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Chaotic motion of localized structures
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Mobility properties of spatially localized structures arising from chaotic but deterministic forcing of the
bistable Swift-Hohenberg equation are studied and compared with the corresponding results when the chaotic
forcing is replaced by white noise. Short structures are shown to possess greater mobility, resulting in larger
root-mean-square speeds but shorter displacements than longer structures. Averaged over realizations, the
displacement of the structure is ballistic at short times but diffusive at larger times. Similar results hold in two
spatial dimensions. The effects of chaotic forcing on the stability of these structures is also quantified. Shorter
structures are found to be more fragile than longer ones, and their stability region can be displaced outside the
pinning region for constant forcing. Outside the stability region the deterministic fluctuations lead either to the
destruction of the structure or to its gradual growth.
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I. INTRODUCTION

A fundamental problem of statistical mechanics is to de-
scribe the effect of microscopic scales on macroscopic vari-
ables. Usually this effect is modeled in terms of stochastic
fluctuations, due to the large number of microscopic degrees
of freedom. However, in cases where the number of degrees
of freedom is restricted, the fluctuations cannot be taken
as stochastic, and in this case their deterministic or chaotic
character may play an important role. Here we investigate the
effects of the resulting deterministic fluctuations on spatially
localized structures (LSs). Such structures are a characteristic
feature of self-organized nonequilibrium systems [1–3] and
have been observed in numerous fields, ranging from physics
and chemistry to engineering and biology. These particlelike
states are characterized by continuous order parameters, such
as position, width, and amplitude whose evolution may be
described by macroscopic equations. The texts [4–6], together
with the references cited therein, provide a helpful overview
of the subject. In one spatial dimension, the profile of a
stationary LS embedded in a featureless background can be
interpreted in terms of a spatial trajectory that connects a
homogeneous state with itself, i.e., as a homoclinic orbit of
a dynamical system evolving in space [7]. In many cases the
resulting states may be thought of as bound states of a pair of
fronts, one connecting a homogeneous state to a pattern state,
while the second connects the pattern state back to the homo-
geneous state. This is the case, for example, for LSs present
in the region of bistability between a homogeneous state and
a spatially extended pattern. Such regions typically contain a
pinning or snaking interval within which one finds multiple
LSs of different lengths organized in a snakes-and-ladders
bifurcation diagram [8,9]. The resulting diagram captures the
linear stability properties of the LSs as well as their relative
(or energy) stability [10].

Localized structures are not necessarily motionless. The
motion and complex dynamics of LSs can be the result of
a spontaneous symmetry-breaking instability [11–18] or the
result of a fluctuating background [19–21]. Despite the ability
of existing theory to provide an intuitive picture of the origin
of LSs current understanding does not apply to the latter
situation. As is well established, additive white noise induces
random motion of LSs but ultimately leads to their destruction
[22,23]. This is not the case when the forcing is chaotic, i.e.,
deterministic [24].

Figure 1 illustrates the dramatic difference between deter-
ministic and stochastic forcing of a one-bump LS described
by the bistable Swift-Hohenberg equation. In the absence
of forcing [Fig. 1(a)] the structure is stable and motionless.
With deterministic but chaotic forcing the structure remains
stable but executes lateral motion resembling a random walk
[Fig. 1(b)], in stark contrast to the effect of multiplicative
white noise forcing that ultimately always destroys the struc-
ture [Fig. 1(c)]. As discussed further below, this is a conse-
quence of the fact that white noise ultimately explores a wide
range of fluctuations, resulting in a potential noise-induced
transition [25], while those arising from a deterministic origin
are bounded by the size of the attractor. In the following
we refer to the trajectory in Fig. 1(b) as a chaotic walk
to distinguish it from the more commonly studied random
walk.

