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Abstract Coupled oscillators can exhibit complex
spatiotemporal dynamics. Here, we study the propa-
gation of nonlinear waves into an unstable state in dis-
sipative coupled oscillators. To this, we consider the
dissipative Frenkel–Kontorova model, which accounts
for a chain of coupled pendulums or Josephson junc-
tions and coupling superconducting quantum interfer-
ence devices. As a function of the dissipation parame-
ter, the front that links the stable and unstable state is
characterized by having a transition from monotonous
to non-monotonous profile. In the conservative limit,
these traveling nonlinear waves are unstable as a con-
sequence of the energy released in the propagation.
Traveling waves into unstable states are peculiar of dis-
sipative coupling systems. When the coupling and the
dissipation parameter are increased, the average front
speed decreases. Based on an averaging method, we
analytically determine the front speed. Numerical sim-
ulations show a quite fair agreement with the theoret-
ical predictions. To show that our results are generic,
we analyze a chain of coupled logistic equations. This
model presents the predicted dynamics, opening the
door to investigate a wider class of systems.
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1 Introduction

Coupled oscillators are primordial to understanding the
propagation of waves in continuous and discrete media
[1]. An out-of-equilibrium coupled oscillators chain,
that is coupled oscillators under the influence of injec-
tion and dissipation of energy, shows a variety of differ-
ent phenomena [2–4] such as phase turbulence [2], syn-
chronization [3], defects turbulence [5], random occur-
rence of coherence events [6], defect-mediated turbu-
lence [7], spatiotemporal intermittency [8], quasiperi-
odicity in extended systems [9], chimera states [10,11],
and particle-type solutions [12]. Depending on the non-
linearity, the oscillators may have more than one equi-
librium, a phenomenon known as multistability. Due
to the inherent fluctuations of macroscopic multistable
systems, initial conditions, and physical imperfections,
the system can develop different extended states or
domains between the equilibria separated bywalls [13].
Thesewalls or interfaces are propagative because of the
relative stability properties between the equilibria and
curvature effects. Depending on the physical context,
which can range fromchemistry, biology to physics, the
interfaces are known as front interfaces, domain walls,
nonlinear waves, or wavefronts [13–20]. The propaga-
tion and dynamics of fronts depend on the nature of the
states that are being connected. Fronts between stable
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and unstable states have concentrated more research in
the literature [20]. Pioneering studies in fronts propa-
gation were performed in candle combustion by Fara-
day [17], gene propagation by Fisher [18], and popula-
tion dynamics by Kolmogorov et al. [19]. In honor of
these baseline studies, the fronts into unstable states
are usually called FKPP fronts (see [20] and refer-
ences therein). Initial conditions determine the speed
and shape of these nonlinear waves. For bounded initial
conditions, the FKPP front always propagates asymp-
toticallywith theminimumspeed [21]. Experimentally,
they have been observed in Taylor–Couette instabil-
ity [22], Rayleigh–Benard convection [23], pearling
and pinching on the propagating Rayleigh instabil-
ity [24], spinodal decomposition in polymer mixtures
[25], liquid crystal light valves with optical feedback
[26,27], and population dynamics [14]. Recently, we
have shown that front propagation into an unstable state
in coupled dissipative nonlinear oscillators occurs in an
oscillatory manner in the overdamped limit. Neverthe-
less, the front propagates in average with a distinctive
speed that was determined analytically in the asymp-
totic limit [28].

The present manuscript aims to investigate the prop-
agation of nonlinear waves into an unstable state in dis-
sipative coupled oscillators.We consider a prototypical
chain of oscillators, the dissipative Frenkel–Kontorova
model. This model accounts for several physical sys-
tems such as the movement of atoms in condensed
matter, magnetic chains, dynamics of coupled pendu-
lums, and phase dynamics between superconductors
(see the textbook [12] and references therein). As a
function of the dissipation parameter, the FKPP front is
characterized by having a transition from monotonous
to non-monotonous profile. A monotonous nonlinear
wave or front is characterized by a uniform increas-
ing or decreasing profile between equilibria. In con-
trast, the profile of a non-monotonous front exhibits
spatially damped oscillations toward the flank of the
stable state.

