Chaos

ARTICLE scitation.org/journal/cha

Patchy landscapes in arid environments:

Nonlinear analysis of the

interaction-redistribution model

Cite as: Chaos 30, 093136 (2020); doi: 10.1063/5.0011010
Submitted: 26 May 2020 - Accepted: 24 August 2020 -
Published Online: 21 September 2020

&

View Online

th

Export Citation

M. Messaoudi,'? M. G. Clerc,® ) E. Berrios-Caro,®

M. Tlidi’

D. Pinto-Ramos,®> M. Khaffou,?

A. Makhoute,'>® 2 and

AFFILIATIONS

TFaculté des Sciences, Université Libre de Bruxelles (U.L.B), CP 231, Campus Plaine, B-1050 Bruxelles, Belgium
2Faculté des Sciences, Université Moulay Ismail, Dynamigue des Systémes Complexes et Simulation Numérique, B.P. 11201,

Zitoune, Mekneés, Morocco

sDepartamento de Fisica and Millennium Institute for Research in Optics, Facultad de Ciencias Fisicas y Matematicas,

Universidad de Chile, Casilla 487-3, Santiago, Chile

Note: This article is part of the Focus Issue, instabilities and Nonequilibrium Structures.
2 Author to whom correspondence should be addressed: 2bdelkadermakhoute@ulb.ac be

ABSTRACT

We consider a generic interaction-redistribution model of vegetation dynamics to investigate the formation of patchy vegetation in semi-arid
and arid landscapes. First, we perform a weakly nonlinear analysis in the neighborhood of the symmetry-breaking instability. Following this
analysis, we construct the bifurcation diagram of the biomass density. The weakly nonlinear analysis allows us to establish the condition
under which the transition from super- to subcritical symmetry-breaking instability takes place. Second, we generate a random distribution
of localized patches of vegetation numerically. This behavior occurs in regimes where a bare state coexists with a uniform biomass density.
Field observations allow to estimate the total biomass density and the range of facilitative and competitive interactions.
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How arid ecological systems experience transitions toward frag-
mentation of landscapes followed by desertification is an impor-
tant ecological and biophysical question. Desertification is a
major risk to the biological productivity of dryland zones. The
lack of water induces hydric stress that prevents the formation of
sustainable homogeneous vegetation cover and promotes a rather
inhomogeneous distribution of vegetation. Since the biomass
productivity of arid ecosystems is less compared to other ecosys-
tems, they often attract little attention even though they cover
more than 40% of the Earth’s terrestrial area. Inhomogeneous dis-
tribution of vegetation of arid and semi-arid landscapes is the rule
rather than the exception. It is now generally admitted that the
spatial structuration of the biomass leading to the formation of
vegetation patterns is attributed to facilitative and competitive
interactions that affect the development of plants. More pre-
cisely, when the range of competitive interactions is longer than
the facilitative ones, the homogeneous cover becomes unstable
with respect to the symmetry-breaking instability leading to the
formation of vegetation patterns constituted of spots of sparser

vegetation. In this contribution in honor of Professor Enrique
Tirapegui, we address the problem of vegetation pattern forma-
tion using a well-known interaction-redistribution model that
focuses on the relationship between the structure of the indi-
vidual plants and facilitation-competition interactions, as well
as seed dispersion interactions existing within plant communi-
ties. Weakly nonlinear analysis of this model is presented. This
analysis allows us to determine the threshold associated with the
formation of localized spots or patches of vegetation. In order to
perform parameter assessment, we provide results of field mea-
surements of a peculiar case of vegetation, the alfa plant (or Stipa
tenacissima L.).

I. INTRODUCTION

Vegetation of arid and semi-arid landscapes of the African,
American, Asian, and Australian continents exhibits large spatial
scale structures, generically called vegetation patterns.'~ They cover
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about 40% of the Earth’s terrestrial area. Either water-limited and/or
nutrient-poor soils characterize these regions. In water-limited land-
scapes, the potential evaporation and transpiration of plants exceed
the water supply provided by rainfalls. At small spatial scale, i.e.,
at the level of an individual plant, the water or nutrient scarcity
induces a hydric stress that affects both the plant survival capacity
and the plant growth. At large scale, i.e., at the community level, this
stress provokes spatial landscape fragmentation. This adaptation
to hydric stress involves a symmetry-breaking instability and self-
organization, leading to the emergence of stable spatially periodic
patterns.” The biomass has to self-organize in order to optimize
the use of water or scarce resources. This is done through the
well-known mechanism described by the interaction-redistribution
model, consisting on a short range activation and long range inhibi-
tion. In general, the key features of vegetation pattern formation are
the presence of two feedbacks. The first one corresponds to activa-
tion which is attributed to a positive feedback originated from the
nonlocal facilitation that takes place at a shorter distance.” How-
ever, a short range activation alone cannot generate an increase of
biomass production, and it is not sufficient to explain vegetation
pattern formation. Then, a second feedback is necessary: the neg-
ative feedback that is caused by the competition between individuals
plants for water and nutrients.” The theory based on the relation-
ship between the structure of individual plants and the facilitation-
competition interactions existing within plant communities* is in
agreement with field observations.””'' Other approaches incorporate
explicitly water transport by below-ground diffusion and/or above-
ground run-off."”~'° Further models are based on a discrete cellular
automata.'’

