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a b s t r a c t

The dynamics of ecological systems are often described by integrodifferential equations that incor-
porate nonlocal interactions associated with facilitative, competitive interactions between plants, and
seed dispersion. In the weak-gradient limit, these models can be reduced to a simple partial-differential
equation in the form of a nonvariational Swift–Hohenberg equation. In this contribution, we perform
this reduction for any type of kernels provided that their Taylor series converge. Some parameters
such as linear and nonlinear diffusion coefficients are affected by the spatial form of the kernel. In
particular, Gaussian and exponential kernels are used to evaluate all coefficients of the reduced model.
This weak gradient approximation is greatly useful for the investigation of periodic and localized
vegetation patches, and gaps. Based on this simple model, we investigate the interaction between
two-well separated patches and gaps. In the case of patches, the interaction is always repulsive.
As a consequence, bounded states of patches are excluded. However, when two gaps are close to
one another, they start to interact through their oscillatory tails. The interaction alternates between
attractive and repulsive depending on the distance separating them. This allows for the stabilization
of bounded gaps and clusters of them. The analytical formula of the interaction potential is derived
for both patches and gaps interactions and checked by numerical investigation of the model equation.

This volume is dedicated to Professor Ehud Meron on the occasion of his sixtieth birthday. We take
this opportunity to express our warmest and most sincere wishes to him.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Spatial fragmentation of landscapes is an inherent character-
stic of semi- and arid-ecosystems. In these regions, vegetation
opulations exhibiting non-random two-phase structures where
igh biomass density regions are separated by sparsely covered
r even bare ground [1]. They cover extensive arid- and semi-
rid areas worldwide [2]. The most common is spotted patterns,
ore or less circular patches surrounded by no plant state,

he second consists of bands or arcs (or even spirals), and the
hird is gaps that are composed of spots of bare soil embed-
ed in a homogeneous cover. The climate of these regions is
haracterized by water scarcity where the typical annual rainfall
ies between 50 and 750 mm. Aridity refers not only to water
carcity but could also be attributed to nutrient-scarce territo-
ies. These self-organized structures consist of spatially periodic
istributions of patches, stripes, or gaps that occupy the whole

∗ Corresponding author.
E-mail address: mtlidi@ulb.ac.be (M. Tlidi).
ttps://doi.org/10.1016/j.physd.2020.132708
167-2789/© 2020 Elsevier B.V. All rights reserved.
space available in a landscape. A transition sequence between this
vegetation pattern has been established [3]. As the aridity level
is increased, the first pattern that appears consists of a spatial
periodic distribution of gaps followed by stripes (or labyrinth) and
spots. This generic scenario has been predicted using various eco-
logical models [4–11]. It is widely accepted that facilitative and
competitive interactions between individual plants, together with
a seed dispersion process provide sufficient conditions for the
formation of large scale vegetation patterns [12], that is, biomass
has to self-organize to optimize the use of scarce resources.

Vegetation patterns are not always periodic; they can be ape-
riodic and localized in space. They consist of either localized
patches of vegetation, distributed on bare soil [13–18] or, on
the contrary, consist of localized spots of bare soil, randomly
distributed in an otherwise uniform vegetation cover [19–21].
An example of such a botanical self-organization phenomenon is
shown in Fig. 1. This figure illustrates that the phenomenon of
self-organization is generic, as it occurs on different spatial scales,
kinds of soil, and different types of vegetation. Spatially localized
structures or patterns are better known in the contexts of physic-
ochemical rather than biological systems (see overviews [22–32]).

https://doi.org/10.1016/j.physd.2020.132708
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2020.132708&domain=pdf
mailto:mtlidi@ulb.ac.be
https://doi.org/10.1016/j.physd.2020.132708
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Fig. 1. Localized vegetation patches and gaps. Images of self-organization of localized patches obtained using Google Earth Pro (a, b). (a) Zambia, Southern Africa
13◦46′49.07′′ S, 25◦16’56.97′′ E). (b) Ivory Coast, West Africa (7◦14′53.01′′ N, 6◦06′27.83′′W). (c) Festuca orthophylla (observed in the Sajama National Park, Bolivia
d, e) Pro-Namibia zone of the west coast of Southern Africa (courtesy of N. Juergen). Random distribution gaps or fairy circles (e) two interacting gaps (photography:
ourtesy of M. Johnny Vergeer).
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We consider the propagation–inhibition type of models under
omogeneous and isotropic environmental conditions. The effect
f the slope of the ground, water dynamics in surface or in
epth, the wind, or the course of the sun is not considered and
eglected in this approach. The model allows for the genesis of
atterns based solely on the intrinsic dynamics of the vegetation.
n other words, the wavelength of the pattern that emerges from
he symmetry-breaking instability is intrinsic in the sense that
t depends solely on the dynamical parameters such as aridity,
nd facilitative and competitive interactions ratio. In the first part
f this paper, we present a general derivation of a real partial
ifferential equation for the vegetation without any specification
f the type of the kernel function associated with facilitative,
ompetitive, and seed dispersion interactions. We show that this
odel does not depend on the kind of kernel providing that its
aylor series converge. We apply this derivation to Gaussian and
xponential type of kernels. In the second part, we investigate the
nteraction between patches and gaps. Analytical computations
llow for the construction of interaction potential between two
ell-separated localized patches and gaps.
The paper is organized as follows, we present the propagation–

nhibition model in Section 2. We derive a real partial differential
quation in the form of a nonvariational Swift–Hohenberg model
n Section 3. The interaction between two well-separated isolated
atches in one and two-dimensional settings is established in
ection 4. In Section 5, we review the interaction between gaps
nd we derive the interaction potential as a function of the
odified Bessel function. We conclude in Section 6. A detailed
erivation of interaction law between patches in one- and in
wo-dimensional settings is presented in Appendices A and B.