The work that follows is motivated by the striking differ-
ence between Figs. 1(b) and 1(c). We begin by describing the
model problem we study followed by a description of our
simulation results in one spatial dimension together with a
semi-analytical understanding of the LS mobility character-
istics revealed by these simulations as the forcing amplitude
increases. The paper concludes with a brief discussion of the
two-dimensional case.
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FIG. 1. Spatiotemporal evolution of a one-bump localized solu-
tion of the Swift-Hohenberg equation (1) subject to spatiotemporally
chaotic forcing with μ = 3 when ρ = −0.27, b = 1.8 and (a) γ =
η = 0, (b) γ = 0.017, η = 0, and (c) γ = 0, η = 5. The lower and
upper panels show the solution profiles at the initial and final times,
respectively. Note the much longer timescale in panel (b).

II. THE MODEL

To study the effect of deterministic fluctuations on the dy-
namics of localized structures, we employ a system of partial
differential equations (PDEs) composed of a bistable Swift-
Hohenberg (SH) equation subject to multiplicative forcing
provided by the Kuramoto-Sivashinsky (KS) equation [24], as
described by

∂t u = ρu − (1 + ∂xx )2u + bu2 − u3

+ γ ∂xψ (x, t )u + √
ηζ (x, t )u, (1)

together with

∂tψ = −μ∂xxψ − (∂xψ )2 − ∂xxxxψ. (2)

Here ζ (x, t ) is a Gaussian white noise with zero
mean, 〈ζ (x, t )〉 = 0, and correlation 〈ζ (x, t )ζ (x′, t ′)〉 =
δ(t − t ′)δ(x − x′) and η represents its intensity, while γ

specifies the strength of the multiplicative spatiotemporally
chaotic fluctuations experienced by the LSs in Eq. (1) which
can be tuned by selecting appropriate values of the parameter
μ in Eq. (2) [24]. When γ = η = 0 the system reduces
to the usual bistable Swift-Hohenberg equation, whose
properties are now well-established [9,26]. Figure 1 shows
sample results for b = 1.8 and (a) γ = η = 0, (b) γ = 0.017,
η = 0, i.e., for deterministic forcing. In contrast, Fig. 1(c) is
computed from Eq. (1) with stochastic forcing only (γ = 0).

To investigate the effect of spatiotemporally chaotic fluctu-
ations on the behavior of LSs, we have conducted a numerical
study of the model Eqs. (1) and (2) with γ > 0, η = 0, and
μ sufficiently large that Eq. (2) possesses solutions in the
form of spatiotemporal chaos [27]. For the sake of simplicity,
periodic boundary conditions are used. Integration was imple-
mented using a fourth-order Runge-Kutta scheme in time with
step size dt = 0.01 and a finite difference scheme in space
that uses a centered stencil of seven grid points. Space was
discretized into 400 points with grid size dx = 0.6. A stable
localized one-bump solution of the bistable Swift-Hohenberg
equation (γ = 0, η = 0) at b = 1.8 and ρ = −0.27 was taken
as initial condition, motivated by the parameter regime studied
in Ref. [9]. This solution can be seen in Fig. 1(a).

The spatiotemporal forcing is provided by the Kuramoto-
Sivashinsky equation [28,29], whose dynamics are well ex-
plored. In particular, it is known that for μ = 3 this equation

FIG. 2. (a) Spatiotemporal complexity in the Kuramoto-
Sivashinsky Eq. (2) at μ = 3. (b) Temporal profile of the fluctuations
at the fixed location x = 100 [vertical dashed line in (a)] and (c) its
probability density function, both at μ = 3.

exhibits spatiotemporally chaotic behavior. Figure 2(a) shows
the spatiotemporal chaos at this value of μ while Figs. 2(b)
and 2(c) show the resulting forcing amplitude at an arbitrarily
selected location x = 100 and its probability density function
(pdf). It is noteworthy that this density is symmetric with
mean zero. Note also that the density has a finite support since
the KS attractor is bounded. This is in contrast to white noise.

In the following we employ the parameter values b = 1.8
and μ = 3 and vary the parameters ρ, γ while keeping η =
0 (deterministic forcing). We then compare the results with
those for pure stochastic forcing (γ = 0, η �= 0).

