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Time-delayed nonlocal response inducing traveling temporal localized structures
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We show analytically and numerically that time-delayed nonlocal response induces traveling localized states
in bistable systems. These states result from the interaction of fronts between homogeneous steady states.
We illustrate this mechanism by considering an experimentally relevant system—the fiber cavity with the
noninstantaneous Raman response. Close to the nascent bistability, we performed a derivation of a generic
bistable model with a nonlocal delayed response. Analytical expressions of the width and the speed of traveling
localized states are derived. Without a time-delayed nonlocal response, traveling localized states are excluded. In
addition, we propose realistic parameters and perform numerical simulations of the governing model equation.

DOI: 10.1103/PhysRevResearch.2.013024

I. INTRODUCTION

Macroscopic systems are regularly described by a small
number of coarse-grained or macroscopic variables. The sep-
aration of timescales makes this reduction possible. Generally
speaking, it allows for a description in terms of slowly varying
macroscopic or averaging variables [1–3]. When scales sepa-
ration of the micro- and macroscopic variables are not well
established, the dynamics can be altered by the effect of tem-
poral correlations that generate a temporal delayed response.
A classic example is the polarization or the magnetization of
a material subjected to external electric or magnetic fields.
For low field strengths, at any given time, the polarization
is P(τ ) = ∫ τ

−∞ χ (τ − τ ′)E(τ ′)dτ ′, where E(t ) is the electric
field [4]. The electrical linear susceptibility χ (τ ) is the tem-
poral delay kernel that accounts for the response of the charge
density to the electrical stimulus. When the characteristic fre-
quency of the electric field is much smaller than the frequency
associated with the motion of the electric charges, the effect
of time delay can reasonably be neglected, and the response of
the system is instantaneous and local. However, the nonlocal
response is the rule rather than the exception, and it is relevant
for optical and magnetic systems such as scattering of light in
a continuous medium [4], nonlinear optics [5], and fiber optics
[6]. The time-delayed nonlocal response is a general physical
phenomenon that is widely used also for biological systems
[7–10].

In another line of research, frequency comb generation
in microresonators has witnessed tremendous progress in
recently, allowing new applications in metrology and spec-
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troscopy [11]. Frequency combs generated in optical Kerr res-
onators are nothing but the spectral content of the stable tem-
poral localized structure (LS) occurring in the cavity [12,13].
These peaks are generated close to the modulational instabil-
ity. The link between the phenomenon of Kerr comb formation
and temporal localized structures has been established (see the
latest overview [14] in the theme issue [15]). In optical fibers,
the nonlocal delayed response is provided by the Raman
effect, which occurs spontaneously when an intense optical
beam is passed through a fiber. It has been recently shown that
the Raman effect may induce Kerr optical frequency comb
generation [16]. So far, however, the formation of traveling
localized structures induced by the time-delayed response,
including the Raman effect, have neither been experimentally
determined nor theoretically predicted. We address here the
theoretical side of this problem in the regime devoid of any
modulational instability.

We show that the nonlocal delay induces traveling local-
ized states in an all-optical fiber cavity with a nonlocal delayed
response, modeled by the Raman effect. We demonstrate
numerically by using realistic parameters that this simple
optical device supports traveling LS. From the generalized
Lugiato-Lefever equation, we derive a generic bistable sys-
tem. We provide an analytical understanding of the generation
of traveling LS in terms of fronts interaction. We characterize
these moving structures by deriving a coupled equation for the
slow time evolution of their width and their speed. Numerical
simulations show a fairly good agreement with the theoretical
predictions.

