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Transition from nonradiative to radiative oscillons in parametrically driven systems
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Nonequilibrium systems exhibit particle-type solutions. Oscillons are one of the best-known localized states
of systems with time-dependent forcing or parametrically driven systems. We investigate the transition from
nonradiative to radiative oscillons in the parametrically driven sine-Gordon model in two spatial dimensions.
The bifurcation takes place when the strength of the forcing (frequency) increases (decreases) above a certain
threshold. As a result of this transition, the oscillon emits radially symmetric evanescent waves. Numerically, we
provide the phase diagram and show the supercritical nature of this transition. For small oscillations, based on
the amplitude equation approach, the sine-Gordon equation with time-dependent forcing is transformed into the
parametrically driven damped nonlinear Schrödinger model in two spatial dimensions. This amplitude equation
exhibits a transition between nonradiative to radiative localized structures, consistently. Both models show quite
good agreement.
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I. INTRODUCTION

The emergence of complex dynamics on nonequilibrium
systems is usually understood as a sequence of bifurcations
from a relatively elemental state. For example, a uniform
equilibrium can suffer a spontaneous symmetry-breaking in-
stability that generates a pattern structure when the injection
of energy is above a threshold [1,2]. When incrementing
further the energy injection, the pattern can undergo other
bifurcations, leading to phase instabilities [3–6], pulse prop-
agation [4,7], spatiotemporally chaotic states [8,9], among
others. The systematic study of secondary instabilities of out-
of-equilibrium systems with two or more spatial dimensions
remains an open problem.

A compelling case in which nonequilibrium phenomena
can appear is the so-called parametrically driven systems [10],
that is, systems excited by an external force that depends on
both time and the state variable of the system. A simple exam-
ple of parametrically driven systems is a dissipative pendulum
whose suspension point oscillates vertically. The pendulum
exhibits a parametric resonance as the strength and frequency
of the forcing are modified [10]. The dynamical response
of a chain of vertically driven damped pendula goes beyond
the resonance to include bifurcations that create and stabilize
uniform states, Faraday-type bifurcations that induce patterns
[11,12], kinks [13,14], and the formation of localized struc-
tures [15–17]. Note that these types of solutions are attractors.
Namely, under small disturbances, the system converges to
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the undisturbed state after a transient. Localized states, also
known as dissipative solitons, require as a prerequisite a stable
background and the capacity to self-focus the energy of the
system. Within a range of parameter values, parametrically
driven systems satisfy the previous requirements as the energy
is relatively modest in the region where the dynamical variable
is small (i.e., stable background), and it can be significant
where the dynamical variable is large enough. Localized
states in two-dimensional (2D) parametrically driven systems
have been observed experimentally in various fluids such as
fluidized granular media [18], Newtonian [19], and colloidal
[20]. Theoretically, the existence and stability properties of
nonradiative 2D and 3D oscillations have been studied in
the context of parametric driven nonlinear equations [21].
Usually, these solutions are called oscillons. Figure 1 illus-
trates an oscillon in two spatial dimensions. The bi- and
one-dimensional profiles of the localized state are shown in
Figs. 1(a) and 1(b), respectively. The formation and interac-
tion of oscillons have been the subject of several theoretical,
numerical, and experimental studies. However, the dynamical
behavior that emerges at the onset of the bifurcations of
oscillons has not been fully characterized. In the case of one-
dimensional parametrically driven systems, a transition from
a localized structure to a breathing localized state, or breather,
has been reported [22–25]. Recently, an oscillatory instability
of parametrically driven dissipative solitons was numerically
studied in magnetic systems in two spatial dimensions [26].
This bifurcation produces highly anisotropic spin waves from
the dissipative soliton centroid. Unfortunately, the large am-
plitude of this localized state rendered the analytic study of
this system an arduous task [26].