. Space–time dynamics of vegetation in scarce environments

The absence of the first principles for biological systems in
eneral, and in particular for ecological ecosystems renders math-
matical modeling complex. Most of the mathematical models
roposed in the literature are models based on water trans-
ort [4,5,33–38]. In contrast, the theory introduced by Lefever and
oworkers is grounded on the balance between facilitation and
ompetition interactions exerted by plants themselves, through
heir above-ground and below-ground parts [12,39–42]. Homo-
eneous and isotropic environmental conditions are assumed.
esides, no water dynamics either in surface or in depth are
2

ssumed. This theoretical approach is a generalization of the
aradigmatic logistic Verhulst equation [43–45] with non-local
acilitation, competition and seed dispersion [12,19]. This model
redicts the fragmentation of a uniform cover when the radius of
he root system is larger than the canopy radius, and only when
he reproduction processes are cooperative [12]. To satisfy the
ormer condition, the cooperativity parameter often called the
eedback balance corresponding to the difference between the
trength of the facilitative and competitive interaction should be
ositive. Indeed, when the aridity level is increased, superficial
oots track scarce water or nutrients far beyond the limits of
erial parts of the plant. The wavelength associated with this
ymmetry breaking instability is intrinsic and depends only on
he structural parameters such as the canopy-to-rhizosphere ra-
ius ratio. For trees and shrubs, data from arid regions show that
he canopy-to-rhizosphere radius ratio may be as small as 1/10.
esides front propagation leading to the stabilization of localized
egetation patches and/or gaps have been reported in [46–52].
The existence of such botanical self-organization is not re-

tricted to a special kind of plant. They may entirely consist of
rass, shrubs, or trees (cf. Fig. 1). They are not specific to a special
ype of soil, which can go from sandy to silty or clayey. To simplify
urther the modeling of ecosystems, we consider that all plants
re mature and we neglect age classes since individual plants
row on a much faster time scale compared to the time scale of
he formation of periodic vegetation patterns. The only variable is
he vegetation biomass density which is defined at the plant level.
he spatiotemporal evolution of the normalized biomass b(r, t)
beys the following integrodifferential equation

tb = B1 − B2 + Dispersion. (1)

ime has been scaled such that the characteristic time of the
rowth process is unity.
The first term B1 = b (1 − b)Mf , which stands for biomass

ain, models the rate at which the biomass increases and sat-
rates. B1 accounts for biomass productions via dissemination,
ermination, and other natural mechanisms that tend to increase
he biomass. This exponential growth is impossible to maintain
ver a long time for any population including non cognitive
opulations such as plants because of the scarcity of resources.
he logistic term proportional to (1 − b) prevents the biomass
roduction that describes the fact that the biomass cannot exceed
he carrying capacity. The nonlocal M (r, t) function describes
f
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nteractions facilitating the growth of the biomass such as seed
roduction, germination and other mechanisms that facilitate the
ncrease of biomass density. This positive feedback operates over
distance Lf of the order of the plant’s aerial structures (the

radius of the crown or the canopy) involving, in particular, a
reciprocal sheltering of neighboring plants against arid climatic
conditions.

The second term in Eq. (1) represents the biomass losses; B2 =

µbMc ; which describes death or destruction by grazing, fire,
ermites, or herbivores. The parameter µ measures the resources
carcity often called the aridity parameter. The nonlocal Mc(r, t)
models the plant-to-plant competitive interactions that on the
contrary tends to enhance biomass decay. This negative feedback
operates over distances of the order of the root length, i.e., the
rhizosphere radius Lc . Plants compete through their roots for
resources. In other words, the rhizosphere activity of individ-
ual plants tends to cut out its neighbors from resources. The
plant-to-plant nonlocal interactions are

Mf ,c(r, t) = exp
(

χf ,c

∫
φf ,cb(|r + r′|, Lf ,c)dr′

)
, (2)

where kernels are normalized as
∫

φf ,cdr′ = 1. The parameters
χc,f are the interaction strengths associated with the competi-
tive and facilitative, respectively. The parameter µ measures the
resource scarcity often called the aridity parameter.

The last term in Eq. (1), describes seed dispersion [19]:

Dispersion = DMd(r, t), (3)

Md(r, t) =

∫ [
φinb(|r + r′|, t) − φoutb(|r′|, t)

]
dr′, (4)

where D is the rate at which plants diffuse, Φin, and Φout are
the dispersion kernels weighting the incoming and outgoing seed
fluxes between neighboring points, according to their distance
|r′|.

The kernel function characterizing the nonlocal facilitative–
competitive interactions φf ,c , and seed dispersion φin,out must
satisfy three general conditions: (i) the kernels must be equal to
one in the zero biomass limit, i.e., limb→0 φf ,c,in,out = 1, (ii) they
should be normalized to ensure that the homogeneous steady
states of Eq. (1) are independent of the range of interactions of
kernels, i.e.,

∫
φf ,c,in,out (|r′|)dr′ = 1, and (iii) we assume that the

kernels are symmetric and even functions, i.e., φf ,c,in,out (|r′|) =

φf ,c,in,out (−|r′|). At this stage, the spatial shape of the kernel
φf ,c,in,out (|r′|) has not been yet specified. Generally speaking, ker-
nels can be classified into two types, either weak or strong. If
the kernel function decays asymptotically to infinity more slowly
(faster) than an exponential function, the nonlocal coupling is said
to be strong (weak) [18,53].

By taking into account Eqs. (2), (3), Eq. (1) can be rewritten as

∂tb = b (1 − b)Mf (r, t) − µbMc(r, t) + DMd(r, t). (5)

We assume that the plants are mature by neglecting the allo-
metric factor that links interaction ranges to biomass density [5,
54,55]. The range of facilitative and competitive interactions is
thus constant. In addition, we assume homogeneous and isotropic
environmental conditions.

The homogeneous steady-state solutions of Eq. (5) are given
by

µ = (1 − bs) exp (Λbs), (6)

where Λ = χf − χc is the feedback balance often called the
cooperativity parameter.

In the next section, we derive through multiple-scale anal-
ysis a simple nonvariational Swift–Hohenberg equation for the
vegetation dynamics from the logistic equation with nonlocal
3

interaction between plants Eq. (5). This reduction is valid in the
double limit of nascent bistability and close to the vegetation
pattern forming threshold. Such a critical point is known as a
Lifshitz point [56,57], which was initially proposed in the context
of magnetic systems [56].

3. A nonvariational Swift–Hohenberg equation for vegetation
dynamics

The purpose of this section is to explore the space–time dy-
namics in the vicinity of the Lifshitz critical point where the
homogeneous steady states bs, solutions of Eq. (6) undergo a
second-order critical point marking the onset of a hysteresis loop.
At the onset of bistability, the cooperativity parameter is Λc = 1,
the biomass density is bc = 0, and the aridity parameter is
µc = 1. We first define a small parameter ϵ which measures the
distance from criticality as

Λ = Λc + Λ0ϵ
1/2

= 1 + Λ0ϵ
1/2

· · · . (7)

We next expand the aridity parameter, as well as the dependent
biomass density as

µ = 1 + µ0ϵ + · · · , and b(r, t) = ϵ1/2u(r, t) + · · · . (8)

We expand the strength of the competitive feedback and the
scaling for the dispersion coefficient can be written as

χc = χ0 + χ1ϵ
1/4

+ · · · , and D = pϵ3/4
+ · · · . (9)

Since, we are interested in the regime where the biomass den-
sity is small, we can then perform a Taylor expansion of the
exponentials appearing in Eq. (2) as

Mf ,c(r, t) = 1 + χf ,c

∫
φf ,cb(|r + r′|, Lf ,c)dr′

+
1
2

(∫
φf ,cb(|r + r′|, Lf ,c)dr′

)2

+ · · · . (10)

In the same manner, we perform a Taylor expansion of the
dispersion kernels φin,out . The biomass density at the position r+r′
can expanded as

b(r + r′, t) = b(r, t) +

[
r′ · ∇ +

1
2
(r′ · ∇)2 +

1
3!