In the conservative limit, wavefronts are unstable.
Indeed, as a consequence of the released energy, the
front core emits evanescent waves. Eventually, this
radiation destabilizes the front solution. Hence, the
front propagation into an unstable state is peculiar
to dissipative coupled systems. Increasing the cou-
pling and dissipation parameter, the average front speed
decreases. Using an averaging method, we analytically
determine the mean speed of the front. Numerical sim-

ulations show a quite fair agreement with the theoret-
ical predictions. The observed front propagation is of
a general nature and can be suitable for a wide class
of systems. To extend our findings, we study a chain
of logistic models, showing good accordance with pre-
dicted phenomena.

The paper has the following structure: The model of
Frenkel–Kontorova is presented in Sect. 2. Likewise,
the free energy, extended equilibria, different front
solutions, and phase diagramof fronts of this systemare
characterized. The average front speed is characterized
by numerically and analytically in Sect. 3. The prop-
agation dynamics of the front is analyzed in Sect. 4.
Due to the general nature of the observed dynamics,
in Sect. 5, we consider a chain of logistic nonlinear-
ity that exhibits the same type of phenomenology. Our
conclusions and remarks are left to the final section.

2 The dissipative coupled oscillators model

2.1 The dissipative Frenkel–Kontorova model

Nonlinear oscillators such as the pendulumhave played
a primary role in understanding the complex dynam-
ics [29–32]. Let us consider a dimensionless chain of
dissipative coupled of pendulums,

θ̈i = ω2 sin θi − µθ̇i + κ (θi+1 − 2θi + θi−1) , (1)

where θi (t) is the angle formed by the pendulum and
the vertical axis in the i-position at time t , θi = 0
(θi = π) corresponds to upside-down (upright) posi-
tion of the pendulum (cf. Fig. 1a). Note that the origin
of θi is not the usual. This election is used to make
easier numerical and analytical calculations. All pen-
dulums are identical, i indexes the i-th pendulum, ω

is the natural frequency, µ accounts for the damping
coefficient, and κ stands for the coupling strength. Let
us introduce the distance dx between adjacent pen-
dulums. Based on the continuous limit, this distance
is related to the coupling strength by κ = 1/dx2.
This equation is also known as the Frenkel–Kontorova
model. This model has been widely used to describe
a chain of classical particles coupled to their nearest
neighbors and under the effect of the on-site substrate
potential in the context of crystal lattices. The model
also appears in a variety of contexts as incommensu-
rable phases in dielectrics materials, coupled identi-
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Fig. 1 Schematic representation of physical systems described
by the dissipative Frenkel–Kontorova model. a A chain of dis-
sipative coupled pendula. θi (t) is the angle formed by the pen-
dulum and the vertical axis in the i-position at time t , θi = 0
(θi = π) corresponds to upside-down (upright) position of pen-
dulum. b Coupling Josephson junctions. Φi accounts for the
phase difference of adjacent superconductors. c Coupling super-
conducting quantum interference devices (SQUID),Φi accounts
for the magnetic flux of i-th superconducting quantum device.
The gray rings and green elements account for the insulators and
superconductors, respectively. (Color figure online)

cal Josephson junctions, and coupling superconducting
quantum interference devices (SQUIDS, see [12] and
references therein).

Figure 1b and c shows schematic representations of
a chain of coupled Josephson junctions and coupled
SQUIDS. In these latter cases, Φi accounts, respec-
tively, for the phase difference between the wave func-
tion of each superconductor in the i-th junction and the
magnetic flux over i-th SQUIDS [33]. With the out-
break of new superconductor oscillators, tomicrometer
and nanometric scale, Josephson junction has acquired
relevance [33]. These devices have played a fundamen-
tal role in detecting smallmagnetic fields in prospecting
for mineral deposits, magnetoencephalography, and
cosmic waves (see [34] and references therein). Hence,
the deep understanding of the model Eq. (1) may allow
having fresh applications in diverse physical contexts.