A well-documented example of vegetation pattern is the
banded vegetation often called tiger bush. Thanks to the develop-
ment of aerial photographs, this large-scale botanical organization
was first observed in the early 1940s."® The spatial periodicity or
wavelength is defined as the distance separating the middle of two
successive bands of dense vegetation. Other types of vegetation
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pattern that have been observed include hexagonal or triangular
periodic distributions of gaps (Hr) or patches separated by bare soil
(HO). When the aridity is increased, the following generic transition
scenario can be predicted: Hrr-bands-HO0.”"” Most of the model-
ing approaches mentioned above recover this transition sequence
between vegetation patterns.

Vegetation patterns are not always periodic in space. The
spatial distribution of vegetation cover may consist of isolated or
randomly distributed patches or gaps. Such irregular patterns can
involve groves within grasslands’>*' or spots of bare soil within a
grass matrix.”” They consist of patches that are either isolated or
in the form of clusters of patches. A typical example of patchy
vegetation from Morocco is shown in Fig. 1(a). The vegetation is
predominantly made up of the Stipa tenacissima L. plant, locally
named “alfa.” Vegetation localized pattern of Fig. 1(b) is obtained
from numerical simulations of the interaction-redistribution model
described by Eq. (3), which we will detail below. Another exam-
ple of vegetation pattern involving large-scale gapped structures,
often called fairy circles, belong to this class of localized vege-
tation patterns.”’ Several hypotheses have been proposed in the
literature””~"* to explain their formation. The mechanism leading to
the formation of these mysterious fairy circles still remains an open
problem. In both of the examples mentioned, such patterns have
been interpreted as localized structures from the point of view of
dynamical systems.””* As in the case of periodic vegetation patterns,
the aperiodic localized vegetation patterns are not specific to pecu-
liar soils or plants. Localized vegetation patches or gaps may develop
on soil ranging from sandy and salty to clayey, and the nature of
vegetation may consist of grasses, shrubs, or trees.

Localized vegetation patches can be destabilized by the so-
called curvature instability that affects the circular shape of the
patches, followed by self-replication.”*~** During the self-replication
process, the biomass increases.”"* Recently, it has been shown that
such a curvature instability may explain the formation of arcs and
spirals of vegetation, even in isotropic environmental conditions.’

FIG. 1. Localized vegetation patterns. (a) Patchy landscape of Morocco (33° 6'22.79” N, 41° 21'33.43°0). (b) Vegetation pattern obtained by numerical simulations of Eq. (3).
This consist of spots of dense vegetation (bright) surrounded by the bare state (dark). Parameters are « = —0.1, = 2,6 = 0.2,and @ = 0.5.
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All the aforementioned cases show that the formation of localized
patterns and pattern formation is an important issue not only in
the context of plant ecology and environmental science but is also
a multidisciplinary area of research in nonlinear science, involving
physics, chemistry, and mathematics.”"

In the first part of this work, we focus on the monostable
regime, a regime far from a tipping point. In this regime, a single
homogeneous cover can be destabilized via a symmetry-breaking
instability leading to an emergence of vegetation patterns. A por-
tion of the homogeneous cover undergoes two symmetry breaking
instabilities characterized by different wavelengths. A wavelength
of a given vegetation pattern is defined as the average distance
between two successive maxima of the biomass. We perform a
weakly nonlinear analysis in the vicinity of the above mentioned
symmetry-breaking instabilities. This analysis allows us to deter-
mine a condition under which the modulational instability appears
subcritically. In the second part of this work, we present recent field
measurements of the alfa plant, or Stipa tenacissima L., in the the
center-south of Morocco. This plant is native to the northwestern
Africa and the southern part of the Iberian Peninsula. Measurements
of both fresh and dry above-ground biomass are provided, as well as
the range of facilitation interaction between plants. By digging and
extracting the whole biomass above the ground, we provide an esti-
mation of the above-ground biomass and the length of competitive
interaction.

This contribution is organized as follows. After a brief review
of both periodic and localized vegetation patterns in arid and semi-
arid landscapes, we present in Sec. II, a simple interaction-reduction
model that has been widely used in the literature. In Sec. I, a
weakly nonlinear analysis in the neighborhood of the symmetry-
breaking instability is provided and the bifurcation diagram of the
biomass density is constructed. In Sec. IV, we focus on a subcritical
symmetry-breaking instability regime and we analyze the formation
of localized aperiodic vegetation patches. In Sec. V, we conclude and
discuss possible experimental verifications by field measurements of
the alpha vegetation of high steppe plateau in eastern Morocco.