(r′ · ∇)3
]
b(r, t)

+
1
4!

(r′ · ∇)4b(r, t) + · · · . (11)

ince the kernel must be normalized and be an even function with
espect to the spatial coordinate r = (x, y), we get∫

φf ,c,inb(|r + r′|, Lf ,c,in)dr′ = b(r, t)

+ Cf ,c,in
2 · ∇

2b(r, t) + Cf ,c,in
4 · ∇

4b(r, t), + · · · (12)

with

Cf ,c,in
n =

∫
φf ,c,in(r′)

r′n

n!
(r̂′ · r̂)n dr′, (13)

where r̂′ and r̂ represent unit vectors. In polar coordinates, r̂′ · r̂ =

cos θ , with θ the angle between them.
We seek corrections to the steady states at criticality that

depend on time and space through the slow variables

∇
2

= ϵ1/4
∇̃

2, and ∂t = ϵ∂t̃/2. (14)

Replacing Eqs. (10)–(14) in Eq. (5), and expanding in series of ϵ,
the solvability condition at the order ϵ5/4 yields χ0 = C f

2/(C
c
2−C f

2).
At higher order inhomogeneous problem (order ϵ3/2), we obtain
the following partial differential equation [19]

∂ u = −u(η − κu + u2) + (δ − γ u)∇2u − αu∇4u, (15)
t
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here

η = 2µ0, κ = 2Λ0, δ = 2pC in
2 , γ = 2χ1(C c

2 − C f
2), and

α =
2(C f

2C
c
4 − C c

2C
f
4)

C c
2 − C f

2

.
(16)

Eq. (15) is referred to as a vegetation Swift–Hohenberg equation
(VSHE). The coefficients C in

2 , C f ,c
2 , and C f ,c

4 depend on the choice
of the kernels used to describe nonlocal facilitative and com-
petitive interactions, φf ,c , and the incoming seed fluxes φin. This
dependence is explicitly given by Eq. (13). Therefore, changing
the shape of kernel can affect the coefficients C in

2 , C f ,c
2 , and C f ,c

4 .
Note that the parameters η and κ that describe, respectively,
the aridity parameter and the cooperativity, i.e., the feedback
balance, do not depend on the coefficients Cn

i . They are indepen-
dent of the choice of the nonlocal facilitative, competitive, and
seed dispersion nonlocal interaction kernels. The parameters δ, γ ,
and α, describing the vegetation’s linear and nonlinear diffusion
coefficients depend on the spatial form of the kernel since their
values are determined by the coefficients Cn

i . Until now, the shape
of the kernels φi are not yet specified.

Assuming that both the facilitation, competition, and seed
dispersion nonlocal interactions are Gaussian [19]:

φf =
1
π

exp (−|r′|2), φc =
ϵ1

π
exp

(
−ϵ1|r′|

2
)
, and

φin =
ϵ2

π
exp

(
−ϵ2|r′|

2
)
,

(17)

with ϵ1 = L2a/L
2
c and ϵ2 = L2a/L

2
d . For the Gaussian kernel we have

δ =
p
2ϵ2

, γ =
χ1(1 − ϵ1)

2ϵ1
, and α =

1
16ϵ1

When both the facilitation, competition, and seed dispersion
onlocal kernels are exponentials:

φf =
1
2π

exp (−|r′|), φc =
ϵ2
1

2π
exp

(
−ϵ1|r′|

)
, and

φin =
ϵ2
2

2π
exp

(
−ϵ2|r′|

)
,

(18)

with the normalization coefficient∫
φc,f ,in(r′)dr′ = 1, (19)

performing integrals from Eq. (13) using polar coordinates, and
after straightforward calculations we obtain: C f

2 = 3/2, C c
2 =

3/(2ϵ2
1 ), C

in
2 = 3/ϵ2

2 , C
f
4 = 15/8, and C c

4 = 15/(8ϵ4
1 ), and by

replacing these coefficients in Eq. (16), we get

δ =
3p
2ϵ2

2
, γ =

3χ1

ϵ2
1

(1 − ϵ2
1 ), and α =

15
8ϵ2

1
. (20)

ote that in the case of a strong nonlocal coupling such as a
orentzian, the Taylor series does not converge, and the integrals
escribing the nonlocal interactions cannot be expressed as a
radient expansion. Therefore, in this case, the above real order
arameter description leading to the derivation of the simplified
odel VSHE Eq. (15) cannot be applied. The real order parameter
SHE has been first derived in [3]. A detailed derivation of VSHE
sing a multiple-scale analysis has been reported in [19] where
onlocal interactions have been considered as Gaussian. Recently,
he VSHE has been recovered [58] by using the water-limited
egetation model proposed by Meron and collaborators [59].
ther variational type of Swift–Hohenberg equation has been
erived in the context of fluid mechanics [60] and since then
t constitutes a paradigmatic model in the study of the periodic
nd localized patterns. It has been derived for that purpose in
ther fields of natural science, such as electroconvection [61],
4

mechanics [62,63], chemistry [64], plant ecology [41,42,65–67],
and nonlinear optics [68–70].

The homogeneous steady states solutions of VSHE satisfy u0 =

, and u± = (κ±
√

κ2 − 4η)/2. The spatially uniform bare state b0
orresponds to a state devoid of vegetation. The homogeneously
overed vegetation state is denoted by u+. These two states
re separated by an unstable homogeneous cover with lower
iomass density u−. The homogeneous vegetated states exhibit
symmetry-breaking instability at u = uc with an intrinsic
avelength explicitly given by the following simple relation

= 2π

√
2αuc

γ uc − δ
, (21)

where uc satisfies

4αu2
c (2uc − κ) = (γ uc − δ)2. (22)

his relation determines the threshold state at which the
ymmetry-breaking instability appears on the u+ branch of so-
utions. This instability can be seen from the vegetation effective
iffusion coefficient, i.e., (δ − γ u), which multiplies the Laplace

operator ∇
2 in the VSHE may become negative. This sign change

in the effective diffusion, tends to destabilize the spatial unifor-
mity of the vegetation biomass density. The bi-Laplacian ∇

4 term
s always stabilizing since its coefficient, −αu is always negative.