2.2 Front dynamics

The dynamics of dissipative coupled pendulums, Eq. 1,
is characterized by minimizing the free energy

F[θi , θ̇i ] ≡
N∑

i=0

[
θ̇2i
2

+ ω2 cos θi + κ
(θi+1 − θi )

2

2

]

,

(2)

where the evolution is given by

µθ̇i = −δF
δθi

. (3)

The trivial equilibria of this extended system are
the upside-down (θi = 0, unstable state) and upright
(θi = π , stable state) position of pendulum. Recently,
we have shown that this chain of coupled oscillators
Eq. (1) in the overdamping limit (µ ∼ O(1), µ ≥ 2)
has propagative solutions that connect these two equi-
libria [28]. This nonlinearwavefrontwas calledπ -kink.
The physical origin of this propagation is that each time
a pendulum decays from the unstable to the stable state
kinetic energy releases. This energy is used by the pen-
dulum chain as fuel for the front propagation. In this
regime, the fronts are characterized by monotonously
connecting the equilibria. Figure 2a shows the typical
profile and spatiotemporal evolution of the front solu-
tion obtained from the numerical solutions of model,
Eq. (1), with damping µ = 1.75. All numerical simu-
lations presented in the manuscript were done using
finite differences method with Runge–Kutta order-4
algorithm. It is noteworthy that discrete coupled sys-
tems that exhibit bistability also present fronts between
stable states [35].

To characterize the dynamics of the front, we intro-
duce the auxiliary function θ(x, t) and the front posi-
tion P(t). θ(x, t) is the interpolation function of the
angle in each oscillator θi (t). P(t) denotes the front
position such as θ(x = P, t) ≡ π/2 which is fulfilled
once starting from the unstable state. The point P(t)
does not necessarily correspond to an i-oscillator (a
point on the grid). The vicinity of the front position
P(t) is known as the core of the front. Figure 2b and
c shows the temporal evolution of the front position
and speed for different strength of coupling κ between
oscillators. From Fig. 2d, we infer that non-harmonic
periodic oscillations characterize the front propagation
in dissipative coupled oscillators as is reported in [28].
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(a)

(d) (e) (f)

(b) (c)

Fig. 2 Front solutions of the Frenkel–Kontorova model Eq. (1).
Spatiotemporal evolution and profile of front solution with large
(a) and small damping (d). Parameters areω = 1.0, κ = 0.0625,
a µ = 1.75, and d µ = 0.05. Temporal evolution of the front

position for different coupling strengths κ with large (b) and
small damping (e). The speed of front position for different
strengths of coupling between oscillators with large (c) and small
damping (f). (Color figure online)

When the dissipation decreases, the previous sce-
nario changes drastically. The front exhibits a bifur-
cation characterized by the emergence of spatially
damped oscillations toward the flank of the stable state.
Figure 2d displays the front spatiotemporal evolution
and typical profile obtained from the numerical simu-
lations of Eq. (1) with small dampingµ ≪ 1. This type
of spatial oscillations has been reported for a reaction–
diffusion equation with inertia [36]. Experimentally,
front propagation with spatially damping oscillations
in intracellular calciumwaveswas observed [37]. Like-
wise, fronts between stable states exhibit the same
type of transition [38]. The temporal evolution of the
front position and speed for small values of the damp-
ing coefficient is alike as the dissipative case with
µ ≥ 2. However, Fig. 2e and f reveals that the oscillat-
ing behavior increases in amplitude and frequency for
µ ≪ 1.

Since it is a non-local bifurcation, the analyti-
cal study of the profile transition is a difficult task.

However, numerically we are able to characterize the
transition between monotonous and non-monotonous
fronts. Figure 3 shows the bifurcation diagram as a
function of the damping and the coupling strength
parameter. For large dissipation, monotonous fronts
are observed. When the dissipation decreases, non-
monotonous fronts emerge. The Γ1 curve accounts for
the transition between these two types of fronts. This
transition is supercritical. Indeed, when they appear,
the spatially damped oscillations are characterized by
having a small amplitude which increases as the dissi-
pation decreases. By further decreasing the dissipation,
fronts emit waves from their cores (see Fig. 4).