1. INTERACTION-REDISTRIBUTION MODEL

We consider a single state variable describing the time-space
evolution of the biomass. This variable is described by the so-called
interaction-redistribution model, which is based on the relationship
between the structure of the individual plants and the facilitation-
competition interactions, and seed dispersion interactions operating
within plant communities. This modeling approach does not assume
a peculiar plant or soil. Vegetation may consist of grasses, shrubs, or
trees. Moreover, vegetation patterns may also develop on landscapes
ranging from sandy and silty to clayey. This general framework of
modeling supposes additionally that the environment is homoge-
neous and isotropic. The space-time evolution of the vegetation is
described in terms of biomass. The total biomass involves two parts:
the above- and the below-ground biomasses.

The spatiotemporal evolution of the normalized total biomass
b(x, t) obeys the following integrodifferential equation:*’

ab=1b(1 —b) M;— pbt. + D.M,. (1)
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Time has been scaled such that the characteristic time of the growth
process is unity. The first term in the right-hand side models the
rate at which the biomass increases due to dissemination, germi-
nation, and other natural factors that tend to increase the biomass.
The logistic term (1 — b) describes the fact that the biomass cannot
exceed the carrying capacity. The second term models the biomass
losses due to death or destruction by grazing, fire, termites, or her-
bivores. The third term models seed dispersion where D is the rate
at which plants diffuse. The plant-to-plant facilitative .#(r, t), com-
petitive .Z,(r, t) and seed dispersion .#,(r, ) nonlocal interactions
are

M (x, t) = exp (Xf,c / ¢peb(r + 1|, Ly,) dr’>,

My = / [¢b(r + P16, L) — $oub(PL L L] dP.  (2)

The nonlocal function .Z(r, t) describes interactions facilitating the
growth of the biomass density. This positive feedback operates over
a distance Ly of the order of the plant’s aerial structures (the radius of
the crown or the canopy) involving, in particular, a reciprocal shel-
tering of neighboring plants against arid climatic conditions. The
nonlocal function .. (r,t) models the plant-to-plant competitive
interactions that on the contrary tends to enhance biomass decay.
This negative feedback operates over distances of the order of the
size of roots, i.e., the rhizosphere radius L. The parameters x;. are
the interaction strength associated with facilitation and competition,
respectively. Both Kernels are normalized such that [ ¢y dr’ =1,
where the integral extends to the whole territory in two dimensions
(assumed unbounded). The coefficient u is the aridity parameter.
The functions ®;, and &, are the dispersion kernels weighting
the incoming and outgoing seed fluxes between neighboring plants
according to their distance |r'|. The seed dispersion kernels operate
over a range L.

In what follows, we explore the dynamics in the neighbor-
hood of the critical point associated with bistability also called the
Lifshitz point of Eq. (1) satisfying the two conditions du/db =0
and d*u/d?b = 0. The coordinates of this point are b =0, u = 1,
and x; =1+ x.. By using a multiple time scale expansions in the
neighborhood of this critical point as u =14«¢/2+---, b(r, 1)
= V2u(r,t) + -+ -, and x. = xo + x ¢4, where ¢ is a small param-
eter that measures the distance from criticality. In addition, we
assume that the diffusion coefficient is small, i.e., D = p¢¥/%. The
application of the solvability condition at higher order inhomoge-
neous problem leads to the following partial differential equation:™*

du=—u(n —xu+u*)+ 6 — ywViu—auVie 3)

This equation is valid when the average biomass is low and the
wavelength of the pattern is large (so that the pattern wavelength
is much longer than the size of the plants). In this double limit, three
parameters control the space-time evolution of the biomass: the
aridity parameter 1, which measures that account for the decrease-
to-growth, «, which is the facilitation-to-competition susceptibility
rate ratio, and §, which is the diffusion coefficient which assumed
to be small. The parameters y and « correspond to the nonlinear
diffusion coefficients. The operators V> and the V* are the two-
dimensional Laplacian and bi-Laplacian acting on a flat topography
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whose spatial coordinates are (x, y). It has been shown recently that
Eq. (3) holds for any shape of Kernels provided that their Taylor
series converge.”'

To determine the parameters 8§, y, and « appearing in
Eq. (3), we need to specify the form of the Kernels describ-
ing the nonlocal interactions. In the case of Gaussian Ker-
nel, we set ¢ =exp (—|r'|*)/m, ¢. =€ exp(—€|r’*)/n, and
¢in = € exp (—&|’)?) /7 withe, = L]?/Lg ande, = L}/Lf{, where L,
is the length associated with seed dispersion. Using the multiple time
scale analysis explained above, we identify the following coefficients
from Eq. (3):

anda = .
2¢€; 16¢,

= >

p x(1—e€1)
T V=T
262

4)