. Interaction between localized patches

In a regime where the homogeneous cover coexists with pe-
iodic vegetation patterns, localized patches can be stabilized in
finite range of the aridity parameter often called the pinning
one. A single localized patch is more or less of a circular shape in
omogeneous and isotropic environmental conditions. We focus
n the regime where a single patch is stable, and we shall investi-
ate in a detailed way the interaction between two well separated
atches. The interaction between localized vegetation gaps and
atches in arid and semi-arid landscapes has received a limited
ttention [19,71–73]. It has been shown that the interaction be-
ween localized vegetation patches is always repulsive [73], and
herefore localized patches bound states of vegetation are not
ossible [73]. The repulsive nature of the interaction together
ith boundary conditions allows for the coexistence of several
egetation patterns with different wavelengths [73]. This repul-
ive nature has been reported previously in a prototype model for
opulation dynamics with a nonlocal interaction [74].

.1. Interaction between localized patches in 1D

We first address the problem of the interaction between
atches in a one-dimensional setting. A single localized patch u(x)

is a solution of the VSHE. The asymptotic behavior of the tail can
be estimated since a localized patch has a small amplitude far
from its center, i.e., when x is large. We perform a linear analysis
around the homogeneous bare state u = 0 by linearizing in u, we
get 0 = −uη + δ∂xxu. The solution of this linear equation is

u (|x − x0| → ∞) ∝ e−β|x−x0|, with β =
√

η/δ, (23)

where x0 is the center position of localized patch as depicted in
Fig. 2. The previous asymptotic behavior is confirmed numerically
by performing a curve fitting in the tails. A single localized patch
is a stationary solution of the VSHE, which can be interpreted as a
nonlinear front that undergoes a pinning effect between the spa-
tially periodic vegetation pattern and the bare state [13]. The size
of an isolated patch is intrinsically determined by the vegetation
dynamics and not by the spatial variation of the environment. It
neither grows in spite of available free space, nor decreases in
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Fig. 2. One dimensional localized structure profile obtained numerically from
Eq. (15). The parameters used are η = 0.17, κ = 0.8, δ = 0.02, γ = 0.5,
nd α = 0.13. The red line corresponds to the exponential fitting R0(t)/w =

1/)ln(At), using Eq. (23). Theoretical value of γ is 2.91 and from the fitting 3.06.
he coefficient of determination results in R2

= 0.9978.

pite of adverse conditions [13]. However, when two localized
atches are initially at a certain distance from each other, they
tart to move, repelling each other. This repulsion is presented
n Fig. 3(b), where we have measured numerically the distance
f separation r(t) as a function of time. We have considered r
s the distance between the center positions of both interacting
atches. The time evolution of r obeys a logarithmic rule, imply-
ng that its temporal derivative follows an exponential law in r
ṙ ∝ e−Ar ), which makes sense since the asymptotic behavior
f the single patch tails is exponential. In the next section, we
ill derive analytically the dynamic equation that r satisfies in
particular limit and will compare with numerical data. In what

ollows we derive the interaction potential between two localized
atches. For this purpose, we consider a linear superposition of
wo stationary localized patches u1 and u2 located at the positions
1 and x2 separated by a distance r(t) = x2 − x1,

(x, t) = u1(x − x1(t)) + u2(x − x2(t)) + W (x1(t), x2(t), x), (24)

here the function W accounts for the corrections due to the
nteraction forces, which will be assumed small. The terms pro-
ortional to the product of W with ẋ−(t) or ẋ+(t) will be ne-
lected, since patches move on a slow time scale. In addition,
e assume that the distance r is large compared to the size of
single localized patch. Therefore, introducing this ansatz into

he corresponding one dimensional VSHE, after straightforward
alculations (see Appendix A), and by using the solvability con-
ition, we get Eq. (A.23). For large r , the term exp (−2βr) can be
eglected, and Eq. (A.23) reads
t r = A exp (−βr), (25) i

5

Fig. 4. Curve fitting of numerical data of r(t). The red curve is the fitting
obtained using Eq. (26). The parameters used were η = 0.12, κ = 0.6, δ =

.02, γ = 0.5, α = 0.125, dt = 0.01, and dx = 0.4. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version
f this article.)

here A is given by Eq. (A.24). The solution of Eq. (25) is

(t) =
ln (Aβ)

β
+

ln (t − t0)
β

. (26)

he distance between two separated localized patches evolves
n time according to a logarithmic law. This simple formula is
hecked with the direct numerical simulations of the governing
quation as shown in Fig. 4. The obtained value of tail decay
ate associated with localized vegetation patches is β = 2.40,
hich is in a very good agreement with the theoretical value
= (η/δ)1/2 = 2.45.
In the course of time, the distance between two localized

atches increases. Therefore, bound states of patches are not
llowed. As a consequence, the wavelength of a periodic train
f peaks depends strongly on the system size. When a small
andom initial condition is used, in the course of time, the system
eaches a periodic structure (see left panel of Fig. 5). If however,
e remove one or two peaks, the system will reach a stable
eriodic pattern with a bigger wavelength as shown in Fig. 5(b)
nd (c), respectively. These figures have been obtained for fixed
alues of the parameters, they differ only by the initial condi-
ions. In the next subsection we discuss the interaction in the
wo-dimensional system.

.2. Interaction between localized patches in 2D

In the previous subsection we have shown that in one dimen-
ional systems, the interaction between well-separated localized
atches follows an exponential law. In what follows, we focus on
he two-dimensional interaction problem. The single stationary

solated patch is a solution of the linearized problem around
Fig. 3. (a) Two localized patches separated by a distance r . (b) Numerical data of r as a function of time, showing the repulsion between patches. The parameters
re η = 0.12, κ = 0.6, δ = 0.02, γ = 0.5, α = 0.125, and dx = 0.4.
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Fig. 5. Evolution of periodic one-dimensional configurations, after removing one localized structure. The figures (a), (b) and (c) show the evolution of a seven, six,
nd five periodic profile evolution, after removing one patch. The upper and lower profiles show the initial and final profile of each case, respectively. In all cases
he patches rearrange, reaching a new periodic profile with a larger wavelength. The parameters used were η = 0.13, κ = 0.7, δ = 0.01, γ = 0.5, α = 0.1, dx = 0.26
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he bare state. Since localized solution has a radial symmetry, it
s then convenient to express the Laplace operator in spherical
oordinates i.e., ∇2

= (1/r)∂r + ∂2
r . The resulting linear problem

dmits an analytical solution

(r) = AK0(βr), (27)

here A > 0 is a constant, β =
√

η/δ, and K0 is the modified
essel function of second kind, which is a real function for r > 0.
or large values of r we can approximate this function by

0(r) ≈

√
π

2
e−r

√
r
, (28)

nd then,

LS(r → ∞) ∝
e−βr

√
r

, (29)

hich describes the asymptotic behavior of the two dimensional
ocalized patches tails. If two or more patches are close to one
nother they interact through their tails. An example of two
nteracting localized patches is illustrated in Fig. 6.

