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Electrically driven nematic liquid crystals layers are ideal contexts for studying the interactions of local
topological defects, umbilical defects. In homogeneous samples the number of defects is expected to decrease
inversely proportional to time as a result of defect-pair interaction law, so-called coarsening process. Experi-
mentally, we characterize the coarsening dynamics in samples containing glass beads as spacers and show that
the inclusion of such imperfections changes the exponent of the coarsening law. Moreover, we demonstrate
that beads that are slightly deformed alter the surrounding molecular distribution and attract vortices of both
topological charges, thus, presenting a mainly quadrupolar behavior. Theoretically, based on a model of vortices
diluted in a dipolar medium, a 2

3 exponent is inferred, which is consistent with the experimental observations.
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I. INTRODUCTION

Irregularities in nature are one of the primary resources of
the diversity of forms [1–6]. A paradigmatic example of these
are fingerprints, which allow us to uniquely identify human
beings. From a physical point of view, these correspond to
the local or global loss of translation or rotation symmetry.
Irregularities are commonly denominated defects. Depending
on the geometrical shape of these irregularities they can be
classified as localized or extended. Classical examples of
localized and extended defects in condensed matter are dis-
locations and grain boundaries [7]. Defects are a consequence
of the fact that systems out of equilibrium present the coexis-
tence of spatially extended states [2–6]. Hence, irregularities
connect different states. Among others, defects in rotationally
invariant two-dimensional systems, i.e., vortices, attract a
great deal of attention of the scientific community because
of their universal character and intriguing topological prop-
erties [8]. These defects correspond to the local confluence of
different orientational domains. Vortices have been observed
in different physical contexts such as fluids, superfluids, su-
perconductors, liquid crystals, fluidized anisotropic granular
matter, magnetic media, optical dielectrics, and cosmology, to
mention a few [8]. Mathematically, these solutions occur in
complex fields and can be identified as pointlike singularities
which locally break rotational symmetry. At a singular point,
the amplitude of the order parameter is zero due to its single
valuedness, and its phase changes continuously by an integer
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multiple of 2π around the singularity. The winding number,
topological charge, is assigned by counting the number of
phase jump around the phase singularity [8]. While the sign
of the winding number is given by the sense of increment
(positive) or decrement (negative) of phase jump [8]. As a
convention, it is attributed to the positive (negative) value of
the topological charge for the clockwise (anticlockwise) of
the phase distribution. Indeed, vortices are topological defects
since these solutions are created or destroyed by pairs with
their respective opposite charge. Also, vortices can be induced
by an external topological forcing [9–11].

Nematic liquid crystals are a soft matter material made of
anisotropic rodlike shaped organic molecules [12–14], which
results in strongly anisotropy media. In the nematic phase,
the configuration of lowest energy is reached when all the
rodlike molecules are on average aligned along one privileged
direction. This privileged direction is usually imposed by the
anchoring conditions of the recipient containing the liquid
crystal [12–14]. Under the effect of sufficiently large external
electric or magnetic fields, the molecules can be reoriented
along or orthogonal to the direction of the applied field in
order to minimize the free energy [15]. This reorientation
generates the emergence of different domains and defects
that separate them. In particular, nematic liquid crystal cells
with negative anisotropic dielectric constant and homeotropic
anchoring are a natural physical context where dissipative vor-
tices and line defects can be observed and analyzed [12–14].
In this physical configuration, the dissipative vortices are
usually called umbilical defects [16]. Due to the fact that
these defects break the orientational order and by analogy
with disclinations in crystals of condensed matter, Frank
called these defects disclination lines [13,19]. These defects
have accompanied liquid crystals since their discovery in
1889 by Lehmann [17] who called these intriguing local-
ized structures as kernels. Likewise, they were observed in
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FIG. 1. Snapshot of umbilical defects of opposite charges ob-
served in a nematic liquid crystal layer within circular crossed
polarizers (CCP). Umbilical defect of positive (negative) charge has
circular (square) shape.

a similar experimental setup by Friedel, who denominated
these defects as noyaux [18]. Frank calculated the detailed
structure of these defects based on the elasticity of nematic
liquid crystals [19]. Despite the different designations given
to the observed vortices in this physical framework, none of
them were adopted by the liquid crystals community. There,
the most widely used names are nematic umbilical defects and
disclination lines. Henceforth, we will use the term umbilical
defects, even though it is intended that these two names can
be used indifferently.

The term umbilic defects was coined by Rapini [16] and
refers to the structure of the defect which corresponds to a
stringlike object in three dimensions. Umbilical defects in
nematic liquid crystal layers have long been studied (see
textbooks [12–14] and reference therein). Two types of sta-
ble defects with opposite charges are observed, which are
characterized by being attracted to (repelled by) the oppo-
site (identical) charge. Figure 1 shows the typical umbilical
defects observed in the microscope using circular crossed
polarizers. Note that such defects observed in liquid crystals
are structurally similar to those found in magnetic systems,
superfluids, superconductors, and Bose-Einstein condensates.
However, umbilical defects are dissipative states, that is, they
exhibit an entirely different dynamical evolution due to the
strongly dissipative nature of liquid crystals.