Equation (3) is derived in a low density and weak gradient limit
from a generalized logistic equation with nonlocal facilitative, com-
petitive, and seed dispersion interactions.”” The most salient feature
of Eq. (3) is the fact that the vegetation effective diffusion coeffi-
cient, i.e., (§ — yu), which multiplies the Laplace operator term may
become negative. This sign change in the effective diffusion tends to
destabilize the spatial uniformity of the vegetation biomass. In con-
trast, the factor multiplying the double Laplacian, the bi-Laplacian
term in the above equation, is always stabilizing. This terms insures
the bounded growth of local (small) heterogeneities. Hence, the
effective coefficient of the Laplacian term, i.e., (§ — yu), dictates the
stability of the system. When this term is negative, the system tends
to destabilize the spatial uniformity of the vegetation biomass and
vice versa. Equation (3) resembles a variational Swift-Hohenberg
that is regularly derived in spatially extended systems. However,
the presence of nonlinear diffusion terms uV?u and uV*u renders
Eq. (3) non-gradient or non-variational.

The homogeneous and stationary equilibriums solution of
Eq. (3) are 1y = 0 and u,, which fulfills

n :Kus—uf, (5)

the solution of this simple equation is ux = (x £+ \/k2 — 41n)/2. The
solution uy = 0 models the state totally devoid of vegetation, i.e.,
bare state. The state u, corresponds to the uniform biomass den-
sity. When the parameter « is positive, there exists a tipping point
or a saddle-node bifurcation at 7. = k?/4, and the corresponding
biomass is u. = «/2. The homogeneous cover u_ connecting the
bare state and the upper homogeneous cover is always unstable. In
what follows, we focus on the monostable regime, i.e., k < 0. In this
case, the state u_ is not physical since the biomass is a positive defi-
nite quantity, thus the only physically acceptable uniform solutions
are the bare uy = 0 and the uniform cover u.. Its linear stability
analysis with respect to small perturbations (which do not break the
ecosystem spatial uniformity) indicates that the bare state is unstable
only when 7 < 0 and stable when 1 > 0. When the aridity parame-
ter is increased, the uniform biomass decreases monotonously until
reaches the bare state at n = 0. This state is stable when 1 < 0 and
do not exist for n < 0.

The symmetry-breaking instability at which the homogeneous
steady solution becomes unstable with respect to spatial fluctuations.
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FIG. 2. Homogeneous steady state u, as a function of the aridity parameter n
in the monostable case « < 0. A portion of unstable cover is represented by a
broken line. Parameters are k = —0.1,» = 2,8 = 0.2, and @ = 0.5. For these
parameters, the thresholds are 7,1 = —0.52, Uy = 0.68, n,; = —0.05, and
Um = 0.20.

At these bifurcation points the wavelengths become””

A 2/ 2 2o )
mlm2 = &0 [qmimz = &0 | —————>
b 2 Y — 8/ Umima

where 1,1, satisfy
40”"3"1,m2(2um1,m2 - K) = (yuml,mZ - 8)2 (7)

The symmetry-breaking instability domain is illustrated in Fig. 2.
When the aridity parameter is small, the uniform cover u, is
stable. When the aridity parameter n is increased, the biomass
is decreased, and a portion of the homogeneous cover becomes
unstable. This instability occurs in the range 7,1 < 17 < nm2. The
instability domain is bounded in the parameter space by w1 ma.
These thresholds are linked to the aridity parameter 1 through the
homogeneous steady state Eq. (5): m1m = (K — thm1,ma) Ymimz- I
Fig. 3, we plot the marginal stability curve showing the wavenum-
ber g% corresponding to the growing Fourier modes as a function
of the aridity parameter. The critical wavenumber is obtained when
q+ = q-. This condition indicates that there two symmetry-
breaking instability having different wavelengths, A, = 27/qum
and A,» = 27/q,n. The wavelength at both bifurcation points is
given by Eq. (6), which determines the spatial periodicity which
is defined as the distance separating the middle of two successive
patches of dense vegetation. This quantity is intrinsic and it is deter-
mined only by the system’s parameters and not by spatial variation
of the environment or other external effects such as a dominant wind
or human activities.

Two remarks are, however, necessary: First, the fact that the
wavenumber g,,; is smaller than g, indicates that the wavelength
increases when the aridity increases. This fact is in agreement with
field observations. The second remark is that the change of the
sign of the coefficient of the Laplace operator in the model [see
Eq. (3)] constitutes the necessary condition for the destabilization
of the homogeneous cover and leads to the spontaneous formation
of vegetation pattern.
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FIG. 3. The marginal stability curve in the plane (2, uy). The domain of
instability is indicated by a shaded area. As biomass is creases two symme-
try-breaking instability occurs for the parametersk = —0.1, = 2,6 = 0.2,and
a = 0.5. For these parameters, the thresholds are 7,1 = —0.52, U, = 0.68
Nme = —0.05, and up,, = 0.20.