The emission of waves is because when the dissipa-
tion µ is reduced, it must release the energy by means
of waves. Figure 4 shows a non-monotonous front with
linear and nonlinear wave radiations. The waves close
to the core are nonlinear and become linear as they
travel away from it, (cf. Fig. 4). Further diminishing the
dissipation, the nonlinearwaves start to collide between
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Fig. 3 Bifurcation diagram of fronts of model Eq. (1) by ω = 1
in the space of the damping and the coupling strength param-
eter. The gray region shows where the non-monotonous fronts
are observed. The lower region is characterized by exhibiting
monotonous fronts. Γ1 accounts for the transition curve between
monotonous and non-monotonous fronts. The upper zone is a
region where the fronts between upside-down and upright state
are not persistent. In this zone, the fronts are observed as a tran-
sient dynamical behavior. Γ2 is the separatrix curve between
non-monotonous and not persistent fronts. The insets account
for the typical fronts observed in the respective zones. (Color
figure online)

(a)

(b)

Fig. 4 Non-monotonous front solution of model Eq. (1) by ω =
1, κ = 1, and µ = 0.002. a Instantaneous profile of the front
solution. b Spatiotemporal diagram of the non-monotonous front
solution. (Color figure online)

them, generating localized waves of high amplitude,
destabilizing the front solution. Figure 3 shows the
transition curveΓ2, between non-monotonous and non-
persistent fronts. This curve was computed using the
following criterion: If the front profile overcomes 2π ,
then the front is considered not persistent. A similar
phenomenon has been reported in shock waves in the
context of the discrete nonlinear Schrödinger equation
with internal losses [39].

In brief, in the conservative limit (µ → 0), the trav-
eling nonlinear waves connecting a uniform stable and
unstable state are unstable, as a consequence of the
energy released in the front propagation. Therefore, the
front propagation into an unstable state is peculiar to
dissipative coupled systems.

3 Characterization of front speed

The dissipative Frenkel–Kontorova equation (1) pre-
sents a traveling wave into an unstable state. These
fronts are propagating with a non-harmonic oscillation
speed. To characterize the front speed, let us introduce
the average speed

⟨v⟩ = 1
T

∫ T

0
Ṗ(t)dt, (4)

where T is the oscillation period of the front speed.
Numerically we have determined the period T and cal-
culated the average front speed ⟨v⟩. Figure 5 shows the
average front speed ⟨v⟩ as a function of the dissipation
µ and the coupling strength κ . From this figure, we can
infer that as the dissipation and intensity of coupling
between oscillators increase, the average front speed
decreases. Indeed, when the dissipation increases the
system has less energy available to inject it to the front
propagation.On the other hand, increasing the coupling
is equivalent to interpreting that the distance between
oscillators decreases since κ is inversely proportional
to dx2. Then, one expects the front speed to decrease.

3.1 Analytical determination of the average front
speed

As we have mentioned, the initial conditions deter-
mine the front shape and the speed of propagation of a
front into unstable states [20]. Localized disturbances
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(a) (b)

(d)(c)

Fig. 5 Average front minimum speed ⟨v⟩min as a function of the
dissipation µ and the coupling strength κ of model Eq. (1) by
ω = 1. a Numerical and b analytical surface plot of the average
front speed in theµ–κ parameters space.Analytical average front
speed ⟨v⟩min obtained from formulas (7) and (8) as a function of
the dissipationµ and the coupling strength κ . cMinimal average
front speed as a function of the coupling strength κ for different
values of the dissipation. d ⟨v⟩min as a function of µ for different
values of κ . The points are obtained by numerical simulations
of Eq. (1). The solid curves are obtained using formulas (7) and
(8). (Color figure online)