III. RESULTS

We now study the effects of the deterministic fluctuations
quantified in Section II on the dynamics of the one-bump
localized state shown in Fig. 1(a). Figure 3(a) shows the
snakes-and-ladders structure of the pinning region when γ =
0 (blue curves) within the region of bistability between the
homogeneous state u = 0 (red horizontal line) and the pe-
riodic state with 2π wavelength (red curve), both for b =
1.8; solid (dashed) lines indicate stable (unstable) states. In
the following we call the three lowest stable states LS1,
LS2, and LS3, the integer indicating the number of fully
developed peaks within the structure. Thus, Fig. 1(a) shows
LS1. Superposed on the LS curves are the LS1, LS2, and
LS3 states that were found to persist for t = 107 for three
different values of γ and color-coded as follows: γ = 0.006
(thick red), γ = 0.008 (thick blue), and γ = 0.015 (thick
yellow), suggesting that in each of these cases these states
are in fact stable, albeit in a reduced parameter range: the
figure indicates that as the fluctuation amplitude γ increases
the snaking zone gradually shrinks but does not disappear.
Figures 3(b) and 3(c) portray the surviving snaking zones
for γ = 0.006 and γ = 0.008, respectively. These results are
presented in a different way in Fig. 4 which shows the regions
of stable LS1, LS2, and LS3 in the (ρ, γ ) plane. Note that as
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FIG. 3. (a) Snakes-and-ladders structure of the pinning zone
when b = 1.8 and γ = η = 0 (blue curves) straddling the Maxwell
point located at ρM ≈ −0.3137, with superposed stable localized
states: γ = 0.006 (red), γ = 0.008 (blue), and γ = 0.015 (yellow),
showing the progressive shrinking of the snaking region as γ in-
creases. Dashed lines at ρp1 and ρp2 indicate the width of the pinning
zone when γ = η = 0. The corresponding results for (b) γ = 0.006
and (c) γ = 0.008 showing, from bottom to top, the branches of
stable LS1, LS2, and LS3 as determined from simulations over a
time interval t = 107. In each case the error bars indicate the size of
the fluctuations over this timescale.

γ increases the LSs are eroded more rapidly in the vicinity
of the left boundary ρ = ρ−(γ ) than near the right boundary
ρ = ρ+(γ ). This asymmetry arises because the fluctuations
near ρ−, i.e., for values of ρ below the (effective) Maxwell
point, favor the homogeneous state, leading to front retraction,
while those near ρ+, i.e., for ρ above the Maxwell point,
favor the periodic state and hence front advance. As a result
the fluctuations gradually shift the pinning region toward
larger values of ρ relative to the case γ = η = 0. We also
see that this effect is larger for LSn with small n, and that
stable LSn with larger n survive to larger values of γ . As
discussed further below this appears to be a consequence
of the reduced mobility of larger structures. Figure 5 sheds
additional light on this behavior. The left panels show the
boundary of the pinning or snaking zone as γ increases across
γ−(ρ) [Fig. 5(a)] and across γ+(ρ) [Fig. 5(c)]. Thus, for
γ > γ−(ρ) the preferred state is u = 0 while the opposite is
the case for γ > γ+(ρ). These observations are reflected in
Figs. 5(b) and 5(d) which show that below the pinning region
the structure collapses to u = 0 [Fig. 5(b)] while above it it

FIG. 4. Regions of stability of LS1, LS2, and LS3 in the (ρ, γ )
plane showing that the stability regions become increasingly asym-
metrical and in each case close off [at γ = γc(n)] when the forcing
amplitude γ becomes too large. Dashed lines at ρp1 and ρp2 indicate
the width of the pinning zone when γ = η = 0.

gradually nucleates additional wavelengths and so grows in
spatial extent [Fig. 5(d)]. Figures 5(a) and 5(c) also show that
the lifetime of the localized structures outside their stability
region (see Fig. 4) increases rapidly as one approaches the
top boundary of the pinning region in the (ρ, γ ) plane. We
expect that this lifetime increases inversely as the square root
of the distance from the boundary of the stability zone much
as occurs when γ = 0 [9].