11I. WEAKLY NONLINEAR ANALYSIS

The linear stability analysis of Sec. II shows an exponential
growing solution above the threshold associated with the modula-
tion instability. In the long time evolutions, these solutions should
be non-physical. However, in this analysis, the nonlinear terms are
neglected, and nonlinear effects balance this exponential growth
leading to so-called saturated nonlinear state. We start our inves-
tigation of the effect of nonlinearities on the formation of periodic
structures. Our goal is to derive an amplitude equation for the fastest
growing Fourier mode by using the well-known multiple space-time
scale expansion.”’ For this purpose, we explore the vicinity of the
Turing bifurcation by defining a small parameter which measures
the distance from these instabilities. Let us consider the pattern
equation and the steady state equation in the vicinity of the Turing
instability. We define a small parameter € < 1, which measures the
distance from both symmetry-breaking bifurcation points (1,1, t4n1)
and (nmb uml) as

n:nml,m2+€7]1 +€ZT]2+.... (8)

We introduce the excess variable U(x, f) with respect to the homo-
geneous steady states u; as u(x, t) = u; + U(x, t). Then, we expand
in terms of € as

uS:uT—i-Eal—i-ézaz-i-'”, (9)

U=€u0+€2u1+~~~. (10)

We seek corrections to the steady states at the symmetry-breaking
thresholds that depend slow time scale T = €*¢. We replace this time
scale and the all the above mentioned expansion in Eq. (3). From
this, we then obtain a sequence of inhomogeneous equations for the
unknown functions uy (x, T), u; (x, T), . . .. We analyze each equation
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by applying solvability conditions. At the leading order in €,

Luy =0,
with
L=k —2u2T+(8—yuT)3xx—auT8£4). (11)
This equation admits solutions of the form
Uy = Ao(T) tmm* 4 cc., (12)

with g1, as the critical wavenumber at both symmetry-breaking
instability thresholds given by Eq. (6), and A(T) as an arbitrary
function of the slow time T. The term c.c. represents the complex
conjugate.

For the homogeneous steady states, we substitute the expan-
sions (8) and (9) in Eq. (5). At order €, we obtain

—

a, = \/ﬁ (13)
At order €2, we obtain
Luy = —upay (k — 4ur) — u(z,(/c — 3uy)
+ (ay + uo) (¥ Oxthy + aa)fi)uo), (14)
and from Eq. (5), we get
4= (1t + K2y — 4nany) (15)

(k> — 4np)*?
The application of the solvability condition leads to a; = 0, and
from Eq. (13), we get n; = 0. Then, a, becomes
2
@
The solution of the inhomogeneous problem Eq. (14) is
U = (AI(T) e 4 By (T) e~ 24e* c.c.) + Ci, (17)

with C; is a constant and c.c. the complex conjugate of the terms
inside the brackets. We relate the right and left side of Eq. (14)
by factoring the terms proportional to the exponential terms e'¢*.
We get

(16)

a; = —

B g [82 — 1 (4o + ¥?) + 12013
' ® dur [ZAZ + uk 2y? — ak) + 203 — 4y8ur] ’

82 — 12 (4o + y?) ? 1
T ye)+ 12auT]

|Ao? [ 3
dauy (k — 2ur)

G

The application of the solvability condition at higher orders of
the inhomogeneous problem, i.e., order €3, leads us to

Ly = —ugar (k — dur + yq; — ag})
— upuy 26 — 6ur +yq: —oaqt) +u]
+ Orug + YUty + ozuoaf‘)ul. (19)

This yields in the following amplitude equation:

_ 2 L, 2.2
aTAO = _(Kz 7_ 4)7T)1/2 (E(V -3 /uT) +« —4MT A()
+ hAgl Ao, (20)

Chaos 30, 093136 (2020); doi: 10.1063/5.0011010
Published under license by AIP Publishing.

30, 093136-5



Chaos

the coefficient of the cubic term is
h= [4)/383 + 56a°us. + 202 u}, (om2 —2y%K — 50)/8)
— 8a2u5T (4ouc + yz) + y28%ur (19ouc — 2)/2)
— 20y 8u; (1lak® + 5y % + 31y6)

+ 20y 8u (SSaK + 16)/2) ]/ r, (21)

with T' = 20%u}. (K — 2ur) [—8y 8 + ur (Tax + 4y?) — l4aui].

Let us rewrite the amplitude equation in terms of physical
variables by using the time scale relations T = €’t, A = €Ay, and
n = nr + ny€%. We obtain

dA = —(n — nr)gA + hAIAP, (22)

with
1
g= (> —4anp)'”? (@M — 8 Ju2) + K — 4uT) . @3)

Using the polar decomposition of A = Aexp(ip), yields the
two steady solutions: the trivial solution A; =0 that corre-
sponds to the homogeneous cover, and the nontrivial solution
Ay = +/(n —nr)g/h. Close to the first bifurcation, n > n,
= )1, these solutions exist only if g and h have the same sign.
However, close to the second bifurcation point, > 1,, = 1, the
solution A, exists when g and h have opposite sign. In both
cases, the symmetry-breaking bifurcation appears supercritically.
The branch of periodic vegetation patterns solution of the ampli-
tude equation A, that emerges from both cases is stable when close
to the bifurcation point. This solution exists for 7,,; < 17 < Nyp.

