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ABSTRACT

Nonlinear pulse propagation is a major feature in continuously extended excitable systems. The persistence of this phenomenon in coupled
excitable systems is expected. Here, we investigate theoretically the propagation of nonlinear pulses in a 1D array of evanescently coupled
excitable semiconductor lasers. We show that the propagation of pulses is characterized by a hopping dynamics. The average pulse speed
and bifurcation diagram are characterized as a function of the coupling strength between the lasers. Several instabilities are analyzed such as
the onset and disappearance of pulse propagation and a spontaneous breaking of the translation symmetry. The pulse propagation modes
evidenced are specific to the discrete nature of the 1D array of excitable lasers.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0006195

Linear oscillators coupled with springs to nearest neighbors
exhibit wave propagation. This phenomenon is persistent when
considering the continuous limit, i.e., when considering an elas-
tic rope. In this limit, the wave dispersion relation is linear, unlike
the discrete case of coupled systems where it is nonlinear.
Here, we study the propagation of localized nonlinear waves—
pulses—in coupled excitable systems. Excitable oscillators play a
fundamental role in understanding the activity of neurons, car-
diac tissue, and oscillatory chemical reactions. Based on a model
of a 1D array of excitable semiconductor lasers, we show that
pulse propagation is characterized by a hopping dynamics and
that it displays a rich variety of bifurcations. Counterintuitively,
we observe that pulses do not persist in the continuous limit.

I. INTRODUCTION

The propagation of excitations (spikes) in discrete excitable
media plays a major role in biological systems.1–4 It is at the heart
of the conduction of information in axons and it ensures conduc-
tion delays, which are central to information processing in neural
networks.5 The possibility to process information with spikes in
photonic systems has attracted recently a lot of interest because of its

application potential in terms of energy consumption, parallelism,
and speed.6–9 It has been recently shown theoretically that coupled
excitable semiconductor lasers can behave analogously to biological
axons, allowing to transport and process information in the form of
short optical spikes.8,10

Dissipative systems are characterized by exhibiting attractors
and basins of attraction.11–15 The boundaries of these basins of attrac-
tion are in general fractal.11,12 The dynamics within the basin of
attraction is governed by the geometry of the stable invariant man-
ifolds associated with the respective equilibrium and the separatrix
manifolds of the basin of attraction.15,16 Manifolds are the nonlinear
extension of the eigenvectors obtained in the linearized dynamics
around the equilibrium. Hence, infinitesimal disturbances around
the equilibrium are generally exponentially decaying to equilibrium
(linear dynamical behavior). However, under certain conditions and
unexpectedly, large excursions (larger than the disturbance) can
be observed in the basin of attraction. This type of behavior is
known as excitability. Excitability is a generic phenomenon encoun-
tered in many areas of science and, in particular, in biology,17–21

chemistry,22,23 and optics.24,25

From the point of view of the phase portrait geometry,
excitability arises because stable invariant manifolds are folded (as
a consequence of previous bifurcations) or are connected with
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hyperbolic points that generate separatrix inside the basin of attrac-
tion (see Fig. 1).20,21 Therefore, excitability is a genuine nonlinear
phenomenon. The above scenario changes radically when consider-
ing excitable systems extending over space. In this context, a local
perturbation above the excitability threshold is enough to excite
its nearest neighbors, generating excitable pulses or waves.19,21,26–28

