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ABSTRACT

Two-dimensional arrays of coupled waveguides or coupled microcavities allow us to confine and manipulate light. Based on a paradigmatic
envelope equation, we show that these devices, subject to a coherent optical injection, support coexistence between a coherent and incoherent
emission. In this regime, we show that two-dimensional chimera states can be generated. Depending on initial conditions, the system exhibits
a family of two-dimensional chimera states and interaction between them. We characterize these two-dimensional structures by computing
their Lyapunov spectrum and Yorke–Kaplan dimension. Finally, we show that two-dimensional chimera states are of spatiotemporal chaotic
nature.
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One-dimensional nonlinear coupled microcavities exhibit a rich
spatiotemporal dynamics. In particular, these coupled microcav-
ities have fully synchronized or incoherent light emission of a
spatiotemporal chaotic nature. Also, depending on the initial
conditions, these devices show coexistence between desynchro-
nized and synchronized domains, often called optical chimera
states. In this contribution, we show evidence of optical chimeras
in a two-dimensional array of coupled waveguide resonators.
Due to the additional degrees of freedom, the smaller local-
ized solutions exhibit a chaotic spatiotemporal evolution—which
is not the case of the one-dimensional counterpart. The Lya-
punov spectrum and Yorke–Kaplan dimensions are calculated to
characterize these intriguing localized states.

I. INTRODUCTION

A two-dimensional array of coupled waveguides or coupled
microcavities consists of nonlinear discrete structures.1 This con-
figuration appears not only in photonics but also in a large variety
of systems such as biological systems,2 condensed matter physics,3

and Bose–Einstein condensates.4 Nonequilibrium discrete systems
are drawing considerable attention both from fundamental as well

as applied points of view. In particular, spatial localization of light
in discrete photonic lattices has been reported,5–7 including com-
plex confinement of light such as random-phase solitons.8,9 In
free propagation, the spatial confinement is attributed to the bal-
ance between the discrete diffraction and the nonlinearity. How-
ever, when dealing with coupled microresonators, the dissipation
of energy due to mirrors should be compensated by optical injec-
tion. This second balance renders discrete dissipative solitons more
robust.10–12

In general, when a system exhibits a simultaneous coexistence
between coherence and incoherence behavior in coupled oscilla-
tors, the resulting phenomenon is called chimera states.13 Initially,
this phenomenon was reported in the context of nonlocally cou-
pled phase oscillators13,14 and extended later on to locally cou-
pling oscillators.15,16 In optical systems, experimental observations of
chimera states have been reported using an optoelectronic delayed
feedback setup,17 laser diodes coupled with a nonlinear saturable
absorber,18 and laser diodes subjected to a coherent polarization.19

Recently, one-dimensional optical chimera states have been pre-
dicted in an array of coupled Kerr resonators.20 However, to the
best of our knowledge, chimera states in two spatial dimensional
optical systems have received limited attention.21 Otherwise, in two-
dimensional networks of coupled neuron systems, the emergence of
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chimera states has been studied,22,23 where these states emerge from
a subcritical and supercritical bifurcations, respectively.

This paper aims to investigate the formation of two-
dimensional optical chimera states in an array of coupled waveguide
resonators. This phenomenon occurs in a regime where a coupled
waveguide resonators exhibit coexistence between a coherent and
incoherent emission. These discrete structures consist of a localized
complex domain embedded in a stable homogenous background.
To account for 2D optical chimera states, we use a discrete version
of the two-dimensional Lugiato–Lefever equation.24 Based on this
model, we show that, depending on the initial condition; this sys-
tem can support a family of two-dimensional optical chimera states.
Lyapunov exponents and Yorke–Kaplan dimension allow charac-
terizing these structures. Chimera states correspond to localized
spatiotemporal chaos. In the Lugiato–Lefever equation, the optical
chimera states are excluded. Indeed, this dynamical behavior is a
peculiarity of discrete systems.