2470-0045/2020/101(5)/052209(7) 052209-1 ©2020 American Physical Society

https://orcid.org/0000-0002-2080-1273
https://orcid.org/0000-0001-9078-685X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.052209&domain=pdf&date_stamp=2020-05-12
https://doi.org/10.1103/PhysRevE.101.052209


ALEJANDRO J. ALVAREZ-SOCORRO et al. PHYSICAL REVIEW E 101, 052209 (2020)

FIG. 1. Nonradiative oscillon of the two-dimensional paramet-
rically driven damped sine-Gordon equation (1) for γ = 0.232 and
ω = 1.87. (a) The oscillon is a self-focused localized state that
asymptotically connects to the background solution φ = 0. The ori-
gin of the coordinate system is in one of the sample corners, and the
lateral size L = 100 is divided into 200 points with a spacing of dx =
0.5. (b) A one-dimensional cut of (a) shows that the oscillon profile
decays monotonically from its center. (c) Temporal evolution of the
field φ(t, x0), where x0 = 0.45L(x̂ + ŷ). The signal has a dominant
frequency, which is nearly half of the forcing frequency. The red
curve shows the envelope obtained using the Hilbert transform and
the signal φ(t, x0 ). (d) Spatiotemporal diagram of the cut of (a). The
color bar is saturated to the range (−1, 1) to emphasize the envelope
dynamics. (e) Fourier transform of the trajectory (c) as a function
of the frequency f that is equal to 1 divided the period. We observe
that the sine-Gordon variable φ(t, x0 ) oscillates at half the forcing
frequency ω/2 = 1 + ν, as expected.

In this work, we investigate the transition from nonra-
diative to radiative oscillons in the parametrically driven
damped sine-Gordon equation (pdSGE) [27] in two spa-
tial dimensions. Without forcing and dissipation, the two-
dimensional sine-Gordon equation admits radial kink solu-
tions with cylindrical symmetry [28–32]. For a small interval
of energies of the initial conditions, these kinks can evolve
into breatherlike solutions that exhibit periodic oscillations
[30]. However, most initial conditions decay into radiation. In
the presence of injection and dissipation of energy, the pdSGE
can exhibit unusual nonlinear behaviors, such as kinks that
emit waves (flaming kinks) [13], decorated interfaces [14],

FIG. 2. Radiative oscillon of the two-dimensional parametrically
driven damped sine-Gordon equation (1). We plot the same quantities
of Fig. 1 for parameter values γ = 0.294 and ω = 1.87, where
γ and ω account for the strength and frequency of the forcing.
Panel (c) illustrates the dynamical indicator a, which measures the
aperiodicity of the temporal series φ(t, x0 ). Panel (e) shows that in
addition to the harmonic oscillation with frequency ω/2, there are
Fourier peaks at ω/2 ± nωAH, with n an integer number. We name
ωAH as an Andronov-Hopf frequency. For γ = 0.294 and ω = 1.87,
the Andronov-Hopf frequency is ωAH ≈ 0.12. The largest new peak
has frequency ω/2 + ωAH, which reveals that the envelope of the
oscillation of φ(t, x0) is modulated in time by an emergent frequency
ωAH that is incommensurable with ω.

localized structures [33], among others. Here we study the
case of radiative oscillons, that is, an oscillatory localized
spot that emits evanescent waves from its core (see Fig. 2).
The evanescent waves are radially symmetric; thus, they have
a different phenomenology compared to the one mentioned
above of magnetic media (cf. Ref. [26]).

An application of the pdSGE is the description of the phase
difference (or flux) φ of a long Josephson junction formed
by two superconducting films under the influence of an alter-
nating current [27,28]. By long, we mean that its dimensions
along the x and y axes are larger than the so-called penetration
Josephson depth so that φ can vary only in these directions
[34]. The penetration depth characterizes the typical pene-
tration of the magnetic field applied to the junction, and it
is usually of tens of nanometers [35]. Josephson junctions
have been studied for the design of particle detectors [36],
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SQUIDs [35], and exponentially tapered Josephson flux-flow
oscillators [37,38].

The pdSGE has a simpler mathematical structure compared
to the one of the so-called Landau-Lifshitz-Gilbert model
that governs magnetic systems [39]. The latter has nonlinear
dissipation, linear and nonlinear diffusion and dispersion,
among other terms. The relatively simpler form of the pdSGE
allows one to apply analytic techniques, such as the amplitude
equation formalism, to transform the pdSGE into the well-
known parametrically driven damped nonlinear Schrödinger
(pdNLS) equation. This change of variables (reviewed later
on) eliminates the explicit time dependence and allows us to
show that the bifurcation is a supercritical Andronov-Hopf
(i.e., oscillatory) instability. Direct numerical simulations of
the sine-Gordon equation confirm the results of the pdNLS
equation. A numerical phase diagram of the dissipative soli-
tons of the pdSGE is also provided.

