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Swift-Hohenberg equation with third-order dispersion for optical fiber resonators
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We investigate the dynamics of a ring cavity made of photonic crystal fiber and driven by a coherent
beam working near to the resonant frequency of the cavity. By means of a multiple-scale reduction of the
Lugiato-Lefever equation with high-order dispersion, we show that the dynamics of this optical device, when
operating close to the critical point associated with bistability, is captured by a real order parameter equation in
the form of a generalized Swift-Hohenberg equation. A Swift-Hohenberg equation has been derived for several
areas of nonlinear science such as chemistry, biology, ecology, optics, and laser physics. However, the peculiarity
of the obtained generalized Swift-Hohenberg equation for photonic crystal fiber resonators is that it possesses
a third-order dispersion. Based on a weakly nonlinear analysis in the vicinity of the modulational instability
threshold, we characterize the motion of dissipative structures by estimating their propagation speed. Finally, we
numerically investigate the formation of moving temporal localized structures often called cavity solitons.
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I. INTRODUCTION

The control of linear and nonlinear properties of photonic
crystal fibers (PCF) has led to several applications in opto-
electronics, sensing, and laser science (see recent overview
on this issue [1] and references therein). The improvement
of the fabrication capabilities of high-quality integrated mi-
crostructured resonators such as ring, microring, microdisk,
or Fabry-Pérot cavities are drawing considerable attention
from both fundamental and applied points of view. Among
those, an important class is the photonic crystal fiber res-
onators where high-order chromatic dispersion could play an
important role in the dynamics [2,3], particularly in relation
with supercontinuum generation [4,5]. On the other hand,
driven optical microcavities are widely used for the generation
of optical frequency combs. They can be modeled by the
Lugiato-Lefever equation [6] that possesses solutions in the
form of localized structures (LSs) [7,8]. Optical frequency
combs generated in high-Q Kerr resonators [9] are in fact
the spectral content of the stable temporal pattern occurring
in the cavity. Among the possible dissipative structures, the
temporal localized structures often called dissipative solitons
appear in the form of a stable single pulse on top of a low
background. They have been theoretically predicted in [7] and
experimentally observed in [8]. The link between temporal
localized structures and Kerr comb generation in high-Q
resonators has motivated further interest in this issue.

When inserting a photonic crystal fiber in a cavity which
is driven by a continuous beam, the light inside the fiber is
coherently superimposed with the input beam at each round
trip. The nonlinear Schrödinger equation supplemented by
the cavity boundary condition leads to a generalized Lugiato-
Lefever equation (LLE) [10]. The inclusion of the fourth-
order dispersion allows the modulational instability (MI) to
have a finite domain of existence delimited by two pump
power values [10], as well as to stabilize dark temporal
LSs [11–13]. In the absence of fourth-order dispersion, with
only second or/and third orders of dispersion, front interac-
tion leads to the formation of moving LS in a regime far
from any modulational instability [14]. An analytical study
of the interaction between LSs under the action of Cherenkov
radiation or dispersive waves has been conducted in [15]. In
addition, it has been shown that the interference between the
dispersive waves emitted by the two interacting LSs produces
an oscillating pattern responsible for the stabilization of the
bound states. A derivation of equations governing the time
evolution of the position of two well-separated LSs interacting
weakly via their exponentially decaying tails has been pre-
sented in [15].

In this paper, we derive a Swift-Hohenberg equation (SHE)
with third-order dispersion describing the evolution of pulses
propagating in a photonic crystal fiber resonator. This reduc-
tion is performed for small-frequency modes and close to a
second-order critical point marking the onset of a hysteresis
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loop (nascent bistability). The dimensionless generalized real
SHE reads

∂φ

∂t
= y + cφ − φ3 + β

∂2φ

∂τ 2
+ β ′ ∂

3φ

∂τ 3
− ∂4φ

∂τ 4
. (1)

Here φ(t, τ ) is the deviation of the electric field from its value
at the onset of bistability. The variable φ is a scalar real field.
The time variable t corresponds to the slow evolution of φ

over successive round trips. τ accounts for the fast dynamics
that describes how the electric-field envelope changes along
the fiber. The parameters y and c are deviations of the ampli-
tude of the injected field and the cavity detuning from their
critical values at the onset of the modulational instability,
respectively. The coefficients β and β ′ account for second-
and third-order chromatic dispersion, respectively. Without
loss of generality, we rescale the fourth-order dispersion
coefficient and the cubic coefficient to unity. The third and
the fourth orders of dispersion are usually neglected in fiber
cavity models [6]. However, the dispersion characteristics
of photonic crystal resonators impose to consider high-order
dispersion [16–18].