To simplify further the analysis, we suppose that the maxima
f the patches are located, respectively, at the points (−r/2, 0)

and (r/2, 0) and along the x direction, where r is the distance
between the two localized patches. To study this interaction, we
add a small perturbation W = W (r, x) to the linear superposition
of the two interacting patches separated by a distance r

u(x, t) = u1(x + r(t)/2) + u2(x − r(t)/2) + W (r, x), (30)

where x accounts for the two-dimensional vector, u1 and u2 stand
for two localized structures separated by a distance r . Performing
an analysis similar to that in the previous section, we obtain

ṙ = A
e−βr

√
r

(31)

here A is defined in (A.24).
Fig. 7 presents a curve fitting of ṙ as a function of r obtained

numerically. The fitting is performed by considering Eq. (31),
assuming that r is large. As is the 1D case, the distance between
two interacting patches is always increasing during time evolu-
tion. Therefore, stable 2D bounded patches are unstable since the
interaction is always repulsive.
6

Fig. 6. Two-dimensional structures located at a distance r . The dashed line
passes through the centers and will be the axis where we restrict our calcula-
tions. The parameters are η = 0.12, κ = 0.6, δ = 0.02, γ = 0.5, α = 0.125,
x = dy = 0.3, and dt = 0.001.

. Interaction between gaps

In contrast with localized patches where the interaction is
lways repulsive, we shall see that gaps interact in a different
ay. It has been shown that depending on the distance separat-

ng the two gaps, the interaction alternates between attractive
nd repulsive [19]. We will first perform numerical simulations
howing stable bound states of gaps. Second, we will review
he interaction law governing the interaction between two well
eparated gaps [19]. In particular, we will review and derive an
xplicit analytical expression for the interaction potential be-
ween two-gaps as a function of the modified Bessel function. As
e shall see, this function describes the damped oscillatory tail
f the interacting gaps.
To generate a stable circular gap, we have to apply initially

perturbation with zero biomass density on the uniformly veg-
tated cover. If one applies initially this perturbation at two
ifferent locations in space, two localized gaps are formed sepa-
ated by some distance. The two gaps start to interact, and in the
ourse of time, they either repel or attract each other depending
n the initial distance separating them. As in the case of patches,
he interaction between gaps evolves on a very long-time scale.
umerical simulations of the VSHE shows three examples of
he stable equilibrium state corresponding to a stationary bound
tate of gaps (see Fig. 8). Numerical results indicate that there
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Fig. 7. (a) Numerical data of the distance of separation r in function of time, in units of the width w. (b) Curve fitting of numerical data of ṙ as a function of r ,
sing first term of Eq. (31). The distance r is normalized with the localized patches width. The parameters are the same as in Fig. 7.
Fig. 8. Examples of stable two-bounded localized patches obtained by numerical simulations of Eq. (15) with periodic boundary conditions in both x and y spatial
oordinates. These bounded solutions are obtained for the same values of parameters. They differ only in the initial distance between the two interacting patches.
he parameters are κ = 0.5, δ = 0.01, γ = 0.5, α = 0.1, and η = −0.05.
Fig. 9. Spatial profiles of the 2D gaps along the x. Three cross sections have been taken from (Fig. 8).
v

exist several stable equilibrium positions. The three equilibrium
positions are obtained for the same values of the parameters and
for the same boundary conditions, and they differ only in the
initial distance between the two gaps. The spatial profile along
the x direction shows clearly that gaps possess damped oscillatory
tails [see cross sections depicted in Fig. 9].

A single localized gap is a radially symmetric solution u(x, y) =

(r) of the VSHE. This localized state possesses an oscillatory tail,
which can be calculated using the fact that the gap amplitude
is close to the homogeneous cover u+ far away from its center,
i.e., when r is large. Therefore, in order to calculate the asymp-
totic behavior of the gap solution we substitute into Eq. (15) an
expression u(r, t) = u+ + U(r) and by linearizing this equation
around u+, we obtain

∇
2
(

U
V

)
= M

(
U
V

)
M =

(
0 1

−ξ2 ξ1

)
, (32)

here V = ∇
2U , ξ1 = (δ − γ u+) /(αu+), and ξ2 = (3u2

+
+ η −
2κu+)/(αu+). The solution of this equation gives the asymptotic

7

behavior of the localized gap in terms of the modified Bessel
function K0:(

U
V

)
≈ A{v⃗ exp(iθ )K0 [(ω1 + iω2)r] + c.c.}, (33)

where ω1± iω2 =

[
ξ1/2 ± i

√
ξ2 − (ξ1/2)2

]1/2
are complex eigen-

alues, while v⃗ =
[
1 (ω1 + iω2)2

]T and v⃗∗
=

[
1 (ω1 − iω2)2

]T
are complex eigenvectors of the matrix M . Real constants A and
θ must be calculated numerically.

Two or more localized vegetation gaps will interact through
their overlapping tails if they are close enough. The interaction
between localized states is a well documented issue in contexts
of a physico-chemical systems [75–79] rather than biological
systems [19]. We consider the simplest situation where the two
identical and radially symmetric interacting gaps are located at
the positions r1,2. Without the loss of generality, we assume that
the positions of both gaps are on the x-axis, i.e., their minima are
located at the points (−R/2, 0) and (R/2, 0), where R = |r − r |
2 1
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Fig. 10. Interaction potential as a function of the distance R between two
localized gaps. Parameters are κ = 0.5, δ = 0.01, γ = 0.5, α = 0.1, and

= −0.05.

s the distance between the gaps. In the regime of week overlap,
e look for the solution of the VSHE in the form of slightly
erturbed linear superposition of two gaps:

(r, t) = u+ + U1(r)+U2(r)+εδu(r, t) where

1,2(r)=U
(
|r − r1,2|

)
, (34)

here their positions r1,2 evolve on the slow time scale εt . The
time evolution of the distance between two-identical gaps can
be calculated by substituting Eq. (34) into Eq. (15), collecting
first order terms in ε, and writing the solvability condition of the
resulting linear equation [19]

∂tR = −∇RU(R), (35)

here the potential function

(R) = 4αu+

[
ξ1

∫
∞

∞

(UxU)x=R/2 dy −

∫
∞

−∞

(UVx + UxV )x=R/2 dy
]

.

