
Akhmanov group [37]. The LCLV is composed of a nematic
liquid crystal film sandwiched between a glass window and
a photoconductive plate over which a dielectric mirror is
deposited. The coating of the bounding surfaces induces a
planar anchoring of the liquid crystal film (nematic director
�n parallel to the walls). Transparent electrodes covering the
two confining plates permit the application of an electric field
across the liquid-crystal layer. The photoconductor behaves
like a variable resistance, which decreases with increasing
illumination. The feedback is obtained in the following way:
the light which has passed through the liquid-crystal layer, and
has been reflected by the dielectric mirror inside the LCLV,
is sent back onto the photoconductor of the LCLV. This way,
the light beam experiences a phase shift which depends on
the liquid crystal reorientation and, in its turn, modulates the
effective voltage that locally is applied to the liquid crystals.
Thus, a feedback is established between the liquid crystal
reorientation and the local electric field.

The feedback loop is closed by an optical fibre bundle
and is designed in such a way that diffraction and polarization
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interference are simultaneously present [12]. The free end
of the fibre bundle is mounted on a precision rotation stage,
which allows us to fix a feedback rotation angle � with a
precision of ±0.01◦. The optical free propagation length is
fixed to L = −10 cm. At the linear stage for the pattern
formation, a negative propagation distance selects the first
unstable branch of the marginal stability curve, as for a
focusing medium [38]. The angles that the input and feedback
polarizers form with the liquid crystal director are fixed to 45◦
and −45◦, respectively. For this parameter setting and close
to the point of the Fréedericksz transition, there is coexistence
between a periodic pattern and a homogeneous solution. The
Fréedericksz transition point is attained for an applied voltage
V0 of approximately 3 Vrms with a frequency of 5 kHz [35].

By increasing V0, successive branches of bistability are
excited. Most of the experimental observations here reported
were obtained close to the bistable branch located around
V0 = 18.5 Vrms. For this high value of the applied voltage,
the reoriented liquid crystal sample becomes similar to a
homeotropic one (nematic director �n perpendicular to the
confining walls), the light feedback inducing only a small
reorientation around its equilibrium state. The bistable
behaviour here observed is similar to the one observed close
to the Fréedericksz transition point: the LCLV works closely
around a branch of bistability, where it may be assimilated to
a phase slice with a step-like response [34]. But, because of
the high V0, the nematic director being almost aligned with the
applied electric field and the LCLV being close to the saturation
of its response, the system becomes much less sensitive to
external perturbations coming from noise sources or spatial
inhomogeneities.

The total incident intensity is Iin = 0.90 mW cm−2. A
50% beam splitter is positioned before the LCLV, so that the
intensity of the feedback light beam is limited to 25% of
the total incoming intensity. This condition ensures that the
LCLV works only around the switch-up point of this bistable
response. The input beam has a Gaussian profile with a
transverse size of approximately 2 cm, whereas a diaphragm
before the fibre bundle selects a central active zone with a
diameter of 1.2 cm.

3. Crystal-like symmetries of localized structures

Here we review the typical distributions of localized structures
that are observed close to a point of nascent bistability. In the
parameter space, the points of nascent bistability are identified
as the locations where the surface of stationary states becomes
s-shaped. The control parameters of the experiments are the
applied voltage, V0, and the input light intensity, Iin . For this
set of experiments the parameters are fixed to V0 = 18.45 Vrms

at 5 kHz frequency and Iin = 0.90 mW cm−2. The feedback
rotation angle is � = 2π/N , with N integer, and constitutes a
geometrical constraint imposing an overall N -order symmetry
to the system.

The size of each localized structure is approximately
� = 350 µm, which corresponds to the basic wavelength
� = 2π/q0 = √

2λL (λ = 632 nm is the optical wavelength)
predicted by linear analysis for a focusing medium with a
feedback mirror [41]. The distance between the spots is in
average much larger than their individual size, which indicates

that we are dealing with a collection of localized structures
instead of a fully correlated pattern. Here, for a fully correlated
pattern we mean an extended texture that fully covers a large
portion of the space and that cannot be decomposed into its
basic constituent cells.