II. ARRAY OF DRIVEN COUPLED WAVEGUIDE
RESONATORS: 2D DISCRETE LUGIATO–LEFEVER
MODEL

Let us consider a two-dimensional square array of coupled
waveguide resonators subject to a coherent monochromatic beam.
Figure 1 shows a schematic representation of the driven square lat-
tice. Each resonator is composed of a waveguide filled by a Kerr
media, with dielectric mirrors at the end-faces. Indeed, this system
corresponds to a lattice of waveguide microcavities. This device can
be described by the discrete Lugiato–Lefever model.11,12 Note that
this prototype model of driven coupled oscillators has been studied
more in the one-dimensional configuration. Assuming that the cou-
pling between waveguide-resonators is small in comparison with the
cavity size, the intracavity field satisfies

∂T"n,m = E0 − (1 + i#)"n,m − i|"n,m|2"n,m

− iκ
(

"n+1,m + "n−1,m + "n,m+1 + "n,m−1

)

, (1)

where "n,m(T) is a slowly varying envelope of the electric field
circulating in (n, m)-coupled resonators. Indices n (x-axis) and m
(y-axis) denote the transverse coordinates of the cavities. The detun-
ing parameter # ≡ ω − ω0 is proportional to the difference between
the resonance frequency ω0 of the cavity and the driving field fre-
quency ω. κ characterizes the coupling strength between the cavities.
Time t = Tτph is measured in the photon lifetime unit τph. The driv-
ing field intensity is denoted by E0. The continuous counterpart of
model Eq. (1) was used to describe Kerr optical frequency combs
(see Ref. 25 and references therein).

In the continuous limit, for # >
√

3 (# <
√

3), the trans-
mitted intensity as a function of the input intensity E2

0 is
bistable (monostable). The homogeneous steady state undergoes
a modulational instability at E2

0 = E2
0c ≡ 1 + (1 − #)2 and |"c|2

= 1. At this bifurcation point, the critical wavelength is
'2

c = [2π |κ|/(2 − #)]1/2. It has been shown that, for large injected
intensity, the system exhibits a spatiotemporal chaos.27 These
dynamic behaviors are persistent when one considers the respec-
tive discrete system.20 In this type of systems, the discreteness
(Peierls–Nabarro potential) allows the confinement of light. Hence,

FIG. 1. Optical chimera states in a two-dimensional array of coupled microres-
onator. Parameters are E0 = 4.22,# = 7.0, and κ = 1.876. (a) Schematic rep-
resentation of a two-dimensional array of coupled waveguide-resonators driven
by an external electrical field of intensity E0. (b) Spatiotemporal evolution of the
maximum iso-surface amplitude of each interacting cavity. (c) Bifurcation diagram
of model Eq. (1). The total intracavity amplitude |"| as a function of the pump
amplitude E0. The solid and dashed lines describe the total intracavity intensity of
homogeneous steady states. The blue cloud of points shows the extreme values
of the total intracavity intensity of the spatiotemporal chaotic state. The colored
region accounts for the coexistence range (Ec = 6.68 < E < El− = 7.29). The
painted area accounts for the bistability region between the homogeneous and
spatiotemporal chaotic states.

the prerequisite condition for the formation of two-dimensional
chimera states is the coexistence of a coherent (homogeneous state)
and an incoherent state (spatiotemporal chaos) in a discrete sys-
tem. Figure 1(b) displays a typical 2D chimera state in the bistability
region, Ec < E0 < El−. Chimera states are classified by the notation
n × m, which depicts the number of cavities that shows the maxi-
mum amplitude. Numerical simulations are conducted using a finite
difference code with a 4th-order Runge–Kutta scheme and Neu-
mann boundary conditions. Contrary to the continuous limit, the
2D chimera states neither grow in spite of available free space in
the transverse plane nor shrink in spite of weak coupling between
resonators. Figure 1(c) shows the bifurcation diagram of model
Eq. (1). We plot the maximum values of the normalized total intra-
cavity amplitude |"| as a function of injected field amplitude E0.
The normalized total amplitude of the intracavity field is defined

as, |"(t)| =
√

∑N
i,j=1 |"i,j(t)|2/N2, with N2 being the total number

of coupled cavities in the lattice.
For small E0, only a homogeneous steady state exists as a

stable solution. In this case, all cavities have the same intracav-
ity field amplitude. Increasing the input parameter up to E0 ! El−,
the homogeneous steady state suffers a saddle-node instability. The
system develops the emergence of spatiotemporal chaos.27 Further
increasing E0, the complex dynamics keeps up. When decreasing E0,
the spatiotemporal complex dynamics perseveres until E0 reaches Ec