To explain some aspects of the above results, and in par-
ticular the lateral motion of the LSs computed from the PDE
system Eqs. (1) and (2), we employ a semianalytical approach,
putting the system into the instantaneous comoving frame
z = x − ∫ t

0 c(t ′) dt ′. Thus, c(t ) is the instantaneous velocity

FIG. 5. Lifetimes τ of localized states as a function of γ for
b = 1.8 and (a) ρ = −0.28, (c) ρ = −0.26 outside the pinning zone
(red dots with error bars). The solid lines represent the fits (a) τ =
14.39/(γ − 0.013)1.6, (c) τ = 125.9/(γ − 0.01)1.1. (b) Eventual de-
cay of LS1 at ρ = −0.28 when γ = 0.0225 > γ−(ρ ). (d) Gradual
growth of LS1 at ρ = −0.26 when γ = 0.012 > γ+(ρ ).
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FIG. 6. Characterization of the instantaneous speed c(t ) of local-
ized structures as a function of their length n as obtained from Eq. (6)
with b = 1.8, ρ = −0.3, γ = 0.25, η = 0, and μ = 3. (a) Probabil-
ity density function of c(t ) for three different values of n. (b) Typical
temporal evolution of c(t ) for n = 3 (dark blue curve) and n = 14
(light red curve). The remaining panels show (c) the kurtosis and
(d) the standard deviation σ of the pdf of c as functions of n.

of the structure. To simplify the calculation that follows, we
use standard bracket notation for the inner product with

〈 f | g〉 =
∫ ∞

−∞
f (x)g(x) dx. (3)

We suppose that |u〉 = |u0〉 + |w〉, where u0 ≡ u0(z) is an
appropriate LS solution and w is a small perturbation com-
parable in magnitude to both γ and the instantaneous velocity
c(t ). It follows that

−c∂zu0 = L |w〉 + γ |(∂zψ )u0〉 , (4)

where L ≡ ρ − (1 + ∂zz )2 + 2βu0 − 3u2
0. Since L is a self-

adjoint linear operator (i.e., L = L†) with a kernel spanned
by ∂zu0 the solvability condition for w(x, t ) yields

ẋc(t ) ≡ c(t ) = −γ
〈∂zu0| (∂zψ )u0〉

〈∂zu0| ∂zu0〉 . (5)

Since the structure is localized, integration by parts shows that

ẋc(t ) = γ
〈∂zu0| ψ∂zu0〉
〈∂zu0| ∂zu0〉 . (6)

This equation governs the motion of the centroid, hereafter
xc(t ), of the localized structure and shows that motion results
from the asymmetry in the projection of ψ (z, t ) on the trans-
lation mode ∂zu0(z). For fluctuations driven by noise alone we
have

ẋc(t ) = −√
η
〈∂zu0| ζ (z, t )u0〉

〈∂zu0| ∂zu0〉 ≡ √
ηξ (t ), (7)

where ξ (t ) is a white noise satisfying

〈ξ (t )ξ (t ′)〉ζ = 〈(∂zu0)2| u2
0〉

(〈∂zu0| ∂zu0〉)2
δ(t − t ′). (8)

Figure 6(a) compares the probability density functions of
c(t ) for localized structures with n = 3, 8, and 14, while
Fig. 6(b) shows the corresponding realizations c(t ) for n = 3
and 14. We see that the distribution of speeds is much broader

FIG. 7. (a) Position of the centroid xc(t ) for several slightly dif-
ferent one-bump initial conditions when ρ = −0.27, γ = 0.001, η =
0. (b) Corresponding ensemble-averaged centroid displacement d (t )
(red curve). The black-dashed line corresponds to the linear fit d (t ) =
3 × 10−4t to the short-time evolution (0 � t � 100), while the blue-
dashed curve represents the square root fit d (t ) = 0.0013

√
t − 0.001

to the subsequent evolution.

when n is small than when it is large, and conclude that
narrower structures have greater mobility, a conclusion in
agreement with related work on colliding LS [30]. We ascribe
this effect to the requirement that to move a broader structure
one requires a fluctuation with a larger spatial correlation,
making larger speeds less likely. Notice also that the distribu-
tion function for small n is markedly asymmetric. This is due
to the asymmetry in the forcing function ∂xψ with respect to
spatial reflection x → −x. Inevitably the resulting asymmetry
in the pdf of the speed c decreases with increasing length n of
the structure. These properties are summarized in Figs. 6(c)
and 6(d) which show the kurtosis of the pdf and its standard
deviation σ as a function of n.