Depending on the initial conditions and on the value of
� = 2π/N , different stationary configurations of localized
structures may be obtained. By choosing different N we can
construct highly regular distributions of light spots, that, once
they have appeared, remain fixed to their positions. If we
perturb the system by blocking the feedback loop, another
configuration may appear. Actually, since the system is
close to a point of nascent bistability, the dark homogeneous
state is also stable. Thus, once they are erased by blocking
the feedback loop, there are no localized structures until we
introduce a perturbation able to trigger their appearance. This
can be done either by slightly, and temporarily, increasing V0,
or by injecting in the feedback loop a weak additional light
beam, such as that of a commercial laser pointer. By means of
this local writing procedure we can trigger the appearance of
light spots at specific local sites, corresponding to the structure
function of an N -order crystal. This allows us to construct
in real space a sort of ‘crystallography’, where all the N
rotational-order structures may be figured out. A few examples
are displayed in figure 2, where we show the crystal and
quasicrystal-like distributions of light spots that are observed
for � = 2π N with N = 2, 3, 4, 5, 6, 7, 8, 9.

With the laser pointer, it is possible to address different
positions for the appearance of localized structures. Starting
from a single set of N localized structures, we can locally
perturb the system and switch on another set in a different
position or a single spot in the centre. These manipulations
prove that the observed spots are indeed localized structures,
in the sense that the whole pattern is highly decomposable;
that is, each structure may be considered as a single element,
independent of the other structures [39]. More precisely, for
the N -order symmetry imposed by the rotation angle, the
basic independent element that we have to consider is a set
of N structures, always appearing along concentric rings. The
centre is a singular point, that may or not be occupied by a
single spot, depending on the initial conditions.

Note that, since a configuration of localized structures
is completely decomposable, an infinite number of possible
combinations may be obtained for each value of N . Thus, the
pictures displayed in figure 2 are just examples to elucidate the
mechanism for the construction of a ‘crystal-like’ pattern. No
quantitative prediction can be made on such a kind of pattern,
except the evaluation of the maximum information that can be
stored. In other words, the quantity that would be required to
identify a configuration of localized structures would be a kind
of spatial entropy, for which a clear definition is still lacking.
Practical applications, like information storage and retrieval,
are related to the decomposable nature of these patterns and,
in fact, a first successful demonstration has recently been
reported [40].

The localization in the near-field manifests its counterpart
as a strong delocalization in the far-field. Indeed, observations
in the far-field show a diffusion of the light intensity around
the central peak (zero spatial frequency). At the same time,
no wavevector structure is distinguishable. A typical far-field
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Figure 2. Examples of near-field images of stationary localized structures for � = 2π/N with N = 2, 3, 4, 5, 6, 7, 8, 9, as labelled in each
frame. In the N = 9 right-hand bottom frame, the magnification factor is 2/3 with respect to the other pictures.

Figure 3. A typical image observed in the far-field for all the values
of N .

image is displayed in figure 3, where the dashed line marks
the location that would be occupied by the wavevectors of a
fully correlated pattern, at the spatial frequency q0 = 2π/�,
corresponding to the size of the individual spots. The same
diffraction pattern is observed in the far-field for all the
values of N . On the other hand, the near-field N -order spot
distributions look like the spectral counterpart (far-field) of the
spatially extended crystals and quasi-crystals that appear in an
LCLV experiment with diffractive feedback [42].

4. Ring dynamics induced by a non-local shift in the
feedback loop

As we have recently shown [16], if we introduce a small
additional rotation angle, δ = 0.1◦, in such a way that � =
2π/N + δ, the localized structures acquire a rotation dynamics
along concentric rings. Even though the non-local shift, δ, is
along one direction, often, two adjacent rings rotate in opposite
directions. Instantaneous snapshots of the dynamical rings are
shown in figure 4 for N = 3, 4, 6. Note that similar near-field
patterns, Akhseals, have also been reported by the Akhmanov
group [37]. Even though they are not explained in terms of
localized structures, they are indeed observed in experimental
conditions similar to ours.

For � = 2π/N + δ and δ = 0.1◦, we have set the
applied voltage to V0 = 18.49 Vrms (5 kHz). For this
value of V0, the structures appear spontaneously, nucleating
from the intrinsic noise in the LCLV (inhomogeneities or
fluctuations). Moreover, the slight gradients provided by the
Gaussian beam profile impose O(2) circular symmetry, leading
to the appearance of successive and concentric rings. Other
shapes of the beam profile or different initial conditions would
lead to different distributions of localized structures, as shown
numerically in [43].