(36)

Here Ux(r) is the x-component of the eigenfunction of the linear
operator L† adjoint to the operator L, which is obtained by
linearizing Eq. (15) around the gap solution U(r) and V (r) =

2U(r). The asymptotic behavior of Ux and Vx = ∇
2Ux at large

is given by

Ux
Vx

)
≈ B

(
x
r
v⃗ exp(iϕ)K1 [(ω1 + iω2)r] + c.c.

)
, (37)

where real constants B and ϕ must be calculated numerically.
A detailed derivation of Eq. (36) as well as the evaluation of
the integrals I1,2 can be found in the book chapter [19]. After
substituting asymptotic relations (33) and (37) into Eq. (36), and
performing integration we finally get:

U(R) = −8πABαu+ℑ

(
ω1ω2ei(θ+ϕ)

(ω1 + iω2)2
K0 [(ω1 + iω2)R]

)
. (38)

he minima (maxima) of the interaction potential corresponds
o stable (unstable) localized gaps bound states, where two bare
pots are bounded together by the interaction force. The interac-
ion potential (38) associated with two-gaps is plotted in Fig. 10.
rom this figure, we see that there is a discrete set of stable
nd unstable bounded vegetation patches. Numerical simulations
8

were conducted using the finite differences scheme with Runge–
Kutta order-4 algorithm and periodic boundary conditions.

6. Conclusions

A nonlinear model for population dynamics is introduced to
describe the interaction and propagation of vegetation in arid and
semi-arid environments. The nonlocal facilitative and competitive
interactions between individual plants together with seed disper-
sion have been explicitly incorporated into the model. Starting
from this integro-differential model, we have derived a sim-
ple partial differential equation in the form of a non-variational
Swift–Hohenberg equation. This derivation is valid in the double
limit: close to the critical point associated with bistability, and
close to the long wavelength pattern forming regime.

In the first part, we have performed this derivation without
any specification of the form of kernels used to describe nonlocal
interactions between plants. The originality of the results pre-
sented in this contribution resides in the fact that the derivation
of the vegetation Swift–Hohenberg model is kernel independent.
This derivation is rather general but its application is limited
to kernels whose Taylor series converge. We have shown that
parameters δ, γ , and α, describing vegetation diffusion coeffi-
ients depend on the spatial form of the kernel, while the aridity
arameter and the feedback balance, do not depend on the type
f the kernels used. The Gaussian and exponential type kernels
ave been used to estimate the model parameters.
In the second part, we have discussed the formation of local-

zed patches and gaps including their interaction. In particular,
e have presented a detailed derivation of the law governing the

nteraction between two well-separated patches. A single patch
urrounded by the no plant state and connecting this state to
he spatially periodic pattern, is stable over a large range of the
ridity parameter [13]. The tail of the patch is monotonously
ecaying as a function of the distance from its center, i.e., devoid
f damped spatial oscillations. This is because the biomass density
s a positively defined quantity and therefore damped oscillations
round the no plant state are physically not possible. It has been
hown recently that when two patches are sitting on bare terrain
with zero total biomass), they interact in a repulsive way, and
bviously, the repulsive nature of such interaction prevents the
ormation of bounded localized patches. In this work, the interac-
ion between patches has been analyzed especially in connection
ith the coexistence of stable vegetation patterns with different
avelengths. The repulsive nature of such interaction affects
ot only the vegetation pattern formation process but also the
attern selection since it allows for the stabilization of new ex-
ended vegetation patterns such as squares and superlattices [73].
n the present paper, we performed a more extensive analysis
f the interaction between vegetation patches in one and two-
imensional settings. A detailed analysis has been presented in
ppendices A and B.
In the last part, we have investigated the interaction between

aps. Gaps have been generated in a regime where a uniformly
egetated cover coexists with a periodic vegetation pattern. In
ontrast with patches, localized gaps possess a damped oscilla-
ory tail, which affects the laws governing their interaction. It
as been shown that the interaction alternates between attractive
nd repulsive depending on the distance separating the gaps [19].
he existence of a discrete stable equilibrium position allows for
he stabilization of bound states and clusters of gaps. We have
onstructed the interaction potential, and we have improved the
esults of Ref. [19] by deriving an explicit analytical expression
or the interaction potential of two weakly overlapping gaps in
erms of the modified Bessel function.
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ppendix A. Derivation of the interaction potential in 1D

We derive the interaction law of two localized structures sepa-
ated by a distance r(t) = x2(t)−x1(t), with the central position or
centroid x0 = (x2(t)−x1(t))/2 [see Fig. 3(a)]. Let us first introduce
the ansatz presented in Eq. (24) into Eq. (15), i.e. the dynamical
equation of the system, and derive a linear system in W , the
correction term. Recall that x1(t) and x2(t) account for positions
of structures u1 and u2, respectively. Notice that they have been
promoted as functions of time. Our aim in this section is to derive
dynamical equations for r(t) and x0(t) under certain assumptions.

As mentioned in the main text, it is assumed that the term
W is small, i.e. nonlinear terms are neglected. Moreover, the
localized structure is assumed to travel slow enough so that the
terms proportional to the product of W with either ẋ1 or ẋ2 are
not considered. Therefore, under the previous assumptions, the
linear system associated to W becomes

LW = b, (A.1)

with the linear operator L defined as

L = − η + 2κ(u1 + u2) − 3(u1 + u2)2 + δ∂xx
− γ [(u1 + u2)∂xx + ∂xx(u1 + u2)]
− α [(u1 + u2)∂xxxx + ∂xxxx(u1 + u2)] ,

(A.2)

and

b =
ṙ
2

(
∂z1u1 − ∂z2u2

)
− ẋ0

(
∂z1u1 + ∂z2u2

)
− 2κu1u2 + 3u1u2 (u1 + u2)

+ γ (u1∂xxu2 + u2∂xxu1)

+ α (u1∂xxxxu2 + u2∂xxxxu1) .

(A.3)

where u1 and u2 are stationary gaps solutions of Eq. (15). The time
evolution of the distance separating the two interacting gaps ṙ as
well as the time evolution of the central position ẋ0(t) will be
derived by applying the Fredholm solvability condition, for the
following inner product

⟨f |g⟩ =

∫
+∞

−∞

f (x)g(x) dx, (A.4)

with f (x) and g(x) as real-valued functions. The derivation of
the associated adjoint operator L† is necessary for applying this
condition.