The paper is organized as follows. After an introduction,
we present the Lugiato-Lefever equation with high-order dis-
persion, and we perform a linear stability analysis of the
homogeneous steady states in Sec. II. In Sec. III, we derive a
generalized real Swift-Hohenberg equation. A weakly nonlin-
ear analysis of the real Swift-Hohenberg equation is presented
in Sec. IV. In this section, we also present a derivation of their
linear and nonlinear velocities. Moving temporal localized
structures with a single peak or more peaks are demonstrated
in Sec. V. Section VI presents a comparison between the
generalized LLE and the derived SHE models. In the limit of
small third-order dispersion, an analytical expression for the
speed of the localized structure is provided in Sec. VII. We
conclude in Sec. VIII.

II. LUGIATO-LEFEVER EQUATION WITH
HIGHER-ORDER DISPERSIONS

We consider an optical cavity with a length L filled with a
photonic crystal fiber, and synchronously pumped by a coher-
ent injected beam, as described in Fig. 1. A continuous wave
Ei is injected into the cavity by means of a beam splitter. The
field E propagates inside the fiber and experiences dispersion,
Kerr effect, and dissipation. We neglect the Raman scattering
effect by assuming that the Kerr time response of fiber is
instantaneous. Indeed, when the pulse width is larger than 1
ps, the Raman response can be neglected as discussed in [19].

FIG. 1. Schematic representation of a ring cavity filled with a
photonic crystal fiber (PCF) and driven by a coherent beam.

The linear phase shift accumulated during one cavity round
trip is denoted by �0. The intensity mirror transmissivity
(reflectivity) is T 2 (R2). The second-, third-, and fourth-order
dispersion terms are, respectively, β2,3,4. τ is the time in the
reference frame moving at the group velocity of the light
describing the fast evolution of the field envelope within
the cavity; τ ≡ τ (T 2/L)1/2. The time t describes the slow
evolution of the field envelope between two consecutive cavity
round trips and is scaled such that the decay rate is unity, i.e.,
t ≡ tT 2/2tr , where tr is the round trip time. The normalized
intracavity field is E ≡ E

√
2γ L/T 2 and the injected field

is S = 2/T (2γ L/T 2)1/2
Ei, with γ the nonlinear coefficient.

The normalized cavity detuning is θ = 2�0/T 2. We also
replace the coefficients β2,3,4 by β and β ′ through the relations
∂/∂τ ≡ β

−1/4
4 ∂/∂τ , β = β2/

√
β4, and β ′ = β3/β

3/4
4 .

In its dimensionless form, the generalized Lugiato-Lefever
equation studied in [10] reads

∂E

∂t
= S − (1 + iθ )E + i|E |2E − iβ

∂2E

∂τ 2

+β ′ ∂
3E

∂τ 3
+ i

∂4E

∂τ 4
. (2)

The homogeneous stationary solutions (HSSs) Es of Eq. (2)
are described by S2 = Is[1 + (θ − Is)2] and Is = |Es|2. This
system will exhibit a bistable behavior for θ > θc = √

3 and
a monostable behavior for θ � θc. The linear stability of the
homogeneous steady states has been performed in [10]. The
presence of a fourth-order dispersion gives rise to (i) a degen-
erate modulational instability where two separate frequencies
simultaneously appear and (ii) appearance of a second MI that
stabilizes the high intensity regime [10]. The linear stability
analysis of the homogeneous solutions with respect to finite
frequency perturbation of the form exp(i	τ + λt ) yields

λ± = −1 − iβ ′	3 ±
√

I2
s − (θ − 2Is − β	2 − 	4)2. (3)

This dispersion relation through the conditions ∂λ/∂	 =
∂2λ/∂	2 = 0 yields expressions for the critical frequencies
at the first MI bifurcation which are degenerate:

	2
l,u = −β ±

√
β2 + 4(θ − 2Is)

2
. (4)