The paper is organized as follows: In Sec. II, we present
a generalized Lugiato-Lefever model describing all-fiber res-
onators with Raman delayed nonlocal response, and we show
numerical evidence of moving localized structures. At the
end of this section, we provide possible experimental param-
eter values relevant to the observation of traveling localized
structures in an all-fiber cavity. In Sec. III, we present a
summary of the derivation of a generic bistable equation with
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FIG. 1. Traveling localized structures in an all-fiber cavity with
Raman response. (a) Schematic representation of an optical fiber ring
cavity. BS accounts for the beam splitter. (b) ζ − T maps of traveling
localized structures of Eq. (1) obtained for � = 4, τ0 = 5 fs, S1 =
2.202, (S2 = 2.223), fR = 0.18, τ1 = 12 fs, b2 = 1, and τ2 = 32 fs.
(c) The maximum peak intensity, (d) the width, and (e) the speed
of the traveling localized structures as a function of driven field
amplitude as obtained for the same parameter settings as in (b) except
for S and τ0.

the delayed nonlocal response. This reduction is valid close
to the critical point associated with bistability. In Sec. IV,
we show analytically and numerically that delayed nonlocal
response through front interaction allows for the stabilization
moving localized structures. Finally, in Sec. V, we conclude.

II. LUGIATO-LEFEVER EQUATION WITH RAMAN
DELAYED NONLOCAL RESPONSE

We consider all-fiber ring cavities coherently driven by
an injected light beam as shown in Fig. 1(a). The envelope
of the electric field within the cavity is described by the
Lugiato-Lefever equation [17] with the Raman delayed non-
local response [18]:

∂A

∂ζ
= S − (1 + i�)A − ib2

∂2A

∂T 2
+ i(1 − fR)|A|2A

+ i fRA
∫ T

−∞
h′

R(T − T ′)|A(T ′)|2dT ′. (1)

The slow time describing the evolution over the succes-
sive round trips is t = tRζ/κ . The time τ = τ0T with τ0 =√|β2L|/(2κ ) is the fast time in the reference frame mov-
ing with the group velocity of the light within the cavity.
The injected field is Ein =

√
κ3/(	Lθ )S, θ effective transmis-

sion of the beam splitter, the intracavity field is E (t, τ ) =√
κ/(	L)A(ζ , T ), and the normalized detuning is � = δ/κ .

The losses, the phase detuning, the chromatic dispersion
coefficient, the cavity length, the Kerr nonlinear coefficient,
and the cavity round-trip time are denoted by κ, δ, β2, L, 	,

and tR, respectively. The coefficient b2 is positive assuming
a normal dispersion regime (b2 accounts for the sign of the
value of β2, without loss of generality we can consider b2 =
1), and it can be scaled down to unity. Finally, the Raman
response is modeled by the function h′

R(τ ) = τ0hR(τ0τ ), and
fR measures the strength of the Raman response. In agreement
with experiments, a more accurate form of this function has
been proposed in Refs. [19,20]

hR(τ ) = τ 2
1 + τ 2

2

τ1τ
2
2

e−τ/τ2 sin (τ/τ1). (2)

Observe that in the limit τ1 → ∞ the Raman response is
of exponential nature hR(τ ) ∝ e−τ/τ2 . In the absence of the
Raman effect ( fR = 0), we recover, the well-known Lugiato-
Lefever equation (LLE), which constitutes the paradigmatic
model for the study of dissipative structures in nonlinear op-
tics [17] (see also recent reports on that model, Refs. [14,21–
23] and references therein). In the absence of Raman effect,
i.e., fR = 0, fronts [24], motionless LS connecting homo-
geneous solutions [25], moving LS due to the third-order
dispersion effect [26–28], spatiotemporal chaos [29,30], and
rogue waves [31,32] have been reported.

In spatially extended systems with local coupling such as
diffraction, the motion of localized structures is triggered by
a phase gradient [33–37], thermal effects [38–40], walk-off
[24,41], Ising-Bloch transition [42–44], frequency-selective
[45,46] feedback, or regular delayed feedback [47–50]. The
spontaneous motion of LS has been reported in lasers with a
saturable absorber [51–55].

Examples of traveling LS obtained from numerical simu-
lations of Eq. (1) are shown in Fig. 1(b). These structures are
asymmetric nonlinear objects with a pronounced oscillatory
tail [cf. the insets of Fig. 1(b)]. The characteristics of these
solutions such as width, maximum peak intensity, and speed
are strongly affected by the driving field amplitude and by the
group velocity dispersion through the characteristic time τ0,
as shown in Figs. 1(c)–1(d). From these figures, we see that
the existence domain of moving LS increased with τ0, and
hence with the group velocity dispersion. The maximum peak
intensity, as well as the width of moving LS, increased with
the injected field amplitude as shown in Figs. 1(c) and 1(d).
However, when increasing the injected field amplitude, the
speed of traveling solutions decreases as shown in Fig. 1(e).
We now provide possible experimental parameter values rel-
evant to the observation of traveling LS in all-fiber cavities.
The fiber ring cavity physical parameters are L = 10 m, β2 ∈
[10−6; 1.8 × 10−6] ps2/m, κ = 0.26, 	 = 0.01(W m)−1, δ =
1.04, fR = 0.18, τ1 = 12 fs, and τ2 = 32 fs.