IV. STATISTICAL CHARACTERIZATION
OF LS DISPLACEMENT

To characterize the dynamics of an LS, we fix attention on
its centroid, defined by

xc(t ) =
∫ L
−L xu(x, t ) dx∫ L
−L u(x, t ) dx

, (9)

where [−L, L] is the domain size. Figure 7 shows the location
of this centroid for LS1 as a function of the elapsed time
t as determined from numerical simulations of the system
Eqs. (1) and (2) starting from several slightly different initial
conditions (color-coded) obtained by multiplying u and ψ at
the same grid points as the solution by independent random
vectors of magnitude 10−5. The results evidence the extreme
sensitivity of the drift dynamics to initial conditions, as is
expected of a chaotic system.

From the dynamics of the centroid, we can extract its
displacement �x(t ) ≡ xc(t + dt ) − xc(t ) in time dt for each
realization of the chaotic process. Figure 8(a) shows this
displacement for one such realization. We see that successive
displacements may be considered to be uncorrelated, with
zero mean. Indeed, the resulting distribution of �x resembles
a Gaussian distribution [Fig. 8(b)], as may be expected of
Brownian motion. However, in the present case the distribu-
tion is truncated since very large displacements in the time dt
are prohibited. This is a consequence of the fact that the dis-
placement is fully deterministic, with each realization drawn
from a bounded attractor. Figure 8(c) shows the expected rapid
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FIG. 8. (a) Displacement �x of the centroid of a one-bump state
as a function of time t in a single realization of the chaotic walk
at ρ = −0.27 and γ = 0.001. (b) Associated probability density
function P(�x). (c) Evolution of the standard deviation σ�x of the
resulting displacement dynamics. (d) Ensemble standard deviation
σ (t ) computed over 100 slightly different initial conditions differing
by order 10−4. The inset presents the same results on a log-log
scale. Initially, a ballistic behavior is observed (exponent 1, t <

100, dashed black curve), followed by a crossover to subdiffusive
behavior (exponent 0.345, t > 100, dashed red curve).

saturation of the standard deviation σ�x(t ) of �x. In contrast,
Fig. 8(d) shows the cumulative effect of these displacements,
i.e., the standard deviation σ (t ) of the centroid position xc(t )
computed over 100 realizations of the above process, each
generated by a small [O(10−4)] random perturbation of the
initial condition.

Figure 9 shows the corresponding evolution of 3-bump and
14-bump localized states in a space-time diagram. We see that
the broader structure has a broader probability distribution
function than the shorter structure [Fig. 9(c)]. At first sight
this conclusion is in conflict with our mobility calculation.
We understand this unexpected result as follows: because
broader structures have lower mobility and therefore larger
effective inertia, a broader structure, once in motion, will

FIG. 9. Space-time evolution of (a) 3-bump and (b) 14-bump
localized states when ρ = −0.28, γ = 0.012 showing that the ampli-
tude of the centroid displacement decreases with increasing number
of bumps. (c) Displacement �x of the structures as a function of time
together with their pdf.

(b)(a)

FIG. 10. (a) Spatiotemporal evolution of a one-bump localized
solution of the Swift-Hohenberg equation (1) with b = 1.8, ρ =
−0.27, η = 0 in the presence of additive deterministic fluctuations
γ ∂xψ (x, t ) with γ = 0.004 and μ = 3. (b) Temporal evolution of
the centroid position xc(t ).

drift further before it can change direction, resulting in larger
typical displacement than for shorter structures.