The article is organized as follows. In the next section,
we introduce the parametrically driven damped sine-Gordon
equation and show the oscillon state before and after its oscil-
latory instability. In Secs. II A and II B, we review the trans-
formation of the pdSGE into the pdNLS one and characterize
the phase diagram of the amplitude equation, respectively.
Section III presents our conclusions and final remarks.

II. THE SINE-GORDON EQUATION

Let us consider the two-dimensional parametrically driven
damped sine-Gordon equation (pdSGE) [27]

∂ttφ = −[1 + γ sin ωt] sin φ − μ∂tφ + ∇2φ, (1)

where φ = φ(t, r) is the dynamical variable that depends on
time (t) and space (r = xx̂ + yŷ). The unit vectors x̂ and
ŷ point along the x and y Cartesian axes, respectively, and
∇2 = ∂xx + ∂yy is the Laplacian operator. The dimensionless
parameters μ and {γ , ω} account for the energy dissipation
and the strength and frequency of the forcing, respectively. In
the following, we fix the dissipation coefficient to μ = 0.1.
We do not consider the dispersion and natural frequency as
varying parameters since the time and spatial coordinates
can always be renormalized to make them equal to 1, as we
have done. The parametric resonance regime begins when
the forcing frequency is about twice the natural one, i.e.,
ω = 2(1 + ν), where the parameter ν is a small detuning. For
large enough injections of energy, the system exhibits patterns
formation [11,12] for ν > 0 and localized structures [15–17]
for ν < 0. Figure 1 shows the typical localized state observed
in the pdSGE. These localized solutions are bell-shaped in
the magnitude of the amplitude and constant in the phase for
periodic boundary conditions. However, for Neumann bound-
ary conditions, the oscillations may have a complex phase
structure (e.g., phase shielding solitons [40,41]). Despite the
apparent simplicity of the oscillons with a homogeneous
phase, they do not have a known analytical expression.

We integrate Eq. (1) in a square simulation box of size
L × L using a Runge-Kutta algorithm, as detailed in Ap-
pendix. For Fig. 1, we used γ = 0.232 and ω = 1.87. The
three-dimensional representation of the oscillon in Fig. 1(a)
accounts for a localized peak in the angle φ that is sym-
metric around its center or centroid. Figure 1(b) illustrates

the oscillon profile that is a monotonically decaying function
of the radial distance from its centroid. This figure was
made for a time in which the forcing value is maximum.
A simple indicator of the dynamics of the oscillon is the
temporal evolution of a single and arbitrary point of it, x0.
We used x0 = 0.45L(x̂ + ŷ), and Fig. 1(c) shows the time
evolution of φ(t, x0). This graph reveals a single frequency
and an almost constant oscillation envelope [cf. the Fourier
transform of φ(t, x0) in Fig. 1(e)]. The envelope is calculated
via the built-in Hilbert transform of MATLAB software. The
nonlinear corrections of the (mainly) harmonic signal φ(t, x0)
manifest as a small oscillation in the envelope. The difference
between the maximum and minimum values of the temporal
series of the envelope provides a single number for each pair
(ω, γ ) parameter value: a(ω, γ ). Likewise, to illustrate the
oscillatory nature of oscillons, one can analyze the temporal
evolution of a solution cut [see Fig. 1(d)]. This way, all the
points of the localized state oscillate in solidarity.