We fix k = —0.1, y =2, § = 0.2, and o = 0.5. Let the arid-
ity n be the control parameter. For these parameters, there are two
symmetry-breaking bifurcations: (1,1 = —0.52,u,,; = 0.68) and
(Mm2 = —0.05, u,, = 0.20). The wavelength at both bifurcations
is given by A, = 27/g,m = 4.81 and A, =27/, = 6.28. The
corresponding amplitude equation becomes

Forn > ni:  0,A = 0.58(n — nm)A — 2.7A|A)%, (24)

Forn < fu: 0A=—12(0 — nm)A — 27.17A|A>.  (25)

In addition to the homogeneous cover A; =0, the stationary
periodic  solutions of the amplitude equation are
A = £/021(n — nyy) and A = £4/—0.04(n — ny1). These
results indicate that both bifurcation appear supercritically. To
check these results, we perform numerical simulations of the
interaction-redistribution model Eq. (1) using periodic boundary
conditions. The results are shown in the bifurcation diagram of
Fig. 4. The homogeneous cover undergoes two symmetry-breaking
bifurcation located at 1,,, = —0.52 and n,,, = —0.05. Both bifurca-
tions arise supercritically and are connected by a branch of periodic
solutions as shown in Fig. 4. The extrema of the emerging vegeta-
tion patterns are represented by dotted curves. The transition from
supercritical to subcritical occurs when the function A, the coeffi-
cient of the cubic term in the amplitude equation, vanishes (see
Fig. 5). The white lines represent zones in which h diverges. This
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FIG. 4. Bifurcation diagram of steady state solution u, obtained for parameters
Kk =—01,y =2,86 =0.2,and « = 0.5. The full and broken lines correspond
to stable and unstable states, respectively. The maxima and the minima of u,.
during the unstable phase are indicated by dots. Numerical simulation of Eq. (3)
are obtained by using periodic boundary conditions. The initial condition consists
of a small amplitude noise added to the unstable homogeneous cover.

occurs when I' = 0, which takes place at values 4’ = 0, 4% = «/2,
and

4y? + Tak — \/(4)/2 + 7ak)? — 488ay 8

(3)
u >
T 28«

(26)

4y? + Tak + \/(4;/2 + 7ac)® — 4880y
- 28 '

u

N 4
Notice 1§ and u” can become complex numbers. In such cases we

discard them.

The above weakly nonlinear analysis have been performed in
the case of one-dimensional system. In two dimensions, numerical
simulations of Eq. (3) support a well-known scenario: as the arid-
ity increases, the symmetry of vegetation patterns transforms from
7 -hexagons into stripes and, finally, into 0-hexagons. This generic
scenario and the associated pattern selection have been predicted in
Refs. 5, 19, and 22. The maximum and minimum biomass densities
for these three types of the two-dimensional vegetation patterns are
plotted in Fig. 6 as a function of the aridity parameter for fixed val-
ues of the cooperativity and the canopy-to-rhizosphere radius ratio.
This diagram has been obtained using a truncated Fourier series
expansion.'’

IV. LOCALIZED VEGETATION PATCHES FORMATION

In this section, we focus on a regime where symmetry-breaking
instability appears supercritically. We consider a bistable regime,
where k = 1 (i.e., it is positive), we fix the parameters § = 0.02,
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FIG. 5. Regions in which the coefficient h [see Eq. (22)] has positive or negative sign. We set parameters « = —0.1, y = 2, and § = 0.2 for panel (a) and « = 0.5 for
panel (b). The white lines represent zones in which h diverges. For the parameters used here they correspond to terms u(s) and u“) in Eq. (26).

y =05, « = 0.1, and let the aridity parameter, 7, be the con- which we obtain 7,, = —0.61 and u,, = 0.78. These values are esti-

trol parameter. For this set of parameters, there exists a single
symmetry-breaking instability point located on the homogeneous
cover uy. At this bifurcation point, the aridity, as well as the
corresponding biomass, can be calculated from Egs. (7) and (5) from

. tea”
.000
,.. ‘..'HO

é@)

Hy

FIG. 6. Bifurcation diagram of model Eq. (3) obtained for the monostable regime
(n = —0.175 < 0) as a function of the aridity parameter n. Others param-
eters are § = 0.005, = 0.5, and o = 0.25. The sequence hexagons H,,
stripes S, and the hexagons H, are obtained for = —0.035, » = —0.03, and
n = —0.02, respectively. These two-dimensional structures have been obtained
by direct numerical simulation of Eq. (3) using the finite differences scheme with
Runge-Kutta order-4 algorithm with periodic boundary conditions. Black color
corresponds to the highest biomass density. Reproduced with permission from
Lejeune et al., Int. J. Quantum Chem. 98, 261 (2004). Copyright 2004 John Wiley
and Sons.

mated accurately to two decimal places. As the aridity parameter is
increased, we recover the well-known sequence of vegetation pattern
m-hexagons stripes-0-hexagons mentioned above. In what follows,
we focus on the regime where the bare state coexists with a peri-
odic vegetation pattern of the 0-hexagons symmetry as shown in
Fig. 7(a). Both states are stable within a finite range of the aridity
parameter 0 < 7 < 0.35. In this regime, when we perturb a system
in a small area located in the center of the integration domain with
large biomass density, the system evolves to the formation of a single
patch of vegetation as shown in Fig. 7(b).