Due to the complexity of the elastic theory of liquid
crystals, the analytical study of the umbilical defects is in-
accessible [12,13]. Weak nonlinear analysis, valid close to
the orientational instability of the molecules, allows describ-
ing the dynamics of a nematic liquid crystal layer by the
Ginzburg-Landau equation with real coefficients [10,11,20–
23]. This amplitude equation has gathered a great interest
by describing several physical systems such as fluids, super-
fluids, superconductors, liquid crystals, magnetic media, and
optical cavities, to mention a few (see the textbook [8] and
reference therein). Indeed, this amplitude equation describes
the onset of a degenerate stationary instability with rotational
invariance [4] or a stripe pattern instability in anisotropic

systems [5,24]. Hence, the dynamics described by this model
is common to a wide class of physical systems. The Ginzburg-
Landau equation with real coefficients allows understanding
the emergence of different orientational domains, two types
of stable vortices with a positive and negative charge and their
respective dynamics. In this approach, both local defects are
indistinguishable in their amplitude magnitude. As a result of
the phase invariance of this amplitude equation, they account
for a continuous family of solutions, characterized by a phase
parameter [8]. Besides, one can characterize analytically the
vortex-pair interaction [8], which is in agreement with exper-
imental evidence [22].

In a first approximation, the vortex-pair interaction is de-
scribed by an overdamping system with force proportional
to the inverse of their distance [12,25]. Experimental ob-
servations provide asymptotically agreement with this ap-
proach [26–29]. In general, the law of the number of defects
as a function of time can be derived based on defect-pair
interaction law and self-similarity statements [30,31]. The
resulting self-similar behavior is well known as a coarsening
process, in analogy with domain growth in metallic alloy
phase separations [32] and in foam drainage [33]. Using the
vortices’ interaction law, one can show that the number of
defects in homogeneous nematic samples decreases inversely
proportional to time, which has been previously observed
[26,29,34]. Likewise, using phase XY model, one obtains the
same decay law for the vortices’ number [29].

To study the coarsening dynamics in inhomogeneous ne-
matic samples, we use cells in which the thickness of the
liquid crystal layer is fixed by monodispersed glass micro-
spheres spread randomly inside the sample. By characterizing
the creation and interaction process of umbilical defects, we
show that the presence of the beads alters the coarsening law.
Indeed, even though most of the glass beads do not affect
the vortices’ dynamics, those that are more geometrically de-
formed attract vortices of both topological charges, presenting
mainly a quadrupolar behavior, an interaction weaker than
the usual interaction between dipolar vortices. This effect
actively modifies the collective behavior of the vortex system
and alters the scaling law [35]. Depending on the different
disordered configurations of beads, the system exhibits dif-
ferent statistical temporal evolutions of the number of defects,
exhibiting power laws with different exponents. Theoretically,
based on a model of vortices diluted in a dipolar medium and
self-similarity, a coarsening law with exponent 2

3 is inferred.
This critical exponent shows a good agreement with the
experimental observations.

II. EXPERIMENTAL SETUP

To study the dynamics of umbilical defects, we consider
two different types of liquid crystal cells with approximately
the same thickness. The first cell, homogeneous sample, is
made of two indium tin oxide (ITO, transparent conductor)
coated glass slabs. The glass slabs are treated on the ITO
side to promote orthogonal alignment of the liquid crys-
tal molecules; this alignment is termed as homeotropic an-
choring [12–14]. The glass slabs are held together with a
thin sheet of polymer spacers such that, the treated faces
form a gap in which the liquid crystal is, then, infiltrated.
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FIG. 2. Schematic representation of the experimental setup of
a nematic liquid crystal layer with negative dielectric constant and
homeotropic anchoring under the influence of a vertical voltage.
The essential parts of the setup are emphasized. Crossed polarizers,
either linear or circular, are used in order to analyze the liquid
crystal texture. Two types of liquid crystal cells have been studied:
(i) homogeneous and (ii) inhomogeneous (with glass beads) sample.

The spacers fix the thickness of the gap, which is about
15 μm thin. The second cell, inhomogeneous sample, from
Instec Inc. (SB100A150uT180 liquid crystal cell), also has a
homeotropic alignment. The spacing gap is achieved by sput-
tering spacer beads made of microsphere clear and transparent
ceramics or glass onto the cell substrate before assembly [36].
The diameter of the microspheres fixes the cell gap, which
is about 15 μm for the chosen cell. Both cells were filled
by capillarity with MLC-6608 nematic liquid crystal (from
Merck), characterized by a negative dielectric anisotropy.
Figure 2 depicts the experimental setup. To achieve maximum
contrast, resolution, a collimated white light (Köhler type
illumination) from a microscope condenser is sent onto the
liquid crystal cell, the latter mounted on a translation stage.
The texture of the liquid crystal is imaged on a CCD camera
through a microscope objective and relay lenses.