These waves are known in chemical reactions,19,27 in the cardiac
muscle,17 and in liquid crystals.26 In lasers, their existence has been
theoretically predicted in a laser with an injected signal,28 but the
experimental part lacks a convincing demonstration. In most of
these works, the propagation of pulses is studied, which has a well-
defined propagation speed. However, continuous models are used
to characterized the propagation. It is known that discreteness can
affect the propagation of wavefronts.29,30 For example, the wave-
front speed in discrete systems can present oscillations.29–31 Even

more, discreteness can induce the propagation failure in bistable32

or excitable4 discrete systems.
The aim of this paper is to study theoretically the propagation

of pulses in an array of excitable semiconductor lasers. Based on a
one-dimensional array of coupled lasers with a saturable absorber
medium, we show that the propagation of pulses is characterized
by a hopping dynamics (see Fig. 1). Depending on the coupling
strength between the lasers, we characterize the speed of the pulses
and their bifurcation diagrams. This speed increases with the cou-
pling strength. The propagating pulses emerge by means of a saddle-
node bifurcation, as the coupling constant increases, and then the
solution adapts itself and exhibits several instabilities. The observed
pulses are peculiar to the discrete nature of the excitable laser cou-
pling; that is, when the continuous limit is taken, the traveling pulses
do not persist.

FIG. 1. Pulse propagation in an 1D array of excitable semiconductor lasers. (a) Schematic representation of an array of excitable semiconductor lasers. Lasers emit from
the top and are evanescently coupled through the neighbors. The inset accounts for the typical phase portrait of a single semiconductor laser. Curves and dots account for
invariant manifolds and equilibria. Spatiotemporal propagation of a pulse of an array of an excitable semiconductor laser model [Eqs. (1)–(3)] with different coupling constants
κ = 0.20 (b), κ = 0.25 (c), and κ = 0.30 (d), α = 2.0, β = 0, A = 2.74, B = 2, b1 = b2 = 0.001, and s = 10.
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II. THEORETICAL DESCRIPTION OF AN ARRAY OF AN
EXCITABLE SEMICONDUCTOR LASER

The excitable system that we consider is a micropillar laser
with an integrated saturable absorber medium studied theoretically
in Refs. 33 and 34 and experimentally in Refs. 35 and 36. These
lasers have been shown to behave analogously to biological neu-
rons, displaying refractory periods,36 spike latency,37,38 and temporal
summation (coincidence detection).39 We consider a 1D array of
evanescently coupled lasers with a saturable absorber8,10 depicted in
Fig. 1(a) and described by the dimensionless set of equations,

Ėn =
[

(1 − iα)Ng,n − (1 − iβ)Nas,n − 1
]

En + iκ(En−1 + En+1),
(1)

Ṅg,n = b1

[

A − Ng,n

(

1 + |En|
2
)]

, (2)

Ṅas,n = b2

[

B − Nas,n

(

1 + s|En|
2
))

], (3)

where En(t), Ng,n(t), and Nas,n(t) account, respectively, for the enve-
lope of the electric field, the rescaled gain, and the rescaled absorp-
tion in the ith laser. The factors α and β are standard semiconductor
parameters describing phase-amplitude coupling. κ stands for the
dispersive nearest-neighbor coupling coefficient between the lasers.
Non-radiative carrier recombination rates for the gain and absorber
media are, respectively, b1 and b2. A and B account for the pump gain
and non-saturable losses. The saturation parameter s in semicon-
ductors is necessarily greater than 1. Time is rescaled to the cavity
photon lifetime, which is the shortest time scale in the system (sev-
eral picoseconds), and the carrier recombination time scales, which
are of the order of 0.5–1 ns are, therefore, small: b1,2 " 1. Notice that
a model similar to the set of Eqs. (1)–(3) with purely diffusive cou-
pling has been considered to study synchronization phenomena in

FIG. 2. Pulse propagation in an array of an excitable semiconductor laser model
[Eqs. (1)–(3)] with α = 2.0, β = 0, A = 2.74, B = 2, b1 = b2 = 0.001, and
s = 10. Spatiotemporal evolution of a perturbation above an excitable threshold
of the leftmost cavity, in an array of 100 coupled micropillars with an evanescent
coupling of κ = 0.15.