These two frequencies (	l and 	u) are simultaneously and
spontaneously generated at the primary threshold Is = I1m =
1. When the two critical frequencies 	l,u are close to each
other, it has been shown that intrinsic beating frequencies
	l ± 	u appear [20]. Besides this first degenerate modula-
tional instability, the fourth-order dispersion allows for the
stabilization of the high intensity regime by creating another
MI. The critical value of the frequency at the upper bifurcation
point I2m is given by 	2

c = −β/4. It is then possible to
restabilize the stationary state by driving the system to the
large intensity regime (I > I2m).
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III. GENERALIZED SWIFT-HOHENBERG EQUATION FOR
PHOTONIC CRYSTAL FIBER RESONATORS

Derivation of a generalized Swift-Hohenberg equation

The purpose of this section is to present the derivation
of the generalized Swift-Hohenberg for a photonic crystal
fiber resonator. For this purpose, we use the multiple scale
method. To this aim, we explore the space-time dynamics in
the vicinity of the critical point associated with the nascent
bistability. More precisely, for θ = θc, there exists a second-
order critical point marking the onset of a hysteresis loop.
This transition point is defined by ∂S/∂Is = ∂2S/∂I2

s = 0. The
coordinates of this critical point are

Ec =
(

3

4
− i

√
3

4

)
Sc, S2

c = 8
√

3

9
. (5)

We decompose the electrical field in real and imaginary parts
as E = X1 + iX2, replace it in Eq. (2), and get

∂X1

∂t
= S − X1 + θX2 − X2X 2

1 − X 3
2

+β
∂2X2

∂τ 2
+ β ′ ∂

3X1

∂τ 3
− ∂4X2

∂τ 4
, (6)

∂X2

∂t
= −X2 − θX1 + X1X 2

2 + X 3
1

−β
∂2X1

∂τ 2
+ β ′ ∂

3X2

∂τ 3
+ ∂4X1

∂τ 4
. (7)

We introduce the excess variables U and V : X1(τ, t ) = x1s +
U (τ, t ) and X2(τ, t ) = x2s + V (τ, t ) with x1s and x2s being,
respectively, the real and imaginary parts of the homogeneous
stationary solution given by

S − x1s + θx2s − x2sx
2
1s − x3

2s = 0, (8)

−x2s − θx1s + x1sx
2
2s + x3

1s = 0. (9)

At the critical point associated with bistability, the real and
imaginary parts are x1c = 3Sc/4 and x2c = −√

3Sc/4 [cf.
Eq. (5)]. In order to explore the vicinity of the nascent
hysteresis, we introduce a small parameter ε which measures
the distance from the critical point associated with bistability

θ =
√

3 + ε2δ. (10)

Indeed, δ accounts for the separation of detuning with respect
to the critical one. We then expand in powers of ε the excess
variables and the injected field as

U = εu0 + ε2u1 + ε3u2 + · · · , (11)

V = εv0 + ε2v1 + ε3v2 + · · · , (12)

S = Sc + εS1 + ε2S2 + ε3S3 + · · · , (13)

and also introduce the slow and the fast time scales, t ≡
t/ε2 and τ ≡ τ/

√
ε. A preliminary analysis indicates that we

need to consider that β is small β ≡ εβ. This is because we
consider a low-frequency (or large period) regime. In this way,
the MI instability threshold is close to the critical point. We
now replace all the above scalings and expansions in Eq. (6)

and Eq. (7), and make an expansion in series of ε up to the
order ε3. To O(ε), one gets(

S1

0

)
=

[
1 + 2x1cx2c x2

1c + 3x2
2c − θc

−x2
2c − 3x2

1c + θc 1 − 2x1cx2c

](
u0

v0

)
.

By replacing the values of θc and x1c,2c in these equations, the
solvability condition yields S1 = 0 and u0(τ, t ) = √

3v0(τ, t ).
To the next order O(ε2), we obtain[

1 + 2x1cx2c x2
1c + 3x2

2c − θc

−x2
2c − 3x2

1c + θc 1 − 2x1cx2c

](
u1

v1

)

=
(

s2 + x2cδ

−x1cδ

)
+

(−x2cu2
0 − 3x2cv

2
0 − 2x1cu0v0

x1cv
2
0 + 3x1cu2

0 + 2x2cu0v0

)
.

In these equations, we replace the values of θc, x1c,2c, S1 = 0,
u0(τ, t ) = √

3v0(τ, t ), and the solvability condition leading to

S2 = δ

21/231/4
,

(14)

u1 =
√

3v1 +
(

3

4

)3/4

δ − 23/23−1/2u2
0.