A.1. Adjoint of L

To obtain L†, we take a look at the property ⟨L†f |g⟩ = ⟨f |Lg⟩

for adjoint operators. From here, it is straightforward to see that
the terms of L remain the same as in L†, except

γ (u + u )∂ and α(u + u )∂ . (A.5)
1 2 xx 1 2 xxxx

9

The adjoint of these terms can be obtained by integrating by parts.
We illustrate this procedure for the first of them.

When introducing γ (u1 + u2)∂xx into the inner product

⟨f |γ (u1 + u2)∂xxg⟩ =

∫
+∞

−∞

f (x) γ [u1(x) + u2(x)] ∂xxg(x) dx, (A.6)

and integrating by parts once, we get

f (x)γ [u1(x) + u2(x)] ∂xxg(x)
⏐⏐⏐∞
−∞

−

∫
+∞

−∞

∂x[f (x)γ (u1(x)+u2(x))]∂xg(x)dx.

(A.7)

The time dependence of u1 and u2 has been suppressed for sim-
plicity of notation. The first of these terms vanishes, as (u1 + u2)
tends to zero as x → ±∞. Integrating by parts once more, and
proceeding in a similar way, we get

⟨f |γ (u1 + u2)∂xxg⟩ = ⟨∂xx[f γ (u1 + u2)]|g⟩, (A.8)

so that, the corresponding element of γ (u1 + u2)∂xx in L† takes
he form ∂xx[γ (u1+u2)·]. Notice that operator receives arguments
nside the partial derivative ∂xx. This is represented with a dot
nside the square brackets.

Proceeding in the same way with the second term in Eq. (A.5),
he adjoint operator becomes

L†
= − η + 2κ(u1 + u2) − 3(u1 + u2)2 + δ∂xx

− γ {(u1 + u2)∂xx + ∂xx [(u1 + u2)·]}
− α {(u1 + u2)∂xxxx + ∂xxxx [(u1 + u2)·]} .

(A.9)

.2. Kernel of L†

To apply the Fredholm solvability condition, it is necessary
o calculate the kernel components of L†, that is, the elements
hat fulfill ⟨f |L†

= 0. Due to the complexity of L†, they are
btained numerically by discretizing its derivatives, using central
ifferencing with the 4 nearest neighbors. Thus, when applying
† to a real-valued function f , ⟨f |L† becomes

⟨fj|L†
=

(
7c4

240dx4
−

7c3
240dx3

−
c2

560dx2
+

c1
280dx

)
fj−4

+

(
−

2c4
5dx4

+
3c3

10dx3
+

8c2
315dx2

−
4c1

105dx

)
fj−3

+

(
169c4
60dx4

−
169c3
120dx3

−
c2

5dx2
+

c1
5dx

)
fj−2

+

(
−

122c4
15dx4

+
61c3
30dx3

+
8c2
5dx2

−
4c1
5dx

)
fj−1

+

(
91c4
8dx4

−
205c2
72dx2

+ c0

)
fj

+

(
−

122c4
15dx4

−
61c3
30dx3

+
8c2
5dx2

+
4c1
5dx

)
fj+1

+

(
169c4
60dx4

+
169c3
120dx3

−
c2

5dx2
−

c1
5dx

)
fj+2

+

(
−

2c4
5dx4

−
3c3

10dx3
+

8c2
315dx2

+
4c1

105dx

)
fj+3

+

(
7c4

240dx4
+

7c3
240dx3

−
c2

560dx2
−

c1
280dx

)
fj+4,

(A.10)

ith
c0 = − η + 2κU − 3U2

− 2γ ∂xxU − 2α∂xxxxU,

c1 = − 2γ ∂xU − 4α∂xxxU,

c2 = δ − γU − 6α∂xxU,

c3 = − 4α∂xU,

(A.11)
c4 = − αU∂xxxx,
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where U = u1 + u2, and fj ≡ f (x = dxj), with dx the
iscretization used.
Finding the kernel of L† is equivalent to determining the

ernel (or nullspace) of a matrix M that satisfies

f⃗ = 0⃗ with f⃗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1
...

fj−1
fj

fj+1
...

fN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A.12)

ith N the number of points considered in the discretization.
et us first take a look at the eigenvalue spectrum of M . Using
x = 0.1, N = 30, and setting u−

LS and u+

LS at a distance r = 150,
we obtain the eigenvalue spectrum shown in Fig. A.1(a) and (b).
As the graph shows, we confirm the stability of the localized
structures as every eigenvalue has a negative real part. Moreover,
the lowest eigenvalues (−0.022 and −0.024) decrease as the
distance r and the number of points N increase, implying that
they correspond to the null eigenvalues we are looking for. They
are not exactly equal to zero due to the numerical approximation.

Finally, the linear combination of the eigenvectors associated
with the calculated null eigenvalues gives us the elements of the
kernel of L†. These will be labeled as ⟨τ | and ⟨χ |. Their respective
profiles are shown in Fig. A.1(c) and (d).

A.3. Interaction dynamical equations

Having the kernel of L†, the dynamical equations of r and x0
are determined by applying the Fredholm solvability condition.
This states that the linear system (A.1) admits solution if and only
if

⟨τ |b⟩ = 0 (A.13)

and

⟨χ |b⟩ = 0. (A.14)

In what follows, we expand both products and obtain dynamical
equations for both x0(t) and r(t).

A.3.1. Equation for the central position x0(t)
In the first of these products, Eq. (A.13), given the form of b

(see Eq. (A.3)), and since τ is odd around x0, the only term that
remains is

⟨τ |ẋ0
(
∂z1u1 + ∂z2u2

)
⟩ = 0, (A.15)

implying that

ẋ0 = 0, (A.16)

i.e., the central position of the LSs does not move. This result is
observed in the numerical simulations, which is expected due to
the symmetries of the dynamical equation of the system.

A.3.2. Equation for the distance r(t)
On the other hand, in the second product, Eq. (A.14), due to

the symmetries of the terms involved, the ones that remain are

⟨χ |(ṙ/2)
(
∂z1u1 − ∂z2u2

)
⟩+

⟨χ | − 2κu1u2 + 3u1u2 (u1 + u2)

+ γ (u1∂xxu2 + u2∂xxu1)
(A.17)
+ α (u1∂xxxxu2 + u2∂xxxxu1) = 0.
10
The integrals involved in this equation can be approximated
analytically. For this, it is convenient to write

χ (x) = χ−(x − x1) + χ+(x − x2), (A.18)

that is, to divide χ into two parts, one localized around x1 and the
other around x2. To illustrate how to approximate the integrals
analytically, let us take a look at the second product of (A.17),
i.e.