[see Fig. 1(c)]. For E0 < Ec, the homogeneous steady state is the only
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extended stationary equilibrium. Indeed, the system presents a sub-
critical bifurcation at E0 = Ec. The coexistence is prerequisite for the
formation scenario of chimera states we have previously proposed
in 1D.15

The first finding is that the family of chimera states generated
in the transverse section of the intracavity field is much more diverse
than the one-dimensional case, thanks to the large variety of 2D
geometrical plots. However, for the sake of simplicity, we limit our
analysis to chimera states with incoherent domains forming a square
as depicted in Fig. 3(a). These chimera states are characterized by
spatial confinement of large temporal fluctuations (see video in the
supplementary material).

III. CHARACTERIZATION OF 2D OPTICAL CHIMERA
STATES

The one-dimensional version of Eq. (1) exhibits stationary
localized discrete objects, discrete cavity solitons.10–12 These solutions
are persistent in two dimensions.21 Depending on initial conditions,
a family of discrete solutions of different sizes are observed. Increas-
ing the driving field E0, these localized structures present transitions
from stationary, oscillatory to complex spatiotemporal states. To
shed light on the mechanism of these bifurcations, we calculate the
total intracavity intensity of the localized states, defined as

||"||(t) ≡
N

∑

n,m=0

|"n,m(t)|2. (2)

Let us introduce the following terminology for localized states
n × m, where n × m accounts for the number of cavities that shows
the maximum amplitude. For the sake of simplicity, we only consid-
ered two n × m localized states, 2 × 2 and 5 × 5. The insets in Fig. 2
show a typical snapshot of these states. Likewise, the bifurcation dia-
gram of these localized states is shown in Fig. 2. In the top panel, the
maximum total intracavity intensity ||"||max vs the driving field E0

is presented. The blue and red dots account for the maximum total
intracavity intensity for 2 × 2 and 5 × 5 states numerically obtained
from Eq. (2), respectively.

Increasing the driving field, in both cases, we recognize three
different regions. The first one corresponds to the stationary states,
where ||"||max shows only one value. The second region is character-
ized by ||"||max alternates between two values for a given E0. Indeed,
this accounts for the emergence of oscillatory behavior of the local-
ized structures. This transition corresponds to an Andronov–Hopf
bifurcation. Finally, in the third region, ||"||max acquires differ-
ent values in a complex manner. Namely, this is represented as a
points cloud (see Fig. 2). Hence, ||"|| displays a complex tempo-
ral evolution. A further characterization of ||"|| is performed by
the calculation of the power spectrum S[ω]. The bottom panels
shows S[ω]. From these spectra, we infer a transition from station-
ary, oscillatory to chaotic behavior. This transition is recognized as
the period-doubling route to chaos.26 Indeed, this is the mechanism
behind the emergence of discrete localized complex spatiotemporal
chaotic structures, optical chimera states.

In dynamical systems theory, Lyapunov exponents constitute
the most adequate tool to characterize the nature of complex spa-
tiotemporal dynamics described above. These exponents provide

FIG. 2. Bifurcation diagram of 2 × 2 and 5 × 5 optical chimera states. The top
panel shows the maximum total intracavity intensity ||"||max vs the driving field
intensity E0. The blue and red curve correspond to 2 × 2 and 5 × 5 optical
chimera state, respectively. The left and right bottom panels show, respectively,
the power spectrum of 2 × 2 and 5 × 5 of optical chimera state obtained in the
driven field intensity indicated in the top panel.

information about sensitivity to the initial conditions, fluctuations,
and complexity of solutions.28 Low-dimensional and spatiotempo-
ral chaos are characterized by positive Lyapunov exponents. These
exponents can be computed from the method proposed by Skokos.29