Finally, to the next order O(ε3), through the solvability condi-
tion, we get

√
3
∂u0

∂t
=

√
3S3 − 4

3
u3

0 + δu0 + β
∂2u0

∂τ 2
+

√
3β ′ ∂

3u0

∂τ 3
−∂4u0

∂τ 4
.

(15)

Introducing the following change of variables and param-
eters φ ≡ νu0, y ≡ √

3S3, c ≡ (δ/ν), t ≡ (νt/
√

3), β ≡ νβ,
and τ ≡ ντ , with ν = (4/3)1/3, we obtain the real Swift-
Hohenberg equation with the third-order dispersion

∂φ

∂t
= y + cφ − φ3 + β

∂2φ

∂τ 2
+ β ′ ∂

3φ

∂τ 3
− 4

3

∂4φ

∂τ 4
. (16)

Trivially, by normalizing the time τ , and the dispersion co-
efficients, we recover Eq. (1). The SHE is a well-known
paradigm in the study of pattern formation and localized
structures. Generically, it applies to systems that undergo
a symmetry breaking modulational instability (often called
Turing instability [6]) close to the critical point associated
with bistability (nascent optical bistability). It has been de-
rived first under these conditions in hydrodynamics [21], and
later on in chemistry [22], plant ecology [23], and nonlinear
optics [24,25]. Other real order parameter equations in the
form of nonvariational Swift-Hohenberg model have been also
derived for spatially extended systems [26].

In the absence of the third-order dispersion, the Swift-
Hohenberg equation (16) is variational, i.e., there exists a
Lyapunov functional guaranteeing that evolution proceeds
towards the state for which the functional has the smallest
possible value which is compatible with the system boundary
conditions. Without the third-order dispersion in the Swift-
Hohenberg model Eq. (16), localized structures do not move.
However, when a nonvariational term such as φ∂2φ/∂τ 2 is
considered, localized structures can become propagative [27].
The conditions under which periodic patterns and localized
structures appear are closely related. Dynamically speaking,
a subcritical modulational instability underlies the pinning
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phenomena responsible for the generation of temporal local-
ized structures [28].

The homogeneous steady states φs of Eq. (16) satisfy the
cubic equation y = φs(φ2

s − c). The monostable regime will
be for c < 0 and the bistable regime will occur when c > 0.
The linear stability analysis with respect to finite frequency
perturbation of the form φ = φs + δφ eλt−iωτ + c.c., where
c.c. denotes the complex conjugate and with δφ � 1, yields
the characteristic equation

λ = c − βω2 − iβ ′ω3 − 4

3
ω4 − 3φ2

s . (17)

In the absence of the third-order dispersion, i.e., β ′ =
0, the homogeneous steady states undergo a modulational
instability at

φM± = ±
√

β2

16
+ c

3
, yM± =

(
β2

16
− 2c

3

)
φM±. (18)

At both thresholds associated with MI, the critical frequency
is ω2

M = −3β/8.

IV. WEAKLY NONLINEAR ANALYSIS

To calculate the nonlinear solutions bifurcating from the
threshold associated with modulational instability, we use a
weakly nonlinear analysis. To this end, we introduce an excess
variable as φ ≡ φs + ψ . We expand φs, ψ , and y in terms
of a small parameter μ that measures the distance from the
modulational instability threshold:

φs = φM± + μφ1 + μ2φ2 + μ3φ3 + · · · ,

ψ = μψ1 + μ2ψ2 + μ3ψ3 + · · · , (19)

y = yM± + μy1 + μ2y2 + μ3y3 + · · · .

The coordinates of the thresholds associated with the modula-
tional instability φM± and sM± are explicitly given by Eq. (18).
We introduce a slow time

∂

∂t
= ∂

∂t1
+ μ2 ∂

∂t2
. (20)

The solution to the homogeneous linear problem obtained at
the leading order in μ is

ψ1 = W exp [i(ωMτ + κt1)] + c.c. (21)

The quantities ψi and φ1 (i = 1, 2) can be calculated by
inserting Eqs. (19) into the real Swift-Hohenberg Eq. (16) and
equating terms with the same powers of μ.