The corresponding cross section along the x-direction is shown
in Fig. 7(c). The localized patch possesses a circular shape sur-
rounded by a bare state. The stationary localized patch has been
interpreted as a nonlinear front that undergoes a pinning effect
between the periodic vegetation pattern and the bare state.”’ This
mechanism leading to the formation of localized structures and
localized patterns is well known in other class of spatially extended
systems.” =

The size of a single patch neither grows despite available free
space nor decreases despite harsh environmental conditions.”’” The
maximum biomass density obtained at the center of the localized
patch is approximately equal to the one corresponding to the hexag-
onal spatially periodic pattern. The width of this localized state is
the half of wavelength at the symmetry-breaking instability provided
by Eq. (6). To compare with analytical results, we first calculate the
width given by the linear stability analysis [see Eq. (6) from Sec. I1],
so the width of localized patch is A,/2 = 7w/20/(y /thy — 8)
~ 2.04), while the width of stable patch obtained numerically is
A 2.23. We see a good agreement with the half-wavelength and the
width of the isolated patch. A single patch is not stable in all the
range where the system undergoes a coexistence between the bare

Chaos 30, 093136 (2020); doi: 10.1063/5.0011010
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FIG. 7. Vegetation patterns obtained from numerical simulation of the interaction-redistribution model given by Eq. (3). Parametersusedx = 1,8 = 0.02,y = 0.5, « = 0.1,
and n = 0.3. (a) Periodic vegetation pattern in which the bare state coexists with 0-hexagons. The initial condition consists of perturbing the stable bare state at form grid
point located at the center of the integration domain. The amplitude of the perturbation is b = 2. (b) Single localized patch. (c) Cross section taken from the dashed line
along the x-direction in (b) passing through the center of the patch. (d) Multi-spot structure of randomly located spots. In panels (a), (b), and (d), the maxima are plain yellow

and mesh number integration is 256 x 256.

state and the hexagonal periodic structures, i.e., 0 < n < 0.35. It is
stable in the range called the pinning zone of the aridity parame-
ter 0.26 < n < 0.35. Therefore, the coexistence between these two
qualitatively states is a necessary but not a sufficient condition for
the stability of a single patch solution.

As the wavelength is intrinsic, the width or the size of local-
ized patches is also intrinsic to the dynamics of the system. Another
interesting property of localized patches is that the tail decays as a
function of distance without oscillations. In fact, field observations
show that each patch is surrounded by bare soil [see Fig. 1(a)]. In
this case, it has been shown recently that the interaction between
vegetation patches is always repulsive.””! Therefore, bounded states
and clusters of vegetation patches are not stable. An example of a
localized vegetation pattern involving multi-spot structure is shown
in Fig. 7(d). The repulsive interaction evolves on a longer time
scale comparing to the time scale of the formation of periodic
vegetation patterns. Over time, this localized pattern will reach

either a periodic structure or superlattice type of structures.”’ Note
that contrarily to patches, localized gaps have an oscillatory expo-
nentially decaying tails. When two gaps are well-separated, the
interaction between them alternates between attractive and repul-
sive. In this case, bounded states and clusters of gaps can be stable.”
By using the continuation method based on the pseudo-arc length
technique, it has been shown that these gaps undergo a homoclinic
snaking type of bifurcation.”

When decreasing the aridity parameter with n < 0.26, the
patches lose their circular shape and exhibit elliptical deformation
leading to elongation of localized patches of vegetation. The insta-
bility leading to the deformation of the circular shape of localized
patches is regularly called self-replication.”~** During this process,
each patch splits into two new patches, as shown in Ref. 34. How-
ever, in the range of parameters considered in this contribution,
the patch exhibits an elliptical deformation but they do not split.
Instead, they rather elongate to form a rodlike localized state. The
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FIG. 8. Time evolution of vegetation pattern t; < t, < t; < ;. Parameters are « = 1, § = 0.02, ¥y = 0.5, « = 0.1, and n = 0.25. Maxima are plain yellow and mesh

number integration is 256 x 256.

time evolution of this phenomenon is shown in Fig. 8. This behavior
is a well-documented issue in other fields of nonlinear science.®