are responsible, after a transient period, of the appear-
ance of two counter-propagative fronts, which propa-
gate with the minimum speed. Namely, any other dis-
turbance at most can generate fronts that are spread
faster or equal to the minimum speed. The determina-
tion of theminimum speed has attracted the attention of
the scientific community since the dawn of the obser-
vation of fronts propagation. From the dynamical sys-
tems theory, the fronts correspond to homoclinic curves
in the co-mobile system [20]. Hence, determining the
front solution and its speed is a problem of non-local
bifurcations. Unexpectedly, for systems with weakly
nonlinear dynamics, theminimal front speed is ruled by
the linear dynamics around the unstable state (marginal
criterion) [19,20]. These types of nonlinear waves are
called pulled fronts. Fronts, in which marginal cri-
terium does not establish the minimal speed, are called
pushed fronts. In the case of pushed fronts, the mini-
mum speed is governed by the nonlinear terms (non-
linear criterion) [20]. A general characterization of the
speed of pushed fronts is an open problem, and only
in particular cases, there are analytical expressions. In
the pioneering work of Kolmogorov et al. [19], they
established when the marginal criterion governs the

dynamics. Most precisely, they showed that the linear
rate evolution around the unstable state, extended in the
whole phase space, is greater than the dynamics of the
system (weak nonlinearity).

To determine the front speed, we will use the strat-
egy proposed in Ref. [28]. This strategy is based on
proposing an ansatz for the profile of the front asymp-
totically around the unstable state. Because the front
oscillates as it propagates, we consider the following
ansatz for the front tail

θi (t) = Ae(αt−2βi) [1+ f ω
κ;i (t)

]
, (5)

where the amplitude A is a small constant that charac-
terizes the shape of the front tail (A ≪ 1), the index
i is a positive and large integer number, α ≡ q⟨v⟩,
β ≡ q/2

√
κ , and q are parameters. α and β account

for the front speed and the rate of space decay, respec-
tively. β is usually called steepness. ω is the frequency
of front propagation. f ω

κ;i (t) is a periodic function of
frequency ω in the i-th position of the chain, which
describes the oscillatory behavior of the propagation.
Based on the observed dynamics in numerical simu-
lations, we impose f ω

κ;i (t) → 0 when i/
√

κ → ∞.
Introducing the above ansatz in Eq. (1) and taking into
account only the linear leading terms, we obtain

θ̈i A−1e−(αt−2βi) = α2 [
1+ f ω

κ;i
]
+ 2α ḟ ω

κ;i + f̈ ω
κ;i

= ω2 [
1+ f ω

κ;i
]
− µ

[
α

[
1+ f ω

κ;i
]

+ ḟ ω
κ;i (t)

]
+ 4κ sinh2(β)

+ κ
(
e−2β f ω

κ;i+1 − 2 f ω
κ;i + e2β f ω

κ;i−1
)
.

(6)

where we have divided by the factor A−1e−(αt−2iβ).
Integrating this expression in a normalized period T =
2π/ω and using the fact that ⟨ f ω

κ;i (t)⟩ = ⟨ ḟ ω
κ;i (t)⟩ =

⟨ f̈ ω
κ;i (t)⟩ = 0, after straightforward calculations and

using the definition of α and q, we obtain

⟨v⟩ = − µ

4β
√

κ
+ 1

2β
√

κ

√
µ2

4
+ ω2 + 4κ sinh2(β).

(7)

This formula stands for the average front speed as
a function of the steepness β. Figure 6 displays the
average front speed ⟨v⟩ as a function of the steepness β

for different values of coupling strength κ . This average
front speed is bounded frombelowby aminimumspeed
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Fig. 6 Analytical front speed ⟨v⟩ as a function of the steepness
β, obtained from formula (7) for different values of the coupling
strength κ with µ = 2. (Color figure online)

⟨v⟩min. To derive the minimal mean front speed ⟨v⟩min,
we differentiate the above speed with respect to β and
imposing that is equal to zero, one gets

ω2
(
µ2

4
+ ω2

)
+ 16κ2 sinh2 βc [sinh βc − βc cosh βc]2

= 4
[(

µ2

4
+ ω2

)
βc sinh 2βc −

(
µ2

4
+ 2ω2

)
sinh2 βc

]
κ.