III. DERIVATION OF A BISTABLE EQUATION WITH
RAMAN DELAYED NONLOCAL RESPONSE

The homogeneous steady-state solutions of Eq. (1) are
S2 = |As|2[1 + (� − |As|2)2]. These states remain unaltered
by the Raman effect. To show analytically and numerically
that nonlocal delayed response stabilizes traveling LS solu-
tions of Eq. (1), we restrict our analysis close to a second-
order critical point marking the onset of a hysteresis loop
where the inflection point (with infinite slope) of the inten-
sity response curve corresponds to the critical detuning for
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the onset of optical bistability given by � = �c ≡ √
3. At

this critical point, the coordinate of the intracavity field is
Ac = (3 − i

√
3)Sc/4 = Arc + iAic, where S2

c = 8
√

3/9 is the
value of the injected field at criticality. We introduce a small
parameter ε that measures the distance from the critical point
as � = �c(1 + δε2). We expand the injected field in terms
of ε as S = Sc[1 + 3δε2/4 + sε3]. Then we decompose the
electric field into its real and imaginary parts as A = Ar +
iAi and we expand Ar = Arc(1 + εu + ε2u1 + · · · ) and Ai =
Aic(1 + εv0 + ε2v1 + · · · ). We focus on the situation where
the strength of the Raman effect is weak, i.e., fR = ε2 f , and
seek corrections to the steady states at criticality that depend
on time and space through the slow variables t = ε2ζ and
τ = 31/4εT . The higher-order inhomogeneous problem yields
the generic bistable system with a delayed nonlocal response
(see the Appendix):

∂t u = η + μu − u3 + D∂ττ u +
∫ τ

−∞
χ (τ − τ ′)u(τ ′)dτ ′, (3)

where u = u(t, τ ) is a scalar order parameter. The parameters
η,μ, D, and t are t → 2t/3, η = 2s, μ = (3δ − 2 f )/2, and
D = 3b2/2. The delay kernel function χ (τ ) is

χ (τ ) = 2a f

3
e

−τ0τ

τ2 sin(τ0τ/τ1), (4)

with a = τ0(τ 2
1 + τ 2

2 )/τ1τ
2
2 . In the limit of large τ1 and τ ,

Eq. (3) can approximated by

∂t u = η + μu − u3 + D∂ττ u + γ

α

∫ τ

−∞
e−α(τ−τ ′ )u(τ ′)dτ ′,

(5)
where α = τ0/τ2 and γ = 2τ1 f /(3τ2) account for the char-
acteristic correlation time and the strength of the nonlocal
delayed response, respectively. The comparison in terms of
the width and the speed of moving localized structures is
provided in the Appendix. The results obtained from Eqs. (3)
and (5) are excellent when τ1 becomes large, as shown in
the Appendix. In the absence of nonlocal delay, i.e, γ = 0,
the above real order parameter resulting from a multiscale
analysis has been compared with the LLE theoretically [28]
and experimentally [56]. Equation (5) can be written as ∂t u =
−∂uV (u) + D∂ττ u, with V (u) = −ηu − μu2/2 + u4/4. For
η2 < μ3/9, the potential V (u) possesses two symmetric front
solutions which are motionless only at the Maxwell point
defined by η = 0, as shown by the dashed curve of Fig. 2(a).
The motionless front connecting the two symmetric states,
u0 = ±√

μ, is plotted in Fig. 2(b). For γ = 0, and at the
Maxwell point, Eq. (5) admits an exact nonlinear front solu-
tion given by u±(τ ) = ±√

μ tanh[
√

μ/2(τ − τp)], with τp ≡∫ ∞
−∞ τ∂τ u±(τ )dτ/

∫ ∞
−∞ ∂τ u±(τ )dτ as the front position. Far

from the Maxwell point η 	= 0 [solid line in Fig. 2(a)], the
front exhibits a motion with a constant speed as shown in
Fig. 2(c).