When the forcing amplitude is increased (or the forcing
frequency is decreased), the oscillon undergoes an oscillatory
instability that generates radial emission of evanescent waves
from its center. Figure 2 shows this dynamical behavior for
γ = 0.294 and ω = 1.87. The top view snapshot of the oscil-
lon shows a structure of rings around its center [see Fig. 2(a)],
which breaks the monotonic decay of its envelope, as shown
in Fig. 2(b). As in Fig. 1(b), these images were also taken at
times in which the strength of the forcing is maximum. Notice
that the presence of the evanescent wave from the oscillon
core modifies the temporal evolution of the field φ(t, r). For
example, in x0, the trajectory φ(t, x0) of Fig. 2(c) is similar to
that of Fig. 1(c) with an additional modulation of the envelope,
which is a manifestation of the evanescent wave. Figure 2(d)
shows a spatiotemporal diagram of a cut of the oscillon,
illustrating the emission of evanescent waves from its core.
Numerically, we have tested that the evanescent wave speed
corresponds to nonlinear (linear) waves near (far from) the
centroid. Namely, the evanescent waves satisfy the dispersion
relation given by small-amplitude perturbations around φ = 0
only outside the ringlike structure that surrounds the localized
state. Figure 2(e) shows φ(t, x0) in frequency space. The
spectrum has peaks at frequencies ω/2 ± nωAH, with n an
integer number. The additional Andronov-Hopf frequency,
ωAH, is not commensurable with ω nor with ν, which allows us
to conjecture that it is the result of an instability of the oscillon
envelope. Hence, the dynamics in the flanks of the oscillon are
characterized by exhibiting quasiperiodic dynamical behavior.

To quantify the transition from nonradiative to radiative
oscillons, we use the oscillation amplitude of the envelope
of the temporal series φ(t, x0), namely a(ω, γ ). This is a
useful dynamical indicator that plays the role of an order
parameter. Furthermore, since it measures the amplitude of the
quasiperiodic part of φ(t, x0), it is approximately the Fourier
amplitude of the frequency ω/2 + ωAH. Figure 3(a) shows the
bifurcation diagram of the system for ω = 1.88. The oscillon
emerges for γc1 = 0.223 by a saddle-node bifurcation and
undergoes an instability at γc2 ≈ 0.251. In this region, the
wave amplitude [proportional to a(ω, γ )] grows continuously,
which is a characteristic of the supercritical bifurcations [1,2].
The thick dots of Fig. 3 are the results of the numerical sim-
ulation, while the solid curve of Fig. 3(a) is the curve fitting
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FIG. 3. Bifurcation diagram of the two-dimensional parametri-
cally driven damped sine-Gordon equation (1). (a) The oscillation
amplitude of the envelope of the temporal series φ(t, x0 ) with
x0 = 0.45L(x̂ + ŷ) is plotted for ω = 1.88. This diagram shows the
supercritical transition from nonradiative to radiative oscillons. Thick
dots account for the simulation results, while the solid line for the
curve fitting a(ω = 1.88, γ ) = √

0.17γ − 0.0427, where γ and ω

account for the strength and frequency of the forcing. (b) Bifurcation
diagram in the (ν, γ ) plane, where ν is the detuning.

a(ω = 1.88, γ ) = √
0.17γ − 0.0427. As γ moves away from

the bifurcation point, the amplitude of the evanescent wave
begins to move away from the theoretical fitting, which is
a manifestation of superior nonlinear effects. The radiative
oscillon persists until γc3 = 0.299, where the 2:1 Arnold’s
tongue region is reached, and the φ = 0 state becomes un-
stable. Since the localized state needs a stable background,
it disappears for γ > γc3. Figure 3(b) shows the bifurcation
diagram in the (ω, γ ) plane. As this plot illustrates, evanescent
waves emerge via a supercritical instability for all frequencies.
When the forcing frequency is further decreased, the soliton
is destabilized, and the field φ decays to the φ = 0 state.
To elucidate the origin of this transition and characterize
its universality, based on weakly nonlinear analysis, we will
review the derivation of the envelope equation of the pdSGE
and analyze its localized solutions.