(8)

This expression gives us a relation between the crit-
ical steepness βc and the coupling parameter κ . From
Eq. (8), βc is determined as a function of κ and µ

[βc(κ, µ)], which has a complicated form. Using this
expression in Eq. (7), we obtain ⟨v⟩min(κ, µ). Figure 5
shows ⟨v⟩min as a function of κ and µ. Using expres-
sion (8) in formula (7), we obtain ⟨v⟩min for the dissi-
pative Frenkel–Kontorova model, Eq. 1. Note that this
analytical result has a quite fair agreement with the
numerical simulations as it is shown in Fig. 5. There-
fore, this asymptotic procedure is a suitable method
to characterize the mean properties of front propaga-
tion. Indeed, themarginal criterion determines themin-
imum average front speed of the dissipative Frenkel–
Kontorova model, Eq. 1. It is important to note that
the previous method is valid for monotonous or non-
monotonous fronts since one only considers the asymp-
totic shape of the front toward the unstable state.

4 Waving dynamics of the front propagation

In the continuous limit, the fronts propagate as a rigid
solid, that is, each front point moves with the same
speed. Unexpectedly, when one considers coupled
oscillators, different parts of the front propagate oscil-
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Fig. 7 Waving dynamics of the front propagation of the dissipa-
tive Frenkel–Kontorova equation (1) by ω = 1 and κ = 0.0625.
Temporal evolution of different points of themonotonous (a) and
the non-monotonous (b) fronts. The right panels show the profile
of the front at a given time and illustrate the values of the front
θu = 9π/10, θp = π/2, and θd = π/5 considered to determine
the positions Pu , P , and Pd . (Color figure online)

latingwith the same frequency butwith different ampli-
tudes [28], describing a waving dynamics. To charac-
terize this waving dynamics, we study the dynamics
of two additional front points Pu(t) and Pd(t) located
above and below of P(t), where θ(x = Pu, t) ≡ θu
and θ(x = Pd , t) ≡ θd are fulfilled once starting from
the unstable state, with θu and θd given arbitrarily. Fig-
ure 7a shows the temporal evolution of Pu(t), Pd(t)
and P(t). Note that they oscillate in out of phase and
with the same frequency. The amplitudes of oscillation
are different depending on the position. In contrast, the
non-monotonous front displays a different configura-
tion. The oscillations are in phase and with the same
frequency, see Fig. 7b.

Figure 8a illustrates the spatiotemporal evolution
of the front. We can notice that most of the waving
dynamical behavior occurs around the front core. Fig-
ure 8b indicates the amplitude of different points on
the front. This waving dynamic behavior is observed
for monotonous and non-monotonous fronts.
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1398 K. Alfaro-Bittner et al.

(a) (b)

Fig. 8 Waving dynamics on front propagation in the dissipative
Frenkel–Kontorova equation (1) by ω = 1, µ = 2, and κ =
0.04. a Spatiotemporal evolution. b Oscillation amplitude η of
different front points. (Color figure online)

Fig. 9 Characterization of the dynamics of the front position
of model Eq. (1) with ω = 1. a Surface plot of the period of
front position T (κ, µ) as a function of κ–µ space. b Slope of
the front position as a function of the dissipation µ for different
values of coupling strength κ . c Slope of the front position as a
function coupling strengthκ for different values of the dissipation
µ. (Color figure online)

From the evolution of the front position, one can
characterize its period T and its slope m. As the cou-
pling strength κ increases, the period T decreases. This
is due to the nucleation barrier of the Peierls–Nabarro
potential increasing with κ [12,28]. On the contrary,
as the dissipation µ increases, the period increases.
Indeed, as the dissipation grows, the system has less
available energy. Thus, the oscillation decreases in fre-
quency. These results are summarized in Fig. 9a.

Similarly,we characterize the slope of the front posi-
tion m as a function of κ and µ. Figure 9b and c shows

the slope of the front position on κ–µ space. Around
µ ∼ 10−2, the non-monotonous front starts to desta-
bilize, hindering an appropriate characterization of the
slope for smaller values of µ. The vertical dashed line
in Fig. 9b indicates qualitatively the limit. For larger
values of µ, the slope is well defined and it increases
with µ and decreases with κ (Fig. 9b and c). Based on
the result of Ref. [40], we provide a qualitative expla-
nation. In the continuous limit, the slope m is related
to the front speed ⟨v⟩ [40]. From expression (7) it is
observed that the slope grows as a function of µ, fol-
lowing a square root function and saturating to a given
value, proportional to couplingκ . On the other hand, for
κ close to zero, the slope of the front must grow expo-
nentially. While for an increasing κ , it must decrease.
Figure 9b and c shows a good agreement between this
interpretation and numerical measurements.