IV. TIME-DELAYED NONLOCAL RESPONSE INDUCES
TRAVELING LOCALIZED STATES: INTERACTION

BETWEEN FRONTS

When two opposite fronts are at some distance from each
other, they interact in an attractive or repulsive way depending

V(u)

u

u

u

u

Λ

d

(a) (b)

(c) (d)

FIG. 2. Fronts and traveling localized structure of Eq. (5).
(a) The potential V (u) obtained for γ = 0, μ = 1, η = 0 (dashed
line), and η = −0.03 (solid line). (b) The front solution at the
Maxwell point. Parameters are γ = 0, μ = 1, and η = 0. (c) The
front propagation obtained for γ = 0, μ = 1, and η = −0.03.
(d) The traveling localized state in the presence of the nonlocal
delayed response γ = −0.4, α = −0.1, μ = 1, and η = −0.03. All
profiles are obtained from the numerical integration of Eq. (5). The
insets in (b)–(d) account for t − τ maps. When used, D = 1.

on the sign of η. In the absence of nonlocal delay traveling
LS are excluded. However, when taking into account the
delayed nonlocal response, moving LS persists for the long-
time evolution. An example of such behavior is shown in
Fig. 2(d). The homogeneous equilibria of Eq. (5), u0, satisfies
η = −(μ + γ )u0 + u3

0. These solutions are altered by the
strength of time-delayed nonlocal response, i.e., γ . Let us
consider the superposition of two well-separated fronts as

u = u+(τ − � + d/2) + u−(τ − � − d/2) − √
μ + w,

(6)
where d = d (t ) and � = �(t ) account for the width and
centroid between well-separated fronts [d (t )

√
μ 
 1], as

indicated in Fig. 2(d). We add to the superposition of the
two fronts a small perturbation w = w(τ,�, d ) with w � 1.
Replacing the ansatz (6) in Eq. (5), linearizing in w, and
imposing the solvability condition after straightforward cal-
culations, we obtain

ḋ = η0 − C1e−√
2μd + C2e−αd , (7)

�̇ = C, (8)

where

η0 ≡ 4
√

μ

‖ψ‖2 η, with ‖ψ‖2 ≡
∫ ∞

−∞
(∂τ u+ − ∂τ u−)2dτ,

C1 ≡ 6μ
∫ ∞
−∞ e−√

2μτ ∂τ u+dτ

‖ψ‖2 ,

C2 ≡ 2
√

μ
∫ ∞
−∞ e−√|α||τ |∂τ u+dτ

‖ψ‖2 γ ,

C ≡ −2
√

μ
∫ ∞
−∞ e−α|τ |∂τ u+dτ∫ ∞

−∞(∂τ u+ + ∂τ u−)2dτ
γ .

v = ḋ and �̇ denote the speed and the time evolution of
the width, respectively. Equations (7) and (8) describe the
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FIG. 3. Fronts interaction. (a) Interaction force ḋ obtained by
plotting Eq. (7) as a function of the width d (solid curve). The dotted
curve obtained from numerical simulations of Eq. (5). Both curves
are obtained for η = −0.03, μ = 1.00, γ = −0.10, and α = 0.10.
The top and bottom insets correspond to the stable ds and unstable
du traveling localized state. (b) The width ds (top) and speed �̇

(bottom) of the traveling localized structure as a function of the
strength of delayed nonlocal response γ . The continuous (dashed)
curve corresponds to stable (unstable) traveling localized structure
obtained analytically from Eqs. (7) and (8). Dot points are obtained
from numerical simulations of Eq. (5). (c) Stability domain of
traveling localized structures in the plane (η, γ ) for different values
of the correlation time α. The color map corresponds to traveling
localized structures width. When used, D = 1.