FIG. 3. Average pulse speed as a function of evanescent coupling κ of
an excitable semiconductor laser model [Eqs. (1)–(3)] with α = 2.0, β = 0,
A = 2.74, B = 2, b1 = b2 = 0.001, and s = 10. The colored regions account
for the different bifurcations observed. κsn ∼ 0.1, κt ∼ 0.45, and κ+

sn
∼ 2.71

account for the critical evanescent coupling in which the pulses emerge and
present a spontaneous symmetry translation-breaking, respectively.

the presence of additive noise40 and localization phenomena when
coefficients are variable (with disorder).41 The set of Eqs. (1)–(3)
under the influence of noise exhibits synchronization and with vari-
able coefficients shows localization.42 A single semiconductor laser
with an integrated saturable absorber medium can be accurately
described by rate equations for the intensity of the electric field,
gain, and absorption, the Yamada model.34,43 However, because of
the evanescent coupling between the microlasers, one must consider
the envelope of the electric field in the model written in Eqs. (1)–(3)
to account for the dispersive (imaginary) coupling term.

The non-lasing solution is represented by En(t) = 0, Ng,n = A,
and Nas,n = B. This state is stable for a single laser when A − B −

1 < 0 and corresponds to an attractor. Excitable dynamical behavior
requires that33 s > 1 + 1/B. Note that in semiconductor materials,
this condition is fulfilled since the parameter s is a large parameter
due to the gain saturation. The schematic projection of the phase
portrait of a single laser in the plane {Ng, I = |E|2} is illustrated in
Fig. 1(a). The laser threshold corresponds to a transcritical bifur-
cation and occurs at Ath ≡ 1 + B. In this kind of system, excitability
exists near a homoclinic loop bifurcation and below the laser thresh-
old. If the system is sent above the stable manifold of the saddle
point, it makes a large excursion around the heteroclinic orbit and
turns back to the stable state corresponding to the off solution of the
laser: an excitable optical pulse is produced.

In Figs. 1(b)–1(d), pulse propagation in the array of semicon-
ductor lasers is exemplified for different values of the evanescent
coupling parameter, κ . This parameter can be experimentally tuned
by changing the center-to-center distance between the pillars (see
Ref. 44). In the regime of weak evanescent coupling, κ " 1, the
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FIG. 4. Intensity of the electric field I = |En|
2 of two successive micropillars as a function of time for different evanescent coupling parameters κ = 0.1 (a), κ = 0.44 (b),

κ = 0.46 (c), κ = 0.7 (d), κ = 0.8 (e), κ = 2.5 (f), and κ = 2.71 (g). Pulses spread to the right flank.
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coupling time is large as compared to the photon cavity lifetime,
which ensures that an excitable response can form before the energy
couples to the neighboring laser. This corresponds to a saltatory
propagation regime.10 When kappa is larger, as will be shown below,
the propagation mode deviates from the saltatory one. To test
numerically the pulse propagation, we disturb a single laser with
a perturbation amplitude value slightly above the excitable thresh-
old (cf. Fig. 2). The first effect observed due to the discreteness of
the excitable medium is that the propagation of the pulses proceeds
through a hopping (or saltatory) dynamics. Namely, the lasers are
turned on one by one while they emit an excitable spike, and when
they go back to their off state, they excite the neighboring lasers. If
the coupling strength is large enough, the leaking of energy from the
initially perturbed laser to the neighboring ones can excite the neigh-
bors and propagate the pulse. The process repeats giving rise to the
observed hopping dynamics. Note that the propagation is unidirec-
tional because of the refractory period exhibited by each excitable
laser:36,37 once the laser has fired a spike, it cannot be re-excited
immediately; thus, there is a symmetry breaking of the excitable
medium. This explains why the pulse that starts at one edge only
propagates to a single flank.