After their appearance, the spots rotate over the rings
whereas the ring diameter changes with time. Eventually, the
radial motion may lead to the collapse of two adjacent rings or
to the splitting of one ring into two neighbouring ones. Each
ring reflects the underlying symmetry, so that the number of
spots is N on the inner ring and increases by steps of N over
two adjacent ones. However, for the outer rings, the number
of spots becomes ‘wrong’; that is, either one spot is missing
with respect to the underlying N -order symmetry or there is
an extra spot.

In figure 5, azimuthal and radial spatio-temporal plots are
reported as an example of the rings dynamics. The azimuthal
(θ–t) spatio-temporal plots displayed in figures 5(a) and (b)
show the rotation of the localized structures over the 12 and
17 spot rings, that are counter-rotating with different speed
of rotation. At longer times, eventually each ring undergoes
a radial instability, leading to the creation and annihilation
of adjacent rings. An example is shown in (c), where the
fusion of two adjacent spots leads to the transition from 12 to
6 localized structures. In the azimuthal plots the radial distance
is normalized to the instantaneous diameter of each ring. In (d)
we show a radial (r–t) spatio-temporal plot (averaged over θ ),
where the ring creation–annihilation may be distinguished.

We show in figure 6 the measured speed of rotation vn for
increasing number n of spots along the successive rings. It
must be recalled that the diameter of the rings is not constant
with time, so that the number n is only roughly related to the
distance from the centre. The measured data suggest that the
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Figure 4. The localized structures acquire a rotation dynamics when � = 2π/N + 0.1◦ with N = 3, 4, 6, as labelled in each frame.
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Figure 5. Azimuthal (θ–t) space–time plots for (a) a 12-spot and
(b) a 17-spot ring; (c) shows the transition from 12 to 6 spots. (d) A
radial (r–t) space–time plot showing the creation and annihilation of
rings.

change of rotation direction could be related to the existence
of a critical radius, above which an overall phase shift changes
its sign. Correspondingly, the number of spots along the outer
rings becomes ‘wrong’.

5. Intrinsic dynamics of localized structures

5.1. Two-dimensional and rotated case

As a consequence of the non-variational character of the
LCLV experiment, we expect that localized structures exhibit
an intrinsic and permanent dynamics for some range of the
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Figure 6. The speed of rotation for increasing number n of localized
structures along successive rings.

control parameters. Indeed, as we show here, when the
input light intensity is slightly increased above the point of
nascent bistability, we observe oscillations in the positions of
the localized structures, and this even though the feedback
rotation angle � is exactly fixed to a value commensurate to
2π . In figure 7 we show instantaneous snapshots of the N = 5
distributions observed in the same experimental conditions as
for figure 2 but for a larger value of the input light intensity,
Iin = 0.95 mW cm−2. The observed dynamics consists of a
periodic bouncing of two adjacent spots one over the other.

The periodic behaviour can be extracted by drawing a
spatio-temporal plot along a line passing through the centres of
two adjacent spots, as shown by the dashed line in figure 7(a).
The resulting diagram is displayed in figure 8. On further
increasing Iin , the oscillations in the structure positions become
irregular in time. Similar dynamical behaviour can be observed
for all N -order distributions of localized structures.

5.2. One-dimensional and non-rotated case

In order to single out the dynamics independently of the
symmetry imposed by the feedback rotation angle �, we
have carried out one-dimensional experiments by fixing � =
0◦ [34]. In this case, the system becomes very sensitive to
the influence of optical misalignments, such as small drifts,
inhomogeneities or any other source of small gradients. We
have selected the one-dimensional region on a central part
of the LCLV, where illumination gradients and misalignment
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a b

c d

Figure 7. Instantaneous snapshots showing the oscillations of the
localized structure positions. Times: (a) 0.0 s, (b) 2.6 s, (c) 5.0 s, (d)
8.2 s. The dashed line in (a) marks the one-dimensional cut along
which the spatio-temporal diagram has been recorded.