From here on, we will denote by ẑ the normal to the glass
plates. Due to inherent elastic forces between the molecules,
in a certain temperature range, the absence of external stimu-
lus, to minimize the elastic free energy, the alignment in the
bulk of the liquid crystal layer will be uniform, thus parallel to
the ẑ direction in order to accommodate that of the boundaries.
Both cells are biased with a low-frequency sinusoidal voltage
(≈100 Hz) and are operated at room temperature where the
liquid crystal is in the nematic phase. The resulting electric
torque will tend to rotate the molecules away from the z
axis. Over a critical threshold voltage, called Fréedericksz
transition voltage [12–15], the molecules tilt away from their
vertical position. Due to the 2π azimuthal degeneracy in
possible directions of orientation, different domains, and um-
bilical defects will be generated in the nematic liquid crystal
layer where the orientation can not be topologically smoothed
out [12–14,16–19].

The cells contain liquid crystals that are intrinsically bire-
fringent in the nematic phase. Two crossed polarizers, the first
to polarize the illumination source and the second to analyze
the polarization of the light exiting the cell, are used to recover
the averaged two-dimensional texture of the liquid crystal
layer, where the average is along ẑ. Indeed, with a good ap-
proximation, the cell can be considered as a two-dimensional

(2D) uniaxial birefringent material with varying optical axis
aligned in the xy plane at an angle θ (x, y) with the x axis
and providing a phase retardation δ(x, y) = 2πL(ñe − no)/λ.
Here, L represents the thickness of the liquid crystal layer,
λ the operating wavelength of the illumination source, and
{no, ñe} the ordinary and, respectively, extraordinary refractive
index averaged over the longitudinal coordinate. The optical
axis can be viewed as the averaged azimuthal direction of
the molecules in the xy plane or, equivalently, their projec-
tion onto the xy plane. The averaged extraordinary index
ñe is related to n0, ne (the extraordinary refractive index of
fields polarized along the optical axis) and the tilt ψ of the
molecules with respect to the z axis by [12,14]

ñe =
∫ L

0

neno√
n2

e cos2 ψ + n2
o sin2 ψ

dz. (1)

To probe the evolution of the texture of the liquid crys-
talline layer, hence, the dynamics of the defects, we rely on
polarizing optical microscopy techniques based on crossed
linear polarizers (CLP). By using Jones matrix formalism
[37], the intensity is given by [37]

ICLP(x, y) = I0 sin2 δ(x, y)

2
sin2 2θ (x, y), (2)

where I0 is the maximum input intensity. Likewise, the crossed
circular polarizer (CCP) configuration is achieved when two
quarter wave plates are inserted in the previous configuration,
with the first wave plate at ±45◦ with respect to the axis of
the input polarizer, and the fast axis of the second wave plate
orthogonal to the first one. In this case, the intensity after the
cell depends as follow on the phase retardation [37]

ICCP(x, y) = I0 sin2 δ(x, y)

2
. (3)

In the experiment both imaging configurations, either CLP or
CCP, are used with the polarizing microscope, depending on
the defect features that we want to emphasize, either position
or charge.

In the Ginzburg-Landau theoretical framework, positive
and negative defects are indistinguishable, that is, they are
supposed to look the same for CLP and CCP. However, due to
the anisotropy of the elastic constants of liquid crystals, they
can be distinguished under appropriate conditions. Figure 1
shows two umbilics, one with positive and the other with
negative charge. The micrograph is taken with crossed circular
polarizers. Note that the defect with positive charge has a
circular shape, while the negatively charged umbilic has a
square shape [38]. These geometrical features allow us to
distinguish the sign of the topological charges. Note that these
geometric features persist under linear crossed polarizers [38].

III. RESULTS AND DISCUSSIONS

First, in order to figure out the coarsening dynamics of
the vortices in a homogeneous cell, we proceed as follows:
we start with establishing the vortex-pair interaction law and,
then, by using its self-similarity properties, we deduce the
coarsening law.

062704-3



VALESKA ZAMBRA et al. PHYSICAL REVIEW E 101, 062704 (2020)

A. Vortex-pair interaction law

Based on the Ginzburg-Landau equation with real coeffi-
cients that describes liquid crystal dissipative dynamics, the
fine analysis of the vortex interaction law is a daunting task
due to the logarithmic divergence of the energy associated
with each vortex and the vortex-pair interaction with the
size of the system [8,12]. In the case of finite size systems,
the vortex-pair interaction law can be approximated for long
distances by [8]

M ṙ = q

||r|| r̂, (4)

where r(t) is the vector that joins the positions between
vortices, ||r|| is the magnitude of the vector r, r̂ ≡ r/||r|| is
a unitary vector, q is the product of the topological charges
of interacting vortices (q = ±1), then it is positive (negative)
when both vortices have the same (different) charge, and M
stands for the vortex mobility which depends on the size of
the system, the properties of the liquid crystal, and the applied
voltage. When one considers the effect of the phase of one
vortex on the other, mobility depends logarithmically in ṙ [5].
However, this correction is weak [22] and can be neglected
when fine interaction between defects is not of concern and
only collective effects are of interest. Thus, the constant
mobility approximation is appropriate in the interpretation of
the experimental results [39]. Hence, the interaction between
vortices is equivalent to overdamped particles with a force
inversely proportional to their distance. Note that when the
vortex distance is small, of the order of the vortex core, the
previous model for dynamics is no longer valid. In this case,
vortices of opposite charge merge and disappear together.