interaction between fronts. The term η0, proportional to η,
describes the propagation of fronts due to the potential dif-
ference between the uniform states. The term proportional to
C1 > 0 describes the interaction between fronts originating
from the superposition of their tails. This contribution to
the fronts interaction is always attractive. The time-delayed
response adds a new contribution proportional to C2 to the
interaction between fronts. This term, however, can be ei-
ther attractive (γ < 0) or repulsive (γ > 0). Equation (7)
possesses two equilibria. The first one, du, corresponds to
traveling LS with a small width and is always unstable. The
other equilibrium with larger width, ds, is stable as shown in
Fig. 3(a). The profiles of traveling LS solutions are depicted
in the insets of this figure. From dynamical system theory,
these traveling LS appear thanks to a saddle-node bifurcation
as shown in Fig. 3(b). They are asymmetric solutions of
Eq. (5) [see also Fig. 2(d)]. This asymmetry is contained
in the adjustment function w, and it takes source from the
nonlocal delayed response. Figure 3(c) shows the stability
domain of traveling LS in the plane (η, γ ) by varying the
characteristic correlation time associated with the delayed
nonlocal response. The analytical results are compared with
numerical simulations of Eq. (5). This comparison involves
characteristics of traveling LS such as the width (d) and the
speed (�̇) as a function of the strength of nonlocal delay,
μ and η. In good agreement with the analytical predictions,

(a) (b) (c)

FIG. 4. Moving localized states of Eq. (3) with μ = 1.000, γ =
−0.100, D = 1, and α = 0.100 for different types of kernel:
(a) exponential χ (τ ) = e−ατ /α and η = −0.03, (b) Gaussian
χ (τ ) = αge−(αgτ )2

/
√

π and η = −0.005, and (c) Lorentzian χ (τ ) =
αl/π (1 + α2

l τ
2) and η = −0.27 with αg ≡ α/

√
ln 2 and αl ≡

α/ ln 2.

the width of traveling LS increases with the strength of all
parameter values except for η.

The stabilization mechanism of traveling LS is attributed to
nonlocal delayed response in the form of exponential. In addi-
tion, the same mechanism is applied to other types of kernels
such as Gaussian and Lorentzian. Indeed, three kernels of the
same width are considered: exponential χ (τ ) = e−ατ /α, the
Gaussian χ (τ ) = αge−αgτ

2
/
√

π , and the Lorentzian χ (τ ) =
αl/π (1 + α2

l τ
2), with αg ≡ α/

√
ln 2 and αl ≡ α/ ln 2. Fig-

ure 4 shows the moving localized structures obtained using ex-
ponential, Gaussian, and Lorentzian kernels. Numerical sim-
ulations are performed using a finite-difference with fourth-
order Runge-Kutta scheme. The periodic boundary conditions
are also used to generate moving localized structures. The
formation of moving localized structures is robust with the
change of the kernel. However, the kernel can change the
stability domain of moving localized structures.

V. CONCLUSIONS

We have shown analytically and numerically that nonlocal
delayed response in the form of the Raman effect stabilizes
traveling localized structures. We have considered a realistic
model describing all-fiber ring cavities where the nonlocal
delayed coupling corresponds to the noninstantaneous Raman
response. Close to the nascent bistability regime, we have
derived a simple generic bistable model with a nonlocal
delayed response. We have characterized these solutions by
computing their width and speed. Without a nonlocal re-
sponse, traveling localized solutions are excluded. Numerical
solutions of the governing equations are in close agreement
with analytical predictions. Finally, we have shown that the
stabilization mechanism reported here holds for other types
of kernels such as Gaussian and Lorentzian. These findings
strongly contrast with those of previous studies and open up
new possibilities for the observation of traveling localized
structures in practical systems.
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APPENDIX: DERIVATION OF A GENERIC BISTABLE
SYSTEM FROM LUGIATO-LEFEVER EQUATION WITH

RAMAN DELAYED NONLOCAL RESPONSE

The homogeneous steady-state solutions of Eq. (1) satisfy

S = [(1 + i�)As − i(1 − fR)As|As|2]

−i fRaAs|As|2
∫ T

−∞
H (T − T ′)dT ′, (A1)

with

a = τ0
(
τ 2

1 + τ 2
2

)
τ1τ

2
2

, and

H (T − T ′) = e− τ0 (T −T ′ )
τ2 sin

(
τ0

T − T ′

τ1

)
. (A2)

The integral appearing in the last term of Eq. (A1) has a simple
expression given by

∫ T

−∞
e− τ0 (T −T ′ )

τ2 sin

(
τ0

T − T ′

τ1

)
dT ′ = τ1τ

2
2

τ0
(
τ 2

1 + τ 2
2

) = 1

a
.