V. DISCUSSION AND CONCLUSION

We have considered the interaction-redistribution model
Eq. (1) describing the spatiotemporal evolution of the biomass
that takes into account the facilitative and competitive interactions
between individual plants and seed dispersion. We have summa-
rized the reduction of this integrodifferential model to a simple
partial differential equation based upon the weak gradient limit,
Eq. (3). In this limit, around the critical point (i.e., in the neigh-
borhood of the tipping point), the system exhibits bistability, and
long-wavelength pattern forming regime. We have assumed that
the Kernels associated with facilitative-competitive and seed dis-
persion are Gaussians and considered environmental conditions as
strictly homogeneous and isotropic. Under these conditions, we
have performed a weakly nonlinear analysis of the reduced model
in the neighborhood of both symmetry-breaking instabilities. This
allowed us to derive conditions for transitions from a supercritical
to subcritical symmetry-breaking instability.

The weakly nonlinear analysis allowed us to determine the
threshold associated with the formation of localized patches of veg-
etation. This threshold is given by the condition & = 0, with & bing
the coefficient of the cubic term in the amplitude equation given by
Eq. (22). Above this threshold, the symmetry-breaking bifurcation
becomes subcritical and leads to the coexistence of bare state and
spatially periodic vegetation patterns both of which are stable for a
finite range of the aridity parameter. This coexistence is a prerequi-
site for the formation of localized vegetation patches. Such localized
vegetation patterns in arid ecosystems are interpreted as an outcome
of a subcritical symmetry-breaking mechanism. We have charac-
terized localized vegetation structures by estimating the maximum
peak biomass and its width. Out of the pinning region (where a sin-
gle patch is stable), we have identified an instability which leads to
the formation of rodlike structures for intermediate values of the
aridity parameters. We have shown that these rodlike structures
coexist with circular patches of vegetation.

A major challenge in plant ecology lies in the model param-
eterization and in assessing the role of parameters in vegetation

dynamics. Field measurements have been carried out on the Stipa
tenacissima L. plant, a drought-resistant plant belonging to the
Gramineae family. This species originates from the arid regions
of western of the Mediterranean basin; its range extends to Spain,
Portugal, Balearic Islands, and North Africa in the highlands of
Morocco, Algeria, and Egypt passing through Tunisia and Libya.
Characteristics of the Stipa tenacissima L. plant such as height, aerial
diameter, and biomass can be found in Ref. 64. It has been reported
that lateral roots track water far beyond the limits of the rhizosphere
radius.®™"

The alfa plants grow in both calcareous and siliceous soils or
even in sands, and its biomass can reach 3, 157, 143 tufts per hectare.
Field measurements have been conducted in the center-south of
Morocco, in the commune Enjil attached to Fez-Meknés Region, at
2029 m of altitude. This region is characterized by an average annual
temperature of around 20.5°C with a daily minimum of 3°C and
daily maximum of 38 °C on average. The annual precipitations range
between 300 and 400 mm/year. In these arid zones, vegetation is not
uniformly distributed in space but appears as small clusters of plants
interspersed with bare soil areas. An example of such behavior is
plotted in Fig. 1(a).

We have measured both the facilitation- and competition-
interaction lengths of the alfa plant. The biomass density was quan-
tified by measuring the net biomass (in kilograms) both above and
below the ground surface, normalizing them with their respective
surface areas governed by the facilitative and competitive lengths.
When alfa plants are to water drought, they extend their roots
beyond the radius of the above-ground. This spreading of their roots
over a larger territory is essential for the survival against evapo-
transpiration. The lateral expansion of roots increases the water
and nutrient uptake of the alfa plant. From our measurements,
we obtained an average aerial radius of Ly = 57.3 cm and an aver-
age root radius of L. = 180.1 cm. The average measurements of the
above- and below-ground biomass density resulted in 1494.3 g/m’
and 197.7 g/m?, respectively.

To make a connection between the measured lengths associ-
ated with the facilitative Ly and the competitive L, interactions and
their link to the parameters that appear in the model [see Eq. (3)],
we rewrite the relations in Eq. (4) by expressing the dependence of
the parameters §, y, and « on the two lengths, i.e., § = pL} /(2L3),
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y = X(sz/Lf —1)/2, and o = L?/(16Lf2). We see from these
relations that only the parameter o = L2/ (16L}) can be estimated

from our field observations. Using the values reported above, this
results in o = 180.12/(16 * 57.3%) ~ 0.6. To estimate the values of
the 8, y, it would be necessary to measure the length L; and the
diffusion coefficient p of the seed dispersion. Another parameter
that would need to be measured is the strength of the interactions
X. More data on this ecosystem, coupled with a new campaign
of field measurements is, therefore, necessary to perform a full
parameterization and parameter assessment for these types of arid
ecosystems. This would allow us to perform a quantitative compar-
ison of the threshold as well as the wavelength of the vegetation
pattern observed arid landscape. It is, however, beyond the scope
of this contribution to compare quantitatively the analytical results
obtained using the proposed model with field observations.
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