In brief, the dynamics of interaction between vortices tend
to homogenize the deformations of molecular orientation in
order to minimize the free energy of the system. As we have
mentioned, experimental characterization of the vortex-pair
interaction provides a fair agreement with the previous results
[22,26,28,29].

B. Theoretical derivation of the coarsening law for a diluted gas
of vortices

In the context of dilute gases of n vortices in a homoge-
neous medium, the interaction between defects is governed
by

M ṙi =
n∑

j �=i

qi j

ri j
r̂i j, i = {1, 2, . . . , n} (5)

where ri j ≡ ||ri − r j || is the distance between the ith and
jth vortex, r̂i j in the unitary vector directed from jth to ith
vortex, and qi j is the, respective, product of the topological
charges of vortices. Hence, the dynamics of a gas of n vortices
corresponds to an overdamped n-body problem. Note that the
above set of equations is invariant under the self-similarity
transformation

ri → λri,

t → λ2t . (6)

If one dilates or expands time and space, using the above scal-
ing, then, the set of Eqs. (5) are invariant. We can introduce

N (t ), the number of vortices at time t , which can be estimated
as

N (t ) = A

〈r〉2
, (7)

where A is the area of the sample under study, and 〈r〉 is the
average distance between vortices. Because the set of Eqs. (5)
governs the vortices dynamics, the average distance 〈r〉 and
N (t ) are determined by the vortices’ evolution. Then, 〈r〉
and N (t ) should also be self-similar with transformation (6).
Hence, N (λ2t ) = A/λ2〈r〉2. From the previous equality, one
infers that the only possibility is that the number of vortices
scales as

N (t ) = β

t
, (8)

with β a dimensional constant. Indeed, the number of defects
decreases inversely proportional to time, so-called coarsening
law. Experimentally, this law was, indeed, observed and vali-
dated in nematic liquid crystal samples [29,34].

C. Vortex creation and annihilation in a homogeneous liquid
crystal cell: Experimental observations

To investigate the creation and annihilation process of
vortices, we have conducted several experimental analyses on
the vortex gas dynamics. We apply a large enough voltage to
the liquid crystal layer in-between crossed polarizers, which
spontaneously generates hundreds of umbilical defects in
random positions as a result of thermal fluctuations and in-
herent inhomogeneities in the system. Initially, the emergence
of vortices is preceded by the appearance of domain walls
[cf. Fig. 3(b)], which are created by thermal fluctuations.
These domain walls are unstable, generating the emergence
of topological defects of charges ± 1

2 , which move along the
domain walls. These topological defects are characterized by
the joint of two black brushes [39]. Figure 3(c) illustrates
the different observed local and global defects. These defects
with half topological charge are characterized by the joint of
two arms and a domain wall. Collisions of these defects with
the same topological charge generate umbilical defects and
with different charges cancel each other out. After this rapid
transient, a dilute vortex gas is established in the system [cf.
Fig. 3(d)]. Thanks to the crossed linear polarizers, the position
of the umbilical defects is recognized by the interception of
four black curves [12]. Subsequently, the defects exhibit a dy-
namic of attraction and repulsion following the interaction law
(5). Figure 3 shows a temporal sequence of snapshots, which
emphasize the natural evolution of the defect gas. From the
temporal sequences and through an appropriate recognition
software (open source Java image processing program Fiji),
we can determine the number of vortices and their respective
positions. Thus, we acquire the evolution of the number of
vortices N (t ) as a function of time. Figure 3(f) summarizes
the temporal evolution of N (t ) starting from the switch-on
of the driving voltage V0. From this temporal evolution, one
can separate the process in two stages: one associated with
the creation of vortices, growth stage, and, later, a second
regime characterized by the process of decay of the number
of vortices, coarsening stage.
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FIG. 3. Creation and annihilation dynamics of umbilical defects
in a homogeneous nematic liquid crystal layer under two crossed lin-
ear polarizers. The temporal sequence of snapshots from left to right
and top to bottom (a)–(e) corresponds to driving the cell from zero
voltage to a voltage V0 beyond the Fréedericksz transition threshold.
The bottom numbers in each panel account for the respective frame.
The temporal increment of each frame corresponds to 400 μs. The
interception of four black brushes gives the position of umbilical
defects with topological charge ±1. (a) Liquid crystal cell without
applied voltage, showing the orientation, respectively, of the polar-
izer (P) and analyzer (A). (b) Emergence of orientational domains
after 800 μs the voltage is switched to V0 = 15 Vrms. (c) Creation
of vortices through reorganization of domains; circumferences and
respective numbers account for the different topological charge of
the defects. The interception of two black brushes gives the position
of the defects with topological charge ± 1

2 . (d) Diluted gas of vortices.
(e) Vortex pair and (f) temporal evolution of the number of vortices
N (t ).