(A3)
The parameter a is a normalized coefficient of the kernel
h′

R(τ ). Note that this integral does not depend on the value
of T . When replacing the value of this integral in Eq. (A1),
we recover the well-known homogeneous steady state of the
LLE [17]:

S = [1 + i(� − |As|2)]As. (A4)

The homogeneous steady states remain unaltered by the Ra-
man effect and are independent of the parameter T and the
strength fR of the Raman nonlocal effect. Let us decompose
the electric field into its real and imaginary parts as A =
Ar + iAi. By replacing this relation in Eq. (A4), we obtain

S − Ars + �Ais − Ais
(
A2

rs + A2
is

) = 0, (A5)

−Ais − �Ars + Ars
(
A2

rs + A2
is

) = 0. (A6)

In terms of intensities, the homogeneous steady-state solu-
tions satisfy

S2 = |As|2[1 + (� − |As|2)2]. (A7)

There exists a critical point marking the onset of a hysteresis
loop when ∂S/∂|As| = ∂2S/∂|As|2 = 0. This corresponds to
the inflection point of the intensity response curve correspond-
ing to the critical detuning for the onset � = �c = √

3. The

coordinates of the critical point are

|Ac|2 = 2
√

3

3
, and S2

c = 8
√

3

9
. (A8)

From Eq. (A4), the intracavity field is

Ac = Arc + iAic, with Arc = 3Sc

4
and Aic = − i

√
3Sc

4
.

(A9)
The bistability condition � = �c = √

3 does not depend on
the Raman parameters. For � <

√
3 (� >

√
3) the trans-

mitted intensity |As|2 as a function of the input intensity S2

is monostable (bistable). To determine the behavior of the
homogeneous steady states close to criticality, we consider the
following expansion by defining a small parameter ε which
measures the distance from the critical point as

� = �c(1 + δ1ε + δε2). (A10)

We then expand also the input field amplitude, the real and the
imaginary parts of the electric field in terms of ε, as

S = Sc(1 + s1ε + s2ε
2 + sε3), (A11)

Ars = Arc(1 + εx0 + ε2x1 + ε3x2 + · · · ), (A12)

Ais = Aic(1 + εy0 + ε2y1 + ε3y2 + · · · ). (A13)

By inserting expansions Eqs. (A10)–(A13) into Eqs. (A5) and
(A6), we then equate the terms with the same powers of ε. At
the first order in ε, we get s1 = 0, δ1 = 0, and y0 = −x0. At
order ε2, we get

s2 = 3δ

4
, and x1 = −y1 + 3δ

2
− 2x2

0 . (A14)

At order ε3, we get x3
0 − 3δx0/2 − 2s = 0. When replacing

s1 = 0, s2 = 3δ/4 and δ1 = 0, we obtain

� = �c(1 + δε2), (A15)

S = Sc
(
1 + 3

4δε2 + sε3
)
. (A16)

To describe the nonlinear evolution of the LLE equation in the
vicinity of the critical point associated with bistability, we first
decompose the electric field into its real and imaginary parts
as A = Ar + iAi. The evolution equations for Ar and Ai are

∂Ar

∂ζ
= S − Ar + �Ai − (1 − fR)Ai

(
A2

r + A2
i

) − b2
∂2Ai

∂T 2

− fRAi

∫ T

−∞
h′

R(T − T ′)I (T ′)dT ′, (A17)

∂Ai

∂ζ
= −Ai − �Ar + (1 − fR)Ar

(
A2

r + A2
i

) + b2
∂2Ar

∂T 2

+ fRAr

∫ T

−∞
h′

R(T − T ′)I (T ′)dT ′, (A18)

with I (T ′) = Ar (T ′)2 + Ai(T ′)2. We then introduce the ex-
cess variables u and v with respect to criticality as Ars =
Arc(1 + εu) and Ais = Aic(1 + εv). Replacing these relations
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in Eqs. (A17) and (A18), and by assuming that the strength of
the delayed Raman effect is small, i.e., fR = f ε2, we obtain