At third order in μ, the solvability condition yields the
following amplitude equation:

∂A/∂t = −6αA + ( f + ig)|A|2A, (22)

where A = μW , α = φs − φM± measures the distance from
the second instability threshold, and

f =
[

36φ2
M±( 27

8 β2)
729
64 β4 + 256κ2

+ 192

β2
φ2

M± − 3

]
,

(23)

g = 576φ2
M±κ

729
64 β4 + 256κ2

.

(a)

(b)

FIG. 2. Linear (a) and nonlinear (b) speed as a function of the
parameter β ′ computed from Eqs. (26) for β = −0.6 and c = −0.06.

The amplitude equation (22) admits the following solution:
A = |A| exp[i(qt + ωMτ )]. The third-order dispersion adds a
new nonlinear phase q. By replacing this solution in Eq. (22),
we obtain

|A|2 = 6
φs − φM±

f
, q = g|A|2. (24)

The nonlinear phase q is caused by the third-order disper-
sion. When taking into account the nonlinear correction, the
velocity takes the following form:

v = vL + vNL, (25)

where the linear and the nonlinear velocities are

vL = ∂ Im(λ)

∂ωM
= −3β ′ω2, vNL = ∂q

∂ωM
. (26)

In the linear regime, the critical frequency, as well as the
threshold associated with modulational instability, are not
affected by the third-order dispersion. The linear and non-
linear speeds as a function of the parameter β ′ are shown
in Fig. 2 for β = −0.6 and c = −0.06. In the absence
of the third-order dispersion, the transition from super- to
subcritical modulational instability occurs when c = csub =
−87β2/38 [29]. The modulational bifurcation is subcritical
when c > csub. The subcritical nature of the bifurcation can
occur even in the monostable regime csub < c < 0.

V. MOVING TEMPORAL LOCALIZED STRUCTURES

Examples of a single, two, or three peaks stationary sym-
metric temporal localized structures are shown in Figs. 3–5.
They have been obtained numerically by using a periodic
boundary condition compatible with the ring geometry of the
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(a) (b)

(c)

FIG. 3. Space-time map (a) and temporal profile (b) of one
localized structure, integrated for 1024 cells, c = 0.5, y = −0.05,
β = −1, and β ′ = 0. Panel (c) shows the corresponding Fourier
spectra, calculated using the integration of 500 round trips in the
cavity.

optical resonator depicted in Fig. 1. However, the third-order
dispersion breaks the reflection symmetry and allows for the
motion of localized structures. Examples of a single, two, or
three peaks moving temporal localized structures are shown
in Figs. 6–8. The frequency resolution for the discrete Fourier
transform is proportional to the sample rate and inversely
proportional to the length of the time series. We increase
the frequency resolution by increasing the length of our time
series, i.e., by taking 500 round trips in the cavity [30].

Localized structures occur in the regime where the ho-
mogeneous steady state coexists with a spatially periodic
structure. In addition, the system exhibits a high degree of
multistability in a finite range of the control parameter values
often called the pinning region [31]. The number of LSs and
their temporal distribution along the longitudinal direction

(a) (b)

(c)(a
rb

. u
ni

ts
)

(arb. units) (arb. units)

(arb. units)

(a
rb

. u
ni

ts
)

(a
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. u
ni

ts
)

FIG. 4. Space-time map (a) and temporal profile (b) of two
localized structures, integrated for 1024 cells, c = 0.5, y = −0.05,
β = −1, and β ′ = 0. Panel (c) shows the corresponding Fourier
spectra, calculated using the integration of 500 round trips in the
cavity.

(a) (b)

(c)(a
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. u
ni

ts
)
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(a
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. u
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)
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FIG. 5. Space-time map (a) and temporal profile (b) of three
localized structures, integrated for 1024 cells, c = 0.5, y = −0.05,
β = −1, and β ′ = 0. Panel (c) shows the corresponding Fourier
spectra, calculated using the integration of 500 round trips in the
cavity.

within the cavity are determined by the initial conditions [28].
Two or more localized structures interact through their over-
lapping oscillatory tails when they are close to one another.
In the case where β ′ = 0, an analytical expression of the
potential that describes such interaction in the case of weak
overlap is derived in [32].

The interaction between the LSs then leads to the formation
of clusters or LS complexes. Dissipative structures have been
observed in all areas of nonlinear science, such as chemistry,
biology, ecology, optics, and physics (see recent overview on
this issue [33,34].