Figure 8. Space (vertical)–time (horizontal) diagrams showing the
periodic oscillations of the structure positions. The total elapsed
time is 120 s.

effects are negligible. A rectangular mask is introduced in the
optical feedback loop, just in contact with the entrance side of
the fibre bundle. The width D of the aperture is 0.50 mm and
its length l is 20 mm. The transverse aspect ratio D/� � 1
is small enough for the system to be considered as one-
dimensional, whereas the longitudinal aspect ratio l/� � 60
is large enough for the system to be considered as a spatially
extended one.

In figure 9 the instantaneous snapshots of three adjacent
localized structures are shown, with two of them bouncing
periodically in time one over the other. The corresponding
spatial profiles are plotted in figure 10 whereas in figure 11(b)
the corresponding spatio-temporal plot is displayed. In
addition, figure 11(a) represents two stationary localized
structures, whose position remains fixed during time, and
figure 11(c) is the spatio-temporal diagram corresponding to
the aperiodic oscillations in the positions of two adjacent
localized structure.

6. Theoretical description

A one-dimensional model can be set up for the LCLV system,
starting from the standard description of the optical feedback
loop [12]. The light intensity Iw reaching the photoconductor
is given by

Iw = Iin

2
|ei L

2k ∂xx (1 + e−iβ cos2 θ )|2

a b c d e f g

Figure 9. Instantaneous snapshots showing three bouncing
localized structures. Times: (a) 0.0 s, (b) 1.0 s, (c) 1.3 s, (d) 1.7 s,
(e) 2.1 s, (f) 2.4 s and (g) 2.8 s.
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Figure 10. The spatial profile of the localized structures. Times: (a)
0.0 s, (b) 1.3 s and (c) 1.7 s. The horizontal scale is in pixel units.

a

b

c

Figure 11. Space (vertical)–time (horizontal) diagrams showing (a)
two stationary localized structures, (b) the periodic and (c) the
aperiodic oscillations of the structure positions. The total elapsed
time is 94 s.

where x is the transverse direction of the liquid crystal layer,
and β cos2 θ is the overall phase shift experienced by the
light travelling forth and back through the liquid crystal layer;
θ(x, t) is the average director tilt; β = 2kd�n, where k =
2π/λ is the optical wavenumber (λ = 633 nm), d = 15 µm
is the thickness of the liquid crystal layer and �n = 0.2 is the
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difference between the extraordinary (‖ to �n) and ordinary (⊥
to �n) index of refraction of the liquid crystal.

In the absence of light on the photoconductor, the
effective electric field Eeff applied to the liquid crystal layer is
Eeff (Iw=0) = 	E0 = 	V0/d, where V0 is the total voltage
applied to the LCLV, and 	 < 1 is a transfer factor that
depends on the electrical characteristics of the photoconductor,
dielectric mirror and liquid crystal layers (impedances). As
long as the light intensity is sufficiently small, that is, of the
order of a few mW cm−2, the response of the photoconductor
can be fitted by a linear function. Under this approximation,
the total effective electric field applied to the liquid crystal
film can be expressed as Eeff = Eeff (Iw=0) + α Iw, where
α is a phenomenological dimensional parameter that can be
quantitatively evaluated by fitting the open-loop response of
the LCLV [35, 36].

θ = 0 is the initial unperturbed planar alignment, whereas
θ = π/2 is the homeotropic alignment corresponding to the
saturation of the molecular reorientation. The liquid crystal
dynamics is described by a local relaxation equation of the
form

τ∂tθ = l2∂xxθ − θ +
π

2

(
1 −

√
VFT

	V0 + α Iw(θ, ∂x )

)
(1)

with V ≡ 	V0 + α Iw(θ, ∂x ) > VFT, where VFT is the
Fréedericksz transition threshold voltage and l is the electric
coherence length. It is important to remark that the above
model have been deduced by fitting the experimental data
measured for the open loop response of the LCLV [36], and it
is slightly different with respect to the one proposed in [12].

The homogeneous equilibrium solutions are θ0 = 0 when
V � VFT and θ0 = π/2

(
1 − √

VFT/V
)

when V > VFT.
Above the Fréedericksz transition, if we neglect the spatial
terms, that is, for homogeneous equilibrium solutions, we find
a closed expression for θ0. Thus, disregarding diffraction, the
light intensity reaching the photoconductor is

Iw = Iin

2
|(1 + e−iβ cos2 θ )|2 = Iin[1 + cos(β cos2 θ)]

and

θ0 = π/2
(

1 −
√

VFT/(	V0 + α Iin[1 + cos(β cos2 θ0)])
)

.