D. Experimental determination of the coarsenin lawg
in homogeneous cells

Based on the Ginzburg-Landau model, one expects the
number of defects to decay with a power law. Figure 4 depicts
the typical evolution of the number of umbilical defects as
a function of time for a nematic liquid crystal layer driven
to V0 = 70 V with a frequency of 100 Hz. To compute and
monitor the number of vortices in given time we have used an
image processing package. From this plot, one infers that the

FIG. 4. Coarsening dynamics in a homogeneous cell. Number
of umbilical defects as a function of time. The solid black and
dashed curves are, respectively, the experimental evolution of N (t )
and the fitting curve Nf (t ) = βt−α + N∞ with α = 0.981 ± 0.001,
β = 5.7 × 103 ± 2 × 102, and N∞ = 70 ± 2.
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FIG. 5. Number of umbilical defects as a function of time.
Coarsening process of umbilical defects in a homogeneous cell with
different driven voltages (a) V0 = 60 V, (b) V0 = 80 V, (d) V0 =
100 V, using the same frequency 100 Hz. The black and red curves
account for the experimental data and fitting curve formula (9),
respectively. Critical fitting exponent α (d), asymptotic number of
vortices N∞ (d), and β (e) as function of applied voltage.

number of vortices decays as a function of time with a power
law. To determine the exponent of this coarsening process, we
have considered the following fitting function:

Nf (t ) = βt−α + N∞, (9)

where {β, α, N∞} are fitting parameters, which account for
the features of the liquid crystal and the cell under study.
N∞ stands for the imperfections of the system, which causes
the vortices to become trapped in given positions, and the
inaccuracy of the recognition method. Experimentally, we
found that in the homogeneous samples under study the
exponent α = 0.981 provides a quite good agreement with the
simplified description (5). Hence, this type of particle-type
approach to the vortex dynamics in a homogeneous liquid
crystal layer, ignoring the process of collision and nonlinear
effect of mobility, gives a fair description of the average
evolution of the vortices.

To study carefully the coarsening process, we have con-
ducted a series of experiments with different voltages and the
same frequency (100 Hz). Similar behaviors for the evolution
of the vortex number are observed. Figure 5 summarizes the
coarsening process for different voltages. From this analysis,
we conclude that for different voltages the system exhibits
a coarsening behavior. In particular, the critical exponent
is close to α ∼ 1, which is consistent with the theory of
the Ginzburg-Landau amplitude equation with real coeffi-
cients. Hence, this simplified theory of liquid crystal dynamics
[21,23] appropriately accounts for the process of coarsening
in a homogeneous nematic liquid crystal sample. In the next
section, we will analyze the effect of inhomogeneities in the
coarsening dynamics by using the inclusion of glass beads in
the sample.

E. Experimental determination of the coarsening law
in inhomogeneous liquid crystal cells

To investigate the interaction of the umbilics in the pres-
ence of randomly distributed inclusions in disordered liq-
uid crystal media, we have conducted several experimental
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FIG. 6. Umbilical defect annihilation dynamics in an inhomoge-
neous liquid crystal cell with glass beads and in-between two linear
crossed polarizers. Temporal sequence of snapshots from left to right
and top to bottom depicts the vortex evolution starting from the
switch-on of the driving voltage. The temporal increment of each
frame corresponds to 0.33 s. The position of the umbilical defects
is given by the interception of four black brushes. The white dashed
circumference accounts for the position of a glass bead.

analyses of the vortex gas dynamics in a liquid crystal sam-
ple with glass beads. The inhomogeneous cell is observed
in-between two crossed polarizers and by applying a large
enough, beyond the Fréedericksz threshold, voltage. The glass
beads are microspheres with a monodisperse distribution and
a size of 15 μm. Figure 6(a) shows the liquid crystal cell
without having an applied voltage. Because the anchoring is
of the homeotropic type, under crossed polarizers the sample
should appear as completely dark. However, the presence
of glass beads distorts the configuration of the molecules in
their surroundings. Hence, glass beads are detected by this
molecular deformation reorientation, which changes the light
polarization locally around each glass bead [see Fig. 6(a)].
As we mentioned earlier, the beads are randomly distributed.
When a voltage is applied, initially, the emergence of domains
is observed [see Fig. 6(b)], but now the process is affected
by the presence of glass beads [35]. Later, the system is
accompanied by the emergence of a gas of umbilical de-
fects, as it is depicted in Fig. 6(c). Subsequently, the defect
interaction dominates the dynamics, which is characterized
by the constant decrease in the number of defects. Figure 6
shows a temporal sequence of snapshots depicting the vortex
interaction in the cell. The natural question that emerges is,
therefore, whether the coarsening dynamics is persistent under
the inclusion of inhomogeneities in random positions.

To answer this question, we analyze the images with the
particle tracking process, which allows us to determine the

TABLE I. Results of the measured bead density, computed fitting
exponents, and entropy over an area of approximately 1.394 mm2 on
different observation zones.