V. CONCLUSIONS

Based on a prototype model of pattern formation, the
Swift-Hohenberg equation, we have shown that localized
structures are robust in the presence of multiplicative deter-
ministic fluctuations. This is in contrast to the effect of random
fluctuations, which ultimately always destroy such structures.
We have seen that in the former case the LSs exhibit complex
spatiotemporal behavior we have termed a chaotic walk. This
type of walk is highly sensitive to the initial conditions but
its properties can nonetheless be described using standard
statistical physics approaches including the computation of
probability distribution functions. The exploding dissipative
solitons studied in Ref. [31] provide a distinct example of
a system exhibiting related behavior, where translation is
triggered by loss of reflection symmetry. However, in con-
trast to the system studied here, in this system translation
is intermittent and associated with episodic escapes from a
reflection-invariant strange attractor as described in Ref. [32].
The resulting walk is thus a chaotic Lévy flight. In contrast
our system Eqs. (1) and (2) has no reflection symmetry. As
shown in Fig. 10 similar results hold in the case of additive
deterministic fluctuations as well.

We have seen that the presence of deterministic fluctua-
tions with increasing amplitude leads to the gradual erosion
of the stability zone of different LSs, with shorter structures
proving more fragile than broader ones. In addition, the
stability zone shifts towards larger values of the parameter
ρ because fluctuations at the lower end of the zone tend
to eliminate spatial structure while those at the upper end
tend to nucleate new structure. For large enough fluctuation
amplitude stable LSs are no longer possible.

We have seen that within their zone of stability the LSs exe-
cute a chaotic walk. The properties of this walk are determined
by the mobility of the structure, and we have shown by explicit
calculation that shorter structures have greater mobility, and
hence smaller effective inertia. As a result shorter struc-
tures change direction more frequently than longer structures,
which are therefore characterized by a broader distribution of
step sizes.

Similar behavior is found in two spatial dimensions as
well. Figure 11(b) shows several examples of chaotic but
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FIG. 11. Chaotic walk in two dimensions of an initially ax-
isymmetric one-bump state (a) for several slightly different initial
conditions for Eq. (2) when b = 2.2, ρ = −0.5, γ = 0.07, η = 0
(b). The red dot in (b) shows the location of the structure at t = 0.
(c) Displacements �x and �y of the centroid of a one-bump state
in time dt = 0.01 as a function of the time t in one realization
of the chaotic walk. (d) Associated probability density functions.
(e) Evolution of the standard deviations σ�x , σ�y of the resulting
displacements.

deterministic walks of a one-bump localized structure
[Fig. 11(a)] initially at (x, y) = (0, 0) obtained from different
realizations of Eqs. (1) and (2) in two dimensions generated by
multiplying u and ψ at each grid point by independent random
vectors of magnitude 10−3. No additive noise is included (η =
0). The figure shows the resulting trajectories in the (x, y)
plane while Figs. 11(c) and 11(d) show the statistics of the
centroid displacement (�x,�y) in time dt = 0.01, defined
as in the one-dimensional case, for one of these realizations.

These show that the chaotic walk is statistically isotropic with
a constant and isotropic standard deviation. Moreover, when
averaged over the initial conditions used to generate the differ-
ent realizations, the distribution of the resulting walks is also
isotropic. Thus localized structures in two spatial dimensions
undergo similar behavior when subjected to multiplicative
deterministic fluctuations as those in one spatial dimension.
A detailed study of the properties of these two-dimensional
deterministic walks is in progress.

The above results differ fundamentally from those prevail-
ing for Eq. (1) driven stochastically by white noise (γ = 0). In
this case all LSs eventually collapse to either the trivial state
u = 0 or to a spatially extended state. These two outcomes
are separated by an effective Maxwell point that has to be
computed as a function of the applied forcing strength η.
In fact theoretical interpretations of experimental studies of
LSs, in both 1D and 2D [4–6], typically assume that any
fluctuations that may be present are of a stochastic nature, and
not deterministic. We have shown that a careful examination
of the statistical properties of the observed LS dynamics
can in principle discriminate between these two possibilities,
and provide new insights into the nature of the underlying
fluctuations.

Throughout this paper we have adopted periodic bound-
ary conditions. However, it is known that fluctuations in
the boundary conditions can in and of themselves lead to
unexpected timing jitter in optical signals [33]. A study of the
effect of deterministic boundary fluctuations on the dynamics
of LSs through their effect on the critical wave number kc is
therefore also of interest, and will be reported on in a future
publication.
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