III. PULSE SPEED AND BIFURCATION DIAGRAM
CHARACTERIZATION

As we increase the value of the evanescent coupling parameter
κ , the average pulse speed 〈v〉 increases. Figure 3 summarizes how
the average pulse speed behaves as a function of κ . For small evanes-
cent coupling values, we do not observe propagating pulses. The
pulses appear by means of a saddle-node bifurcation from a critical
coupling constant κ ≡ κsn. The saddle-node bifurcation is a generic
mechanism of emergence of localized structures in several contexts
such as nonlinear optics, plasma, and fluid.45–49 The main features
of this bifurcation are that solutions are only observed in a region
of the parameter space and that a critical exponent is observed near
the bifurcation for the growth rate as a function of the distance to
the equilibrium. Figure 4 shows the intensity of the electric field in
two successive lasers as a function of time for different evanescent
coupling regions (I–IV) highlighted in Fig. 3. The pulse throughout
region I is characterized by the fact that the intensity of the electric
field is concentrated in a single laser [see Fig. 4(a)]. Numerically, we
find for the parameters considered in Fig. 2 and close to the left edge
(asymptotic limit of the speed) that the mean speed goes almost lin-
early with κ such that 〈v〉 = v0 + v1(κ − κsn)

n with v0 = 0.061 76,
v1 = 1.655, κsn = 0.1, and n = 0.9189 [cf. Fig. 5(a)]. This regime
corresponds to a solitary, ballistic regime.

However, close to κ ≡ κt = 0.45 (region II), we observe that
there is a qualitative change in the average speed curve (see Fig.
3). Figure 5(b) shows a zoom of regions I and II. We note that
the speed of the pulse varies continuously but is not differen-
tiable at this critical point. To reveal the origin of this instability,
the evolution of the electric field intensity in two successive lasers
below and above the transition is shown in region II in Figs. 4(b)
and 4(c). Note that below the bifurcation, the temporal profile of
the pulse in the two successive lasers is identical. However, above
the bifurcation, the temporal profiles in two successive lasers are not
identical and they alternate. Therefore, this bifurcation corresponds

FIG. 5. Amplifications of the average pulse speed as a function of evanescent
coupling κ of an excitable semiconductor laser model [Eqs. (1)–(3)] with α = 2.0,
β = 0, A = 2.74, B = 2, b1 = b2 = 0.001, and s = 10. Points account for the
pulse speed obtained numerically. (a) Emergence of hopping pulse solutions.
The dashed curve is obtained by fitting 〈v〉 with 〈v〉 = v0 + v1(κ − κsn)

n and
v0 = 0.061 76, v1 = 1.655, κsn = 0.1, and n = 0.9189. (b) Spontaneous trans-
lational symmetry-breaking instability. The dashed curve is obtained by fitting 〈v〉
with 〈v〉 = a0 + a1(κ − κt)

n and a0 = 0.5363, a1 = 0.6659, κt = 0.454, and
n = 0.5367.

to a spontaneous translational symmetry-breaking. This transition
occurs for both pulses that propagate to the right or left flank, and
then one expects this bifurcation to be of the pitchfork type.11–15 To
characterize the pitchfork bifurcation, we fit in Fig. 5(b) the average
speed with 〈v〉 = a0 + a1(κ − κt)

n with a0 = 0.5363, a1 = 0.6659,
κt = 0.454, and n = 0.5367. The dependence is thus compatible with
the expected square root law.

Likewise, to characterize the spontaneous translational
symmetry-breaking bifurcation, we introduce the total intensity in
the nth laser as an order parameter,

IT,n =

∫

dt|En|
2(t). (4)
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FIG. 6. Total intensity of the electric field IT ,n in the n-micropillar as a function of
evanescent coupling for a model [Eqs. (1)–(3)] with α = 2.0, β = 0, A = 2.74,
B = 2, b1 = b2 = 0.001, and s = 10.