A. Parametrically driven damped nonlinear
Schrödinger equation

Physical systems at the onset of their resonances and
instabilities exhibit a separation of temporal scales [2]. In the
case of parametrically driven media, the oscillation phase of
the state variables is much faster than the temporal variation

of their amplitude, which motivates the use of the so-called
amplitude equation [2] formalism. The derivation of the
pdNLS model from the sine-Gordon equations is known for
one-dimensional [17,42] and two-dimensional systems [21].
Let us review the derivation by replacing the following ansatz
in Eq. (1):

φ(t, r) = A(t, r′)ei(1+ν)t + W (A, Ā) + c.c., (2)

where A(t, r′) is the oscillation envelope with r′ = x′x̂ +
y′ŷ = √

2r, and c.c. denotes the complex conjugate. The
function W represents the correction due to nonlinear terms
and depends both on A and its complex conjugate Ā. The
amplitude A is assumed small, but larger than the nonlinear W ,
i.e., |W | � |A|. It is assumed that A is a slow variable, such
that its temporal derivatives become even smaller (|∂tt A| �
|∂t A| � |A|). One also considers the scaling |A|2 ∼ μ ∼ |ν| ∼
γ ∼ |∂t A|/|A| � 1. Note that the change of variables (2) is
general for parametrically driven systems near the 2:1 reso-
nance.

By setting ω = 2(1 + ν) with small detuning, |ν| � 1,
i.e., close to twice the natural frequency, and regrouping the
dominant terms when replacing the ansatz into Eq. (1), one
gets a linear system in W . Applying solvability conditions [2]
yields

∂t A = −iνA − i

4
A|A|2 − μ

2
A + γ

4
Ā − i∇′2A, (3)

with ∇′2 the Laplacian with respect to the spatial variable
r′. The above equation has been derived in several physical
contexts to describe patterns and localized structures such as
vertically oscillating layers of water [15], nonlinear lattices
[43], optical fibers [44], Kerr-type optical parametric oscilla-
tors [45], and magnetization in an easy-plane ferromagnetic
exposed to an oscillatory magnetic field [17].

B. Characterization of the dynamics of the pdNLS equation

Let us start by reviewing some known solutions of the
pdNLS equation and their corresponding stability. Equation
(3) allows us to determine the stability regions of the quiescent
state A = 0 with a simple linear analysis [46]. For that, one
decomposes A into its real and imaginary parts, A = u + iv,
and linearizes on them to get [46]

d

dt

(
u
v

)
=

[
γ /4 − μ/2 ν + ∇′2

−(ν + ∇′2) −γ /4 − μ/2

](
u

v

)
. (4)

The eigenvalues of the above equation are λ±(k) = −μ/2 ±√
γ 2/16 − (ν − k2)2, where k is the wave vector of the

perturbation with norm |k| = k. The stability condition is
λ±(k) < 0 for all k. The stability analysis of this equation
is well known, and it reveals that there is a region in the
(γ , ν) plane bounded by the curve μ2 + 4ν2 = γ 2/4, where
A = 0 becomes unstable against uniform perturbations [46].
In the context of parametrically forced systems, this region
is usually referred to as 2:1 Arnold’s tongue, as it is located
around twice the natural frequency. Figure 4(b) shows the 2:1
Arnold’s tongue in the phase diagram. Spacial instabilities
occur for ν > 0 [12], where oscillons do not exist. Thus, the
spacial instability is not considered here.
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FIG. 4. Radiative and nonradiative oscillons of the parametri-
cally driven damped nonlinear Schrödinger Eq. (3) with μ = 0.1.
(a) Bifurcation diagram of the pdNLS model for γ = 0.22. Vertical
amplitude oscillation a(ν, γ ) in a given point as a function of the
detuning. (b) Phase diagram of the pdNLS equation. This plot shows
the supercritical nature of the instability. The regions O, RO, and HSS
account for the zones of the parameter space where the nonradia-
tive oscillons, radiative oscillons, and uniform homogeneous steady
state are observed, respectively. �AH is the transition curve from
nonradiative to radiative oscillons. (c) Snapshot of a nonradiative
oscillon for detuning ν = −0.025, forcing strength γ = 0.208, and
L = 200 × 0.7. The left and right panel account for the modulus
and phase of the amplitude, respectively. The simulation box has
200 × 200 points and spatial step size dx = 0.7. (d) Snapshot of a
radiative oscillon for ν = −0.42 and γ = 0.216.