Zone Density (mm2) α β N∞ Entropy

I 13.630 0.60 604.2 12.85 0.0210
II 17.217 0.88 1782.0 20.33 0.0136
III 20.803 0.25 246.4 22.44 0.00767
IV 21.521 0.71 1285.0 17.87 0.0091
V 23.673 0.70 1404.0 25.74 0.00772
VI 27.977 0.82 162.7 18.09 0.0057

number of vortices and their respective positions. Figures 7(c)
and 7(f) show the temporal evolution of the number of um-
bilical defects as a function of time for different zones of the
liquid crystal sample. Each zone has an area of 1.43 mm2 (cf.
Fig. 7). In both graphs, we observe that the system exhibits a
coarsening process with a power law, however, with different
exponents. These power laws are obtained by realizing several
experimental realizations (10 repetitions were performed for
each parameter to obtain the characteristic exponents). Hence,
the observed coarsening dynamics can be considered as a
persistent phenomenon [35]. Nevertheless, depending on the
distribution of the glass beads, we observe different power
laws (cf. Fig. 7). Notice that the exponent deviates from
the exponent determined by the law derived from the theory
of the Ginzburg-Landau model for a homogeneous medium.
Therefore, we can conclude that the presence, density, and
distribution of glass beads affect the coarsening dynamics.
The main effect, as we will see later, is produced by a small
amount of deformed beads that interact and attract vortices.

To characterize the clustering and distribution of the glass
beads, we have computed the Voronoi tessellation [40] of the
glass beads in different observed zones [cf. Figs. 7(a) and
7(d)]. The respective histogram of the bead mutual distance
is also computed on each observation zone [cf. Figs. 7(b)
and 7(e)]. From these diagrams, we can measure the density
of the beads and we obtain for zones I and III, respectively,
13.630 and 20.803 beads per mm2. However, the number of
attractive beads in each zone was not characterized. Zone III
is more ordered than zone I since its histogram of the mutual
distance is closer to a Rayleigh distribution around a length
[cf. Fig. 7(b)] while the other is closer to a flat distribution
without a feature length [see Fig. 7(e)]. Analogously, from
this distribution we can compute the Shannon or information
entropy Se and obtain for each zone, respectively, Se(III) =
0.00767 and Se(I) = 0.021. Therefore, the evolution of the
number of defects as a function of time changes depending
on the different configurations of the glass beads.

To measure the exponents of the coarsening laws, we have
considered the following fitting curve N (t ) = βt−α + N∞.
Table I summarizes our results for different observation zones
of the liquid crystal layer under study. Different coarsening
laws are obtained over different zones of the sample. However,
from this table, we are not able to establish a correlation
between the density of vortices, Shannon entropy, and spatial
distributions with their coarsening exponents found experi-
mentally. This is because of not only the spatial distribution of
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FIG. 7. Coarsening process of umbilical defects in an inhomogeneous sample analyzed over different observation zones, I and III. (a),
(d) Voronoi diagram of glass beads in the observed zone, I and III, respectively. (b), (e) Histogram of the mutual distance of the glass beads.
The solid curve is a fitting curve using a Rayleigh distribution. (c), (f) Corresponding scaling curves of the number of defects vs normalized
time. Black points stand for the experimental data, dashed lines correspond to fitting curves of the form N (t ) = β/tα + N∞ with α = 0.60 and
0.25, respectively.

the glass beads matters but also how many of the glass beads
are attractive or not. The effects due to the shape of the glass
beads, and consequent vortex attraction, will be highlighted in
the next section.

F. Defect dynamics in presence of a glass bead

The presence of the spherical spacers causes local defor-
mation of the nematic director. Depending on their structure,
the spacers can behave as localized potentials on the generated
defects. Figure 8(a) shows a temporal sequence of snapshots
of the vortex dynamics in the presence of a glass bead. Here,
it is depicted the evolution of the umbilical defects under the
influence of the bead. Figure 8(b) depicts the trajectories of
the vortices. The dashed points (red) emphasize the positions
of the vortices in different moments. In the temporal sequence,
it is observed the temporal evolution of a pair of vortices
with a positive and negative charge [cf. Fig. 8(b)]. Unex-
pectedly, both defects are attracted by the glass bead. From
the trajectories, it appears clear that the vortex interaction is
stronger than the vortex-bead interaction. Indeed, the vortices
move close to the straight line that joins both vortices (see
the dashed line in Fig. 8). However, close to the glass bead
the trajectories are deflected and reoriented toward the center
of the spacer. Finally, both vortices collide with the spacer
and disappear. Hence, the observations show that the presence
of inhomogeneities strongly affects the vortex dynamics and
interactions.

To figure out the interaction between the vortices and the
glass bead, we have repeated the experiment many times
(∼50 experimental realizations) and monitored the collision
of vortices, both with positive and negative charges, with the
glass bead. This analysis is achieved by using circular crossed
polarizers, which allows us distinguishing both topological

charges with more precision. Figure 9 summarizes the differ-
ent collision points between the vortices and the bead. The
red (blue) points account for the collision points of positive

15 μm

(a)

(b)

5 20 60

100 130 160

FIG. 8. Interaction between a glass bead and umbilical defects
observed under linear crossed polarizers. (a) Sequences of temporal
snapshots. The bottom numbers in each panel account for the respec-
tive frame. The temporal increment of each frame corresponds to
0.07 s. Umbilical defects of a positive (circular shape) and negative
(square shape) charge under circular crossed polarizers are recog-
nized and monitored. The dashed circles account for the umbilical
defects. (b) Trajectory of the vortices: the dashed points (red) indicate
the trajectory of defects, the dashed straight line accounts for the
initial distance between defects.
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Positive
Negativex

y

5 μm

FIG. 9. Quadrupolar structure generated by a glass bead in the
liquid crystal medium. Experimental characterization of the collision
points of the umbilical defects for different experimental realizations.
In most of the realizations only one defect collides with the bead. The
dark (blue) and light (red) points account for the collision points of
positive, respectively, negative vortices. The color areas highlight the
different collision regions of the bead.