∂u

∂ζ
=

(
v2

2
+ uv + u2

2

)
ε

+
(
−f u− f v

3
−δv + v3

6
+ vu2

2
+ 4s

3
− b2√

3

∂2v

∂T 2

)
ε2

+ a f ε2
∫ T

−∞
H (T ′ − T )

[
u(T ′) + v(T ′)

3

]
dT ′, (A19)

∂v

∂ζ
= −2u − 2v +

(
3δ − 9u2

2
− uv − v2

2

)
ε

+
(

f v+3 f u+3δu − uv2

2
− 3u3

2
+

√
3b2

∂2u

∂T 2

)
ε2

− 3 f ε2
∫ T

−∞
H (T ′ − T )

[
u(T ′) + v(T ′)

3

]
dT ′,

(A20)

with H (T ′ − T ) = e− τ0 (T ′−T )
τ2 sin (τ0

T −T ′
τ1

). We seek correc-
tions to the steady states at criticality that depends on time and
space through the slow variables t = ε2ζ and τ = 31/4εT . We
expand the variables u and v as

u = u0 + εu1 + ε2u2 + · · · , (A21)

v = v0 + εv1 + ε2v2 + · · · . (A22)

Replacing the above expansions in Eqs. (A19) and (A20), we
obtain at leading order in ε,

v0 = −u0. (A23)

At the next order, we obtain the following from Eq. (A20):
u2

0/2 + u0v0 + v2
0/2 = 0. This relation is automatically sat-

isfied with the previous result, i.e., v0 = −u0. Finally, for a
higher-order inhomogeneous problem, we obtain

∂u0

∂t
= 4s

3
+

(
δ − 2 f

3

)
u0 − 2

3
u3

0 + b2
∂2u0

∂τ 2

+ 2 f a

3

∫ τ

−∞
e− τ0 (τ−τ ′ )

τ2 u0(τ ′)dτ ′, (A24)

and with the following changes, t → 2t/3, η =
2s, μ = (3δ − 2 f )/2, D = 3b2/2, and χ (τ ) = 2 f ae− τ0τ

τ2

sin(τ0τ/τ1)/3, we finally obtain

∂t u = η + μu − u3 + D∂ττ u +
∫ τ

−∞
χ (τ − τ ′)u(τ ′)dτ ′.

(A25)
By assuming that the function h′

R(T ) evolves without oscil-
lation, which corresponds to using the limits of large τ1 and
τ , i.e., we neglect sin (τ/τ1), we obtain the generic bistable
model [Eq. (5)],

∂t u = η + μu − u3 + D∂ττ u + γ

α

∫ τ

−∞
eα(τ−τ ′ )u(τ ′)dτ ′,

(A26)

FIG. 5. Comparison between the width of moving localized
structures obtained from Eqs. (A26) and (A25). Squares indicate
the width obtained from Eq. (A26), and other symbols indicate the
width of moving localized structures of Eq. (A25). The parameters
are τ0 = 5 fs, τ2 = 32.2 fs (α = τ0/τ2 = 0.16), γ = .18, μ = 1.13,
and D = 1.

where α = τ0/τ2 and γ = 2τ0 f /(3τ2). In order to compare
both reduced equations (A25) and (A26), we performed
numerical simulations of both models. The results are sum-
marized in Figs. 5 and 6. From these figures we can see that
the width, as well as the speed, of moving are similar for large
τ1. Therefore, in this limit, both types of kernel have the same
behavior.

FIG. 6. Comparison between the speed of moving localized
structures obtained from Eqs. (A26) and (A25). Squares indicate
the speed obtained from Eq. (A26), and other symbols indicate the
speed of moving localized structures of Eq. (A25). The parameters
are τ0 = 5 fs, τ2 = 32.2 fs, (α = τ0/τ2 = 0.16), γ = .18, μ = 1.13,
and D = 1.
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