The value of VFT is set to VFT = 3.2 Vrms in agreement with
the experimental data for the LCLV system [35, 36]. The
graph of θ0(V0, Iin) is plotted in figure 12. Several successive
branches of bistability can be distinguished, corresponding to
the critical points where θ0(V0, Iin) is a multi-valued function.
Note that once the reorientation takes place, that is, θ0 �= 0, the
system looses the inversion symmetry around the equilibrium
solutions.

Close to a point of nascent bistability, and neglecting the
spatial derivatives, we can develop θ = θ0 + u + · · · and derive
a normal form equation

∂t u = η + µu − u3 + h.o.t (2)

where µ is the bifurcation parameter and η accounts for
the asymmetry between the two homogeneous states. The
higher order terms are ruled out by the scaling analysis, since

0

0.2
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0.6

0.8

0 0.2 0.4 0.6 0.8 1

05101520

Iin (mw/cm2)
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V0

Figure 12. The multi-valued function θ0(V0, Iin). Shaded areas
show the locations of the nascent bistability.

u ∼ µ1/2, η ∼ µ3/2 and ∂t ∼ µ, µ 
 1. If we now consider
the spatial effects, due to the elasticity of the liquid crystal and
to the light diffraction, the system exhibits a spatial instability
as a function of the diffraction length. Moreover, the spatial
dependence of Iw is nonlocal, hence the dynamics of the above
model, equation (1), is of non-variational type; that is, the
system cannot be described by a Lyapunov functional.

The confluence of the nascent bistability and the spatial
bifurcation gives rise to a multicritical point of co-dimension
three. Close to this point, we derive an amplitude equation,
that we call the Lifshitz normal form [29]:

∂t u = η + µu − u3 + ν∂xx u − ∂xxxx u + du ∂xx u + c(∂x u)2 (3)

where ∂x ∼ µ1/4, ν ∼ µ1/2 accounts for the intrinsic length of
the system, d ∼ O(1) and c ∼ O(1). The term ∂xxxx u is a kind
of super-diffusion, accounting for the short distance repulsive
interaction, whereas the terms proportional to d and c are,
respectively, the nonlinear diffusion and convection. When
η = d = c = 0, the Lifshitz equation, equation (3), reduces to
the generalized Swift–Hohenberg equation, that is well-known
to describe pattern formation for many variational systems,
such as in optics [27], chemistry [28] and liquid crystals [45].
Note that in optics, as a consequence of the phase invariance
of the electric field amplitude, d = c = 0 is the most common
situation, whereas η �= 0 is a parameter proportional to the
externally applied pump [27].

The model shows bistability between a homogeneous
and a spatially periodic solutions and therefore it exhibits
a family of localized structures. Depending on the choice
of the parameters, localized structures may show periodic
or aperiodic oscillations of their position, as confirmed by
numerical simulations [34]. The full and lengthy derivation
of the coefficients for the LCLV system is outside the scope of
this article and will be reported elsewhere [44].
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7. Conclusions

In the LCLV experiment, we have singled out a regime
of parameters where the response of the LCLV is closely
similar to that of a binary phase slice showing a point of
nascent bistability. In these conditions, and by changing the
feedback rotation angle � = 2π/N , we are able to control
the appearance of N -ordered configurations of localized
structures, that can be seen as the spectral components of
a crystal-like or a quasi-crystal-like structure function. By
introducing a small non-local shift in the feedback loop, a
dynamical motion of the localized structures over concentric
rings is induced. All these manipulations can be exploited
for applications in the field of optical computing and pattern
recognition [40].

We have shown that, as soon as the input light intensity is
slightly increased above the point of nascent bistability, the
localized states show complex behaviour, such as periodic
or aperiodic oscillations of their positions. We have related
the intrinsic dynamics of the localized structures to the non-
variational character of the LCLV system and we have derived
a model taking it into account. The model is a Lifshitz normal
form equation, that could in general be applied to a large class
of different physical systems, the main requirements being
the bistability and the presence of an intrinsic length (the
diffraction length in the case of optics). Thus, we expect the
observed dynamics to be quite general not only for an optical
feedback system but also for other pattern forming systems.
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