5 Robust dynamics in dissipative coupling chains

The dynamics presented in the previous sections must
be generic when is considered multistable coupled sys-
tems. Aminimalmodel that contains the above ingredi-
ents is a dissipative coupling system with logistic non-
linearity, which reads

üi + µu̇i = ui (1 − ui )+ κ(ui+1 − 2ui + ui−1), (9)

where ui is an order parameter that describes, for exam-
ple, the dynamics around a transcritical instability [41],
µ is the damping coefficient, and κ accounts for the
coupling strength. Models with nonlinear logistic have
been used to describe the dynamics of populations in
ecology, chemical reactions, among others.

The model Eq. (9) has two equilibria ui = 0 and
ui = 1, which are unstable and stable states, respec-
tively. Hence, one expects to observe nonlinear trav-
eling wave solutions between these equilibria. Fig-
ure 10 shows front solutions exhibited by Eq. (9).
For small and large dissipation, monotonous and non-
monotonous fronts are observed. Their oscillatory
nature characterizes the propagation of these fronts. As
a function of the dissipation and the coupling strength,
the front speed exhibits similar behavior to those pre-
sented by the Frenkel–Kontorovamodel Eq. (1). There-
fore, the dynamics of fronts presented by these coupling
systems is generic and is not particular to the models
considered.
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(a) (b) (c)

(d) (e) (f)

Fig. 10 Nonlinear travelingwave solutions of a chainwith logis-
tics nonlinearity model Eq. (9). Spatiotemporal evolution and
profile of front solution ui (t) with small and large damping, and
κ = 0.0625, aµ = 2.0, and dµ = 0.007. Temporal evolution of

the front position for different coupling strengths κ with large (b)
and small damping (e). The speed of front position for different
values of the coupling strength with large (c) and small damping
(f). (Color figure online)

5.1 Analytical characterization of the front speed

To understand more deeply the propagation of fronts,
we can consider the overdamped limit (large dissi-
pation, µ ≫ 1) of model Eq. (9). Namely, one can
neglect the inertia of model Eq. (9) and renormalize the
timescale. In this limit, analytical calculations can be
made and compared with the numerical observations.
Using the same strategy used in Sect. 3 to determine
the front speed, we use the ansatz

ui (t) = Ue(αt−2βi) [1+ f ω
κ;i (t)

]
, i ≫ 1, (10)

whereU is a small constant that characterizes the shape
of the front tail (U ≪ 1), α ≡ q⟨v⟩, and β ≡ q/2

√
κ ,

respectively, account for the front speed and the steep-
ness, ω is the frequency of front propagation, and
f ω
κ;i (t) is a periodic function of frequency ω in the i-th

position of the chain.
Introducing the above ansatz (10) in Eq. (9), consid-

ering the linear leading terms in U , and averaging in

a period of the front propagation, after straightforward
calculations, we get

⟨v⟩ = 1
2
√

κβ
+ 2

√
κβ

(
sinh β

β

)2

. (11)

Note that expression (11) can be obtained alternatively
fromEq. (7) in the overdamped limitµ ≫ 1 and rescal-
ing time.

The front speed as a function of the steepness is also
bounded by below, that is, there is a single minimum
front speed. Figure 11 illustrates the front speed ⟨v⟩ as a
function of the steepness 2

√
κβ. In the limit that 2

√
κβ

tends to zero, one can recover the standard formula
⟨v⟩ = 1/2

√
κβ + 2

√
κβ [42].