The set of Lyapunov exponents constitutes the Lyapunov spectrum
{λi} with i = {1, 2, . . . , N2}, λi " λj and i " j. Low-dimensional
chaos possesses a discrete Lyapunov spectrum, while spatiotemporal
chaos has a continuous one. Figure 3(b) shows Lyapunov spectra of
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FIG. 3. Family of two-dimensional optical chimera states of model Eq. (1) with
the same parameters as (a) Spatiotemporal diagrams of 2 × 2, 5 × 5, and 8 × 8
optical chimera states. The product n × m accounts for the number of cavities
that shows the maximum amplitude. (b) Lyapunov spectra of different 2D opti-
cal chimera states obtained from Eq. (1). {λi} denotes the i-Lyapunov exponent,
i = {1, . . . ,N} and N accounts for the total number of cavities. Each curve cor-
responds to the Lyapunov spectrum of the respective n × m chimera states. (c)
Yorke–Kaplan dimension of the spatiotemporal chaotic solution as a function of
A parameter. This parameter accounts for the average number of microcavities in
the incoherence domain.

different optical chimera states. From this plots, we see that positive
Lyapunov exponents increase with the size of chimera states. Hence,
the complexity of these localized solutions increase with the size of
chimera states.

FIG. 4. Power spectrum F[|"|] of a single waveguide-resonator cavity as a
function of frequency f and the detuning parameter #. At high frequencies, the
power spectrum shows a power law f−2.9 which is a signature of turbulence-like
dynamics.

FIG. 5. 2D chimera states exist together. Spatiotemporal diagram of 2D chimera
states in an array of coupled waveguide-resonator cavities. The color bar stands
for the intracavity intensity field. Insets in (a)–(c) account for the cross section at
different times.

In addition, from Lyapunov spectrum we can compute the
Yorke–Kaplan dimension defined by DYK = p +

∑p
i=1 λi/|λp+1|,

where p is the largest integer for which λ1 + · · · + λp > 0.
Figure 3(c) shows the Yorke–Kaplan dimension of different chimera
solutions. From small values of A, the Yorke–Kaplan dimen-
sion remains constant, where A denotes the average number of
microcavities in the incoherence domains. As A is increased, the
Yorke–Kaplan dimension grows. This feature is the manifestation
of the extensive property of this dynamical dimension,28 indicating
that 2D optical chimera states belong to the class of spatiotemporal
chaos.

Fourier analysis is used to further characterize the underly-
ing dynamics of chimera states. To perform this analysis, we have
the spectral density of the signal recorded at the location of one
of the largest local maxima in the incoherent domain. Figure 4 shows
the resulting power spectrum for different chimera states. The shape
of the power spectrum is not affected by the size of the incoher-
ence domain. The power spectrum has a dominant peak at the value
of the detuning parameter. For high frequencies, the power spec-
trum presents a power fn where n = −2.932, which is a signature of
turbulence-like behavior.30

Finally, numerical simulations of model Eq. (1) show evidence
of the coexistence between dissimilar chimera states simultaneously
in different spatial locations in the transverse plane. An example of
such a behavior is shown in Fig. 5, where 2 × 2 and 3 × 3 optical
chimera states exist together. Insets account for the cross section
at different times. The 2D spatiotemporal diagram suggests that the
chimera states interact weakly.

IV. CONCLUSION

We have shown evidence of two-dimensional optical chimera
states in a driven array of locally coupled passive Kerr optical res-
onators. Adequate initial conditions have been used to generate a
family of these solutions. The main characteristic of these solu-
tions is spatial confinement of light in the transverse plane involving
complex multi-peak dynamics. Besides, we have shown that these
solutions can coexist together. The 2D chimera states are inherent
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to the discrete nature of the system. Indeed, in the continuous limit,
these states are unstable. We have characterized these solutions by
computing Lyapunov spectra, Yorke–Kaplan dimensions, and the
power spectrum. We have showed that the 2D optical chimera states
belong to the class of spatiotemporal chaos and turbulence-like
behaviors. The prerequisite condition for their formation requires
a bistable behavior between homogeneous background and spa-
tiotemporal chaos. This condition is rather general, and, therefore,
this prediction is important for the identification and understand-
ing of the various complex spatiotemporal behaviors observed in
practical systems.

SUPPLEMENTARY MATERIAL

See the supplementary material for supporting contents.
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