⟨χ |2κu1u2⟩ = 2κ
∫

∞

−∞

[
χ−(x − x1) + χ+(x − x2)

]
× u1(x − x1)u2(x − x2)dx

= 2κ
[∫

∞

−∞

χ−(z1)u1(z1)u2(z1 − r)dz1

+

∫
∞

−∞

χ+(z2)u1(z2 + r)u2(z2)dz2

]
.

(A.19)

In the second equality, we have changed our variables to z1 =

x−x1 and z2 = x−x2 in the first and second integrals, respectively.
We have also used r = x2 − x1. These integrals are exponentially
close to zero in the whole region of integration, except when they
are evaluated near zero. Thus, a good approximation of them is
given by setting the integral limits from −r/2 to r/2. Moreover,
since r is large, the terms u2(z1−r) and u1(z2+r) are exponentially
small in the region of integration. An approximation of these
functions is given then by the asymptotic behavior of u1 and u2
(see Eq. (23)), so that

⟨χ |2κu1u2⟩ ≈

2κ
[∫ r/2

−r/2
χ−(z1)u1(z1)e−β|z1−r|dz1 +

∫ r/2

−r/2
χ+(z2)e−β|z2+r|u2(z2)dz2

]
.

(A.20)

where |z1 − r| = r − z1 and |z2 + r| = z2 + r in this region of
integration. We write

⟨χ |−2κu1u2⟩ ≈ −2κe−βr I1, (A.21)

where

I1 = −

[∫ r/2

−r/2
χ−(z1)u1(z1)eβz1dz1 +

∫ r/2

−r/2
χ+(z2)e−βz2u2(z2)dz2

]
.

(A.22)

Proceeding in the same way with the other integrals in Eq
(A.17), we finally obtain the dynamical equation for r

ṙ = Ae−βr
+ Be−2βr , (A.23)

where

A =
2
[
(αβ4

+ γ β2
− 2κ)I1 + 3I2 + γ I4 + αI5

]
⟨χ |∂z1u1 − ∂z2u2⟩

(A.24)

nd

=
6I3

⟨χ |∂z1u1 − ∂z2u2⟩
, (A.25)

ith

2 = −

[∫ r/2

−r/2
χ−(z1)(u1(z1))2eβz1dz1

+

∫ r/2

−r/2
χ+(z2)e−βz2 (u2(z2))2dz2

]
, (A.26)

3 = −

[∫ r/2

−r/2
χ−(z1)u1(z1)e2βz1dz1

+

∫ r/2

χ+(z2)e−2βz2u2(z2)dz2

]
, (A.27)
−r/2
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Fig. A.1. (a) Eigenvalue spectrum of matrix M using dx = 0.1 and N = 30. (b) Zoom of the dashed region marked in (a). Figures (c) and (d) show the null eigenvector
τ and χ (solid line), respectively, and the associated localized structures profile (dashed line). Parameters used are the same as in Fig. 3.
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I4 = −

[∫ r/2

−r/2
χ−(z1)∂z1z1u1(z1)eβz1dz1

+

∫ r/2

−r/2
χ+(z2)e−βz2∂z2z2u2(z2)dz2

]
(A.28)

and

I5 = −

[∫ r/2

−r/2
χ−(z1)∂ (4)

z1 u1(z1)eβz1dz1

+

∫ r/2

−r/2
χ+(z2)e−βz2∂ (4)

z2 u2(z2)dz2

]
. (A.29)

All these integrals can be calculated numerically. We have
checked that factors A and B are positive for the range of param-
eters used in the simulations.

Appendix B. Derivation of the interaction potential in 2D

In this section, we derive the interaction law for r(t) in two di-
mensions. The procedure is essentially the same as in one dimen-
sion, as we focus on the dynamics of the x axis. The main differ-
ence relies on the asymptotic behavior of the localized structures.
In fact, the linear system obtained after replacing the ansatz will
be

LW = b, (B.1)

with the same operator L as in one dimension, and

b =
ṙ
2

(
∂z1u1 − ∂z2u2

)
− 2κu1u2 + 3u1u2 (u1 + u2)

+ γ (u1∂xxu2 + u2∂xxu1)

+ α (u1∂xxxxu2 + u2∂xxxxu1) ,

(B.2)

with z± = x ∓ r/2. We choose the same inner product as in one
dimension, and in consequence, we obtain the same kernel of L†.
These are labeled again as ⟨τ | and ⟨χ |.
11
By applying the Fredholm solvability condition, ⟨τ |b⟩ = 0,
we obtain that ẋ0 = 0, i.e. there are no dynamics in the center
position, as in one dimension. For the second product, ⟨χ |b⟩ = 0,
he analytical approximations needed are slightly different than
n one dimension. To illustrate them, let us consider the inner
roduct between χ and 2κu1u2 (as in Eq. (A.19))

⟨χ |2κu1u2⟩

= 2κ
[∫

∞

−∞

χ−(z1)u1(z1)u2(z1 − r)dz1

+

∫
∞

−∞

χ+(z2)u1(z2 + r)u2(z2)dz2

]
.

(B.3)

gain, we have split χ as in Eq. (A.18). We also restrict the
ntegral limits only from −r/2 to r/2 and replace u2(z1 − r) and
1(z2+r) by their asymptotic behavior. Since now we are focusing
n the dynamics of the x axis, the asymptotic behavior takes the
orm (see Eq. (29))

LS(|x − x0| → ∞) ∝
e−β|x−x0|

√
|x − x0|

, (B.4)

where x0 is the central position. Thus,

⟨χ |2κu1u2⟩ ≈

2κ
[∫ r/2

−r/2
χ−(z1)u1(z1)

e−β|z1−r|

√
|z1 − r|

dz1

+

∫ r/2

−r/2
χ+(z2)

e−β|z2+r|

√
|z2 + r|

u2(z2)dz2

]
.

(B.5)

Notice that |z1 − r| = r −z1 and |z2 + r| = z2 + r in this region of
ntegration. Moreover, performing a Taylor expansion in z±, we
et

1
√ ≈

1
√ ±

z±
3/2 . (B.6)
z± ± r r 2r
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T
W

i

s
⟨

R

he second term of this expansion can be neglected as r is large.
e write then

⟨χ |2κu1u2⟩ ≈

2κ
e−βr

√
r

[∫ r/2

−r/2
χ−(z1)u1(z1)eβz1dz1 +

∫ r/2

−r/2
χ+(z2)e−βz2u2(z2)dz2

]
,

(B.7)

.e., ⟨χ ||2κu1u2⟩ ≈ 2κ
e−βr

√
r
I1, with I1 defined as in the previous

ection. Proceeding in the same way with the other integrals from
χ |b⟩ = 0, we get, for large r Eq. (31).
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