To minimize the average front speed, we differen-
tiate the above speed Eq. (11) with respect to β and
imposing that is equal to zero, one gets

κ−1 = 4 sinh βc(2βc cosh βc − sinh βc), (12)
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Fig. 11 Analytical front speed ⟨v⟩ as function of the steepness
β, obtained from formula (11) for different values of the coupling
strength κ . (Color figure online)

where βc(κ) stands for the steepness of the front with
a minimal speed. Using a similar analysis performed
for the Frenkel–Kontorova model Eq. (1), the mini-
mum average speed is obtained using expression (12)
in formula (11). However, this expression is an implicit
elaborated formula of the coupling strength κ . In the
case that the strength is large enough, κ ≫ 1 (βc ≪ 1),
we can use the expression

κ ≈1/4β2
c (1+ β2

c ). (13)

Figure 12a shows a comparison between numerical
measurements, analytical results, and formula (13). For
large coupling strength, the above approximation ade-
quately describes the front propagation (see Fig. 12a).
Using expression (13), one can find the following min-
imum averaged front speed

⟨v⟩min ≈v0

⎡

⎢⎢⎣1+ 4κ sinh2

⎛

⎜⎜⎝
1

√
2κ−1

(
1+

√
1+ κ−1

)

⎞

⎟⎟⎠

⎤

⎥⎥⎦ ,

(14)

where v0 ≡
√
1+

√
1+ κ−1/2. Figure 12b shows

⟨v⟩min as a function of the coupling strength κ and a
comparison between numerical and analytical results.
Numerical and analytical results present an excellent
agreement. For large coupling strength, approach (14)
adequately accounts for the front propagation (see
Fig. 12b). Note that the overdamping limit of the dis-
sipative Frenkel–Kontorova model can be used with
the same strategy to determine the minimum speed of
Eq. (9).

v

(a)

4.0

3.0

2.0

0 4 8

(b)
0 κ−1 1284

0.3

0.7

1.1

κ−1

Fig. 12 Minimal average front speed of the chain with logis-
tics nonlinearity model Eq. (9). a Steepness β as a function
of the square root of the coupling strength κ , obtained from
formula (12). Points are obtained by numerical simulations of
model Eq. (9) by µ = 1. The continuous and dashed curves are
obtained using formulas (12) and (13), respectively. b Minimal
average front speed as a function of the square root of the cou-
pling strength κ . Points are obtained by numerical simulations
of model Eq. (9) by µ = 1. The continuous curve is acquired
using formulas (11) and (12). The dashed curve is obtained by
considered formula (14). The painted area emphasizes the region
where the approach (12) adequately describes the front propaga-
tion. (Color figure online)

6 Conclusions and remarks

Dissipative nonlinear coupled oscillators can exhibit
coexistence of different extended states. Small and
localized perturbations of a steady state are charac-
terized by exhibiting dispersive damped waves. This
scenario changes drastically when one disturbs an
extended unstable state. Due to the constant release
of energy, if the dissipation is large enough, two non-
linear counter-propagating waves are observed [43].
Thesewaves propagate froma stable state into an unsta-
ble one. We have investigated this phenomenon con-
sidering a prototypical chain of oscillators, the dis-
sipative Frenkel–Kontorova model. We have charac-
terized a traveling wave solution as a function of the
dissipation and coupling strength parameter. These
nonlinear waves have a transition from monotonous
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to non-monotonous profile. A monotonous and non-
monotonous profile has been observed experimentally
in several dissipative systems [20] and intracellular
calcium waves [37], respectively. We have revealed
the phase diagram of traveling nonlinear waves. In
the conservative limit, the front solutions are unstable,
as a consequence of the energy released in the front
propagation. This instability is driven by the interac-
tion of localized nonlinear waves. Therefore, the front
propagation into an unstable state is a peculiar phe-
nomenon of dissipative coupling systems. Due to the
discrete nature of coupling systems, the front prop-
agation presents a waving dynamics. When the cou-
pling and dissipation parameters increase, the average
front speed decreases. Using the averaging method, we
have analytically determined the average front speed.
Numerical simulations show a quite fair agreement
with the theoretical predictions. The studied dynamics
of front propagation can be observed in a wide class
of systems as a chain of logistic models. Besides, the
methodology presented is suitable for other physical
systems. The chain of logistic model presents the same
dynamics observed in the Frenkel–Kontorova chain
[28].

SQUIDS opens the possibility of considering new
configurations of coupled oscillators and fresh appli-
cations in the detection of small magnetic fields. The
characterization of traveling waves in coupled oscilla-
tors in two dimensions is an unsolved problem. A study
in this direction is in progress.
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