For forcing frequencies close to the 2:1 resonance
(i.e., |ν| � 1) and μ � γ , the amplitude Eq. (3) exhibits
bell-shaped amplitude solutions with a homogeneous phase
[21,47]. These localized states account for oscillons of the os-
cillatory driven system. Figure 4 shows the region of parame-
ters where the nonradiative (O) and radiative (RO) oscillations

are observed. It is important to note that analytical solutions
for the oscillons are not known in two spatial dimensions.
The existence and stability zones of the two- and three-
dimensional nonradiative oscillons were studied in Ref. [21]
in the injection-dissipation (γ -μ,μ) plane. In particular, it is
analytically established that the oscillon suffers an oscillatory
instability. Here we focus on the transition that occurs for
negative detuning when its modulus is large enough to induce
radiation from the oscillon core, i.e., a radiative oscillon (cf.
Fig. 4). When one begins from the region where oscillons are
observed and decreases the forcing strength γ , the localized
spot becomes unstable through a saddle-node bifurcation for
γ = μ. This condition is represented by the horizontal curve
in Fig. 4(b), and it has been studied analytically for one-
[17], two-, and three-dimensional solitons [21] for the pdNLS
model. The previous scenario changes when one decreases the
modulus of the detuning parameter, ν → 0. When crossing
the 2:1 Arnold’s tongue, the localized spot becomes unsta-
ble and is replaced by a square pattern. This bifurcation
of the oscillons originates from the loss of stability of the
support state A = 0 [46] to which to soliton asymptotically
connects.

When one decreases the detuning, the oscillation becomes
unstable via a supercritical oscillatory instability (Andronov-
Hopf). The transition curve from nonradiative to radiative
oscillons in the parameter space is represented by �AH in
Fig. 4(b). This transition creates radiative oscillons. Fig-
ure 4(c) shows the typical magnitude and phase of the radia-
tive oscillon in a given time. Decreasing further the detuning
parameter, radiative oscillons become unstable by means of
a saddle-node bifurcation. This scenario changes for large γ

parameter and negative detuning, close to the 2:1 Arnold’s
tongue, where radiative oscillons become unstable by giving
rise to localized solutions with complex spatiotemporal be-
haviors. The study of such structures has not been reported
and remains an open problem.

III. CONCLUSIONS

The instabilities of spatiotemporal states, such as two-
dimensional patterns and localized structures, are not fully
understood. In this work, we studied the oscillatory bifurca-
tion of oscillons in the two-dimensional parametrically driven
sine-Gordon equation. We studied the transition from nonra-
diative to radiative oscillons in the oscillation envelope rep-
resentation and found an Andronov-Hopf bifurcation. Direct
numerical simulation of the sine-Gordon equation confirmed
this scenario. The bifurcation diagram of the system, in the
frequency-forcing amplitude plane, was also provided.
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APPENDIX: NUMERICAL METHODS

We solve the parametrically driven sine-Gordon equation
by dividing the space into 200 × 200 points separated by a
distance of dx = 0.5. The Laplacian ∇2φ is approximated
using a centered scheme [48] of order 6. The time is also
discretized with step size dt = 0.05 and the field φ(t + dt, r)
is obtained from φ(t, r) with a fifth-order Runge-Kutta algo-
rithm [49]. For every solution of Figs. 1, 2, and 3(a), an initial
condition was integrated in 244 000 iterations, which is long
enough to guarantee that the system converges to one of its
stationary states.

The bifurcation diagrams are obtained via the so-called
continuation method. In this scheme, the final state of a
simulation of φ for parameters (ω1, γ1) is the initial condition

for (ω2, γ2), such that |ω1 − ω2| � ω1 and |γ1 − γ2| � γ1.
We started with a soliton state for ω = 1.88 and γ = 0.295
and moved the values of γ with a step size of dγ = 0.001 to
make Fig. 3(a). Then for every value of γ at ω = 1.88, the
frequency is varied with a step size of dω = 0.01. Once the
temporal series are obtained, we use the dynamical indicator
a introduced earlier to distinguish between a nonradiative
and radiative oscillon. In the former case, the nonradiative
oscillon has an almost constant temporal Hilbert transform,
while in the latter, the envelope has significant differences
[cf. Figs. 1(c) and 2(c)]. The results are plotted in Fig. 3(b).
Note that φ obeys a nonlinear equation, and then the Hilbert
transform is never a constant. Thus, in Fig. 3(a) we sub-
tract the minimum of the a values, a(ω, γ ) → a(ω, γ ) −
minω,γ [a].
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