(negative) vortices. From this figure, it is possible to infer
that the glass bead has a quadrupolar structure. Namely, the
vortices of a given charge prefer to collide in certain parts
of the bead. Note that the observed poles are not symmetric,
which is a manifestation that dipolar terms are also relevant in
the interactions. Experimentally, the vortex-bead interaction
is weaker than the interaction between the umbilical defects.
It is well known that glass beads without surface treatment
generate homeotropic anchoring at their boundaries, that is,
the liquid crystal molecules tend to be oriented normal to
the surface of the glass bead [36,41]. In addition, due to the
fact that the glass bead is in contact with the glass plates
of the sample, one expects a Saturn-ring-like defect loop to
appear around each glass inclusion [36,41]. Figure 10 shows
a schematic representation of the director field lines induced
by a perfect spherical glass bead and a slightly deformed
bead. When the glass bead is perfectly spherical, it generates
a defect in the center, which is canceled with the equivalent
charge caused by the Saturn ring. In Fig. 10, the induced
charge is represented by a central point (blue) and the Saturn
ring by a closed curve (green). Therefore, perfectly spherical
glass beads cause the net charge to cancel out, that is, the

x

z

x

y

Perfect glass bead

x

z

x

y

Imperfect glass bead

Saturn Ring Glass beadEquivalent charge

FIG. 10. Schematic representation of the director field lines in-
duced by a perfect spherical bead (left panel) and a slightly deformed
bead (right panel). Upper and lower panels show a side and top view
of the correspondingly induced defects.

15 μm

Attractive

(a) V=0.0 Vpp

(b) V=9.0 Vpp

FIG. 11. Optical micrograph of active and passive glass beads.
Snapshots of a liquid crystal sample within linear crossed polarizers
without (top panel) and with (bottom panel) voltage. The lateral
beads are passive, while the central bead is active.

equivalent charge of the Saturn ring coincides with the charge
induced in the center. These glass beads are characterized
by not attracting vortices so that we name them as passive
beads. In contrast, deformed glass beads generate equivalent
multipolar charges (dipoles, quadrupole, and so forth), which
are neutral but affect the dynamics of their surroundings.
In particular, these glass beads with multipolar charges are
characterized by attracting and annihilating vortices and we
name them active beads. Experimentally, these glass beads
with multipolar charges can be detected since when no voltage
is applied to the sample under cross polarizers, the perfect
and imperfect glass beads generate perfect rings or deformed
curves of light, respectively. Figure 11 shows three glass
beads with and without voltage, in which one can identify the
deformed glass bead (central). Only this central glass bead
attracts vortices.

In brief, spherical glass beads do not attract or repel umbil-
ical defects. On the other hand, when the glass beads are not
perfect, the equivalent charge of the glass bead and that of the
Saturn ring do not coincide, creating a multipolar charge for
the interaction with the defects. Hence, the interaction of an
imperfect glass bead and umbilical defect can be modeled by

M ṙ = q

[ �d
||r||2 − �d · r

||r||4 r

]
+ q

[ �l2

||r||4 r + 2�l (�l · r)

||r||4
]
, (10)

where r(t) is the vector that joins the position between the
glass bead and the vortex, ||r|| is the magnitude of the vector
r, �d is a vector that characterizes the dipolar interaction, q is
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rj

lk

1

2

k

ri

FIG. 12. Schematic representation of the vortex-pair interaction
in the presence of glass beads. The index k accounts for the kth glass
bead. ri is the vector position of ith vortex. lk is the vector position
of the kth glass bead. The inset is an experimental snapshot obtained
with the sample in-between crossed linear polarizers.

the topological charge of the interacting vortex, �l is a vector
that characterizes the quadrupolar interaction, and M stands
for the vortex mobility. Note that the vectors �l and �d are not
necessary parallels. On the right-hand side of Eq. (10), the
first and second parentheses terms account, respectively, for
the dipolar and quadrupolar interactions. Note that the dipolar
and quadrupole interactions decay with the square and the
cubic inverse of the distance between the vortices and the
beads, respectively. From the experimental observations, we
deduce that the quadrupole interaction is more dominant in
the interaction ( �d  �l , see Fig. 9). It is important to note that
most of the glass beads do not attract vortices. However, the
strength and direction parameters change each bead. Then, a
detailed characterization of the vortex dynamics in a medium
with spacers is a complex problem.

IV. SCREENING EFFECT AND COARSENING

The experimental observations show that some glass beads
exert a force, either attractive or repulsive, on the vortices.
Such a force is a power of the inverse of the distance be-
tween the bead and the vortices and has a different strength
depending on the particular active bead considered. In order
to shed light on the statistical vortex dynamics, let us consider
two vortices in the presence of N ′ glass beads, as depicted
in Fig. 12. For the sake of simplicity, we consider that glass
beads are dominantly dipolar, dipolar medium.