Figure 6 shows the total intensity for two successive lasers as a
function of the evanescent coupling parameter. Below the bifurca-
tion, the total intensity between two successive lasers is identical.
However, above the bifurcation, the total intensity is dissimilar, and

there is a concentration of energy in one of the lasers. The pulse
intensities in successive lasers become almost identical at κ = 0.65;
otherwise, there is a translational symmetry breaking for 0.44 < κ
< 0.80. From κ = 0.80 onward, the system recovers the spatial
translation invariance (cf. Fig. 6). Increasing the value of the cou-
pling κ , the propagative pulses persist for rather large values until
they disappear by a saddle-node bifurcation for κ ≡ κ+

sn = 2.71. For

κ greater than κ+
sn , no pulses are observed (see Fig. 3). Physically,

this is expected since the energy will flow to the neighboring cavi-
ties before reaching the excitable threshold. Therefore, propagation
is not possible anymore.

It is worth noting that the continuous limit of the set of
Eqs. (1)–(3) is obtained considering an infinitely large coupling con-
stant (κ → ∞). Therefore, we conclude from the previous observa-
tions that in the continuous limit the model [Eqs. (1)–(3)] has no
propagating pulses. In order to support this conjecture, we analyze
in the parameter space (κ , A) the region where the pulses with hop-
ping dynamics are observed. The results are shown on Fig. 7. As
the gain pump parameter A decreases, the window of coupling con-
stants where propagating pulses are observed shrinks. Below A = 2,
no propagating pulses are observed since the system is not excitable
anymore. Similar bifurcation diagrams are observed for the average
pulse speed for different evanescent coupling constants and pump
gain as shown in Fig. 7(b). Interestingly, the mean speed can also be
controlled through the pump8 as can be seen in Fig. 7(c). This is a
very important feature from an experimental point of view since the
coupling constant is often fixed by fabrication. The yellow shadowed

FIG. 7. Phase diagram of the pulse obtained for the model [Eqs. (1)–(3)] with α = 2.0, β = 0, B = 2, b1 = b2 = 0.001, and s = 10. (a) Pulse phase diagram in the A–κ
space. Points account for the limits of pulse obtained numerically. The average pulse speed as a function of evanescent coupling κ (b) and pump gain A (c).

Chaos 30, 083136 (2020); doi: 10.1063/5.0006195 30, 083136-6

Published under license by AIP Publishing.



Chaos ARTICLE scitation.org/journal/cha

region shows the region where the propagating pulses are observed.
Note that for a finite pump gain in the excitable region (2 < A < 3)
and in the continuous limit, no propagating pulses are expected.

The continuous limit of the set of Eqs. (1)–(3) plus diffusive
coupling was studied in Refs. 50 and 51. Propagation of pulses is
shown for non-radiative carrier recombination rates of the same
order as the one for the electric field (b1 ∼ b2 ∼ 1). For semiconduc-
tor micropillar lasers, these rates differ from several orders of mag-
nitude since the electric field decay time is much smaller than the
carrier decay times. Hence, for the typical parameters of micropillar
lasers, it is not possible to observe pulses in the continuous limit.

IV. CONCLUSION

Continuous spatially extended excitable systems can sustain
the propagation of pulses. This phenomenon is intuitively based
on the fact that the system without spatial coupling is excitable;
that is, if an equilibrium suffers a sufficiently large disturbance, the
dynamical system exhibits large excursions in the basin of attrac-
tion. When considering the spatially extended system, one expects
that when a region is perturbed, it will excite the surrounding areas
generating the emission of pulses or waves. The persistence of this
phenomenon for coupled (discrete) excitable systems is expected.
However, the phenomenon of pulse propagation in discrete, cou-
pled excitable systems is not obvious and depends on the coupling.
We show that pulse propagation in discrete, coupled excitable lasers
is characterized by a hopping dynamics and that it presents a rich
bifurcation structure. We also show that the observed pulses do not
necessarily persist in the continuous limit. These results pave the
way for the experimental study of such hopping dynamics in optics
with a potential impact on neuromimetic systems and information
processing.8
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