Furthermore, we will use a similar strategy to derive third
Kepler’s law in the solar system, which is based on the fact
that the n-body interaction (not self-similar) is approximated
by the two-body interaction (self-similar), from which the
third Kepler’s law is inferred [42]. Let us consider a vortex
gas in the presence of randomly distributed beads, which is
described by

M ṙi =
N−1∑

j

qi j

||ri − rj||2 (ri − rj)

+
N ′∑

k=1

[
Qik �dk

||ri− lk||2 − Qik[(ri− lk ) · �dk]

||ri− lk||4 (ri− lk )

]
, (11)

where ri stands for the position vector of ith vortex (cf.
Fig. 12), M is the vortex mobility, qi j is the product of the
topological charges of the ith and jth vortices, Qik is the
intensity of the interaction between the vortex, N and N ′
account for the number of vortices and beads and the kth bead,
lk and �dk are the vector position and the dipolar vector of kth
glass bead, respectively.

Let us consider the limit of diluted vortices, that is, the
distance between vortices r ≈ ||ri − rj|| is much greater than
the distance between a vortex and glass beads surrounding
it (||ri − rj| � ||ri − lk||). Hence, the nearby glass beads
dominate the dynamics of vortices, that is,

M ṙi ≈
N ′∑

k=1

Qik

||ri − lk||2
�dk +

N ′∑
k=1

Qik (ri − lk ) · �dk

||ri − lk||4 (ri − lk ).

(12)
In this limit, the dynamics of the vortices is not self-similar,
however, when performing the transformation of spatial and
temporal dilation

ri → λri,

t → λ3t . (13)

Eq. (15) takes the form

M ṙi ≈
N ′∑

k=1

Qik �dk

||ri − lk
λ
||2 +

N ′∑
k=1

Qik (ri − lk
λ

) · �dk

||ri − lk
λ
||4

(
ri − lk

λ

)
.

(14)
The coarsening process is governed for large times and dis-
tances; therefore, one can consider λ to be large (λ � 1).
Then, the above equation is rewritten

M ṙi ≈
N ′∑

k=1

Qik �dk

||ri||2 +
N ′∑

k=1

Qik
ri · �dk

||ri||4 ri + O

(
1

λ

)
, (15)

so that, if one dilates space and time on large scales, the
equivalent set of Eqs. (5) are invariant at the dominant order.
Furthermore, the vortex gas in such a disordered medium
satisfies an effective dynamics governed by the previous in-
teraction law. As we have mentioned before, the number of
vortices at time t can be expressed as N (t ) = A/〈r〉2, where
A is the area of the sample under study and 〈r〉 is the average
distance between vortices. Then, 〈r〉 and N (t ) should also be
self-similar with the transformation (13). Hence, N (λ3t ) =
A/λ2〈r〉2, and we obtain

N (t ) = β0

t2/3
, (16)

where β0 is constant. From this scaling law we obtain that
the number of defects decreases with a α = − 2

3 power. Ex-
perimentally, several zones show exponents close to − 2

3 (see
Table I). Note that all the investigated zones, except zone III,
show an exponent within 20% error from the − 2

3 theoretical
prediction. However, the dynamics of submerged vortices in
an environment full of beads with various imperfections is
much more complicated, as illustrated by the experimental
results, and a full agreement over all the investigated zones
could not be reached.
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V. CONCLUSIONS AND REMARKS

Far from equilibrium systems with the coexistence of
equilibria exhibit rich and complex defect dynamics in order
to reach a more stable configuration. This dynamics of defects
generates a rich variety of spatial textures. Defects in rotation-
ally invariant two-dimensional systems attract a great deal of
attention because of their universal character and intriguing
topological properties. Nematic liquid crystals layer with
negative dielectric constant and homeotropic anchoring under
the influence of a voltage are the ideal context for studying
the interaction of gas of topological vortices with opposite
topological charges. One expects the dynamics of the vortices
being characterized by a decreasing number in time, which
follows a power law with critical exponent α = 1 because
the dominant interaction between the vortices is self-similar.
Unexpectedly, we observe that this dynamics is persistent in
thin cells of nematic liquid crystals that contain glass beads
as spacers. However, the laws of the exponential decay in
the number of vortices depend strongly on the distribution
of the glass beads and their imperfections. Experimentally,
we have characterized such a dynamics and demonstrated
that the deformed glass beads attract vortices of opposite
topological charges, presenting mainly a quadrupolar behav-
ior. Theoretically, we have derived the modified power law

for inhomogeneous samples, leading to α = 2
3 exponent of

the power law. The agreement with the exponents derived
from the experimental observations is satisfactory over several
zones of the analyzed samples. However, a complete agree-
ment could not be reached because of the diversity of the
beads and the consequent complexity of the induced vortex
dynamics.

Liquid crystal cells with spacers are fundamental in the de-
velopment of displays of various electronic devices. The influ-
ence that the disperse beads, often used as spacers in the cell,
can exert on the molecular reorientation is usually ignored.
Our observations show that the inhomogeneities induced by
the beads can play a relevant role in the dynamics of defects.
Therefore, the study of the interaction between spacers and
the surrounding liquid crystal can reveal important features of
molecular behavior and could be taken into account for further
improvements of liquid crystal devices.
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