A quantitative comparison between the stationary and
moving LS obtained from the SHE and from the LLE will
be discussed in the next section.

(a) (b)

(c)(a
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. u
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ts
)

(arb. units) (arb. units)

(a
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. u
ni
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)

(a
rb

. u
ni

ts
)

(arb. units)

FIG. 6. Space-time map (a) and temporal profile (b) of one
localized structure, integrated for 1024 cells, c = 0.5, y = −0.05,
β = −1, and β ′ = 0.5. Panel (c) shows the corresponding Fourier
spectra, calculated using the integration of 500 round trips in the
cavity.
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FIG. 7. Space-time map (a) and temporal profile (b) of two
localized structures, integrated for 1024 cells, c = 0.5, y = −0.05,
β = −1, and β ′ = 0.5. Panel (c) shows the corresponding Fourier
spectra, calculated using the integration of 500 round trips in the
cavity.

VI. COMPARISON BETWEEN THE LLE AND
THE SHE MODELS

The real order parameter description leading to the deriva-
tion of a Swift-Hohenberg equation is rather generic and it
is a well-known paradigm in the study of spatial periodic
or localized patterns. Generically, it applies to systems that
undergo a symmetry-breaking instability close to a second-
order critical point marking the onset of a hysteresis loop
(nascent bistability). The reduction from the generalized LLE
to a SHE type of model equation with a third dispersion
has been performed in Sec. III A. The SHE captures several
behaviors of the LLE such as optical bistability, modulational
instability, and moving localized structures.
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)
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FIG. 8. Space-time map (a) and temporal profile (b) of three
localized structures, integrated for 1024 cells, c = 0.5, y = −0.05,
β = −1, and β ′ = 0.5. Panel (c) shows the corresponding Fourier
spectra, calculated using the integration of 500 round trips in the
cavity.
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FIG. 9. Comparison of profiles obtained from the Lugiato-
Lefever model (dark blue) and from the Swift-Hohenberg model
(light red). Parameters are θ = 1.73196, S = 1.2407, β = 0.145
for the LL model, y = 0.0578245, c = −0.00630608, β = 1.15 for
the SH model, and for both (a) motionless localized structures
obtained for β ′ = 0 and (b) traveling localized structures obtained
for β ′ = 0.04.

In order to perform a quantitative comparison between
the LLE and a SHE, we fix the detuning parameter to θ =
1.73196. In this case, the transmitted intensity as a function of
the input intensity is bistable. The distance from this critical
point is provided by Eq. (10). This equation fixes the value
of ε = 0.12 for δ = −0.00573. The relation between injected
field S in the LLE and y in the SHE is given by Eq. (13), with
S1 = 0 and S2 = δ/(21/231/4) [cf. Eq. (14)]. y ≡ √

3S3. This
relation reads

S = Sc + δ

21/231/4
ε2 + ε3y/

√
3 + · · · . (27)

The numerical value of the injected field is S = 1.2407. The
values of coefficients of the second derivative in τ in the LLE
and the SHE are β = 0.145 and β = 1.266, respectively. To
compare the localized solutions of both models, we use the
relation between the real order parameter φ and the real part
of the intracavity field X1 = Re(E )

X1 = x1s + ε

(
3

4

)1/3

φ + ε2

[(
3

4

)5/12

c − 61/6φ2

]
+ · · · .

(28)

The results of the comparison between the numerical simula-
tion of LLE and SHE are shown in Fig. 9. In the absence of
the third-order dispersion, the profiles of stationary solutions
obtained by numerical simulation of the LLE and the SHE
are shown in Fig. 9(a). The gap between the homogeneous
domains scales as ε2. In the presence of the third-order
dispersion, the profiles of moving localized structures are
asymmetric. The obtained numerical simulation of the LLE
and the SHE are shown in Fig. 9(b). Both profiles (of either
stationary or moving localized solutions) demonstrate that the
pick intensities and the widths of the LSs calculated by LLE
and SHE are in good agreement. Next, we compare the speed
of a moving LS obtained from the LLE and the SHE. To do
that, we fix all parameters and vary the third-order dispersion
coefficient. The results are shown in Fig. 10.
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FIG. 10. Comparison of the speed of localized structures ob-
tained from the Lugiato-Lefever model (dark blue) and from the
Swift-Hohenberg model (light red). Parameters are θ = 1.73196,
S = 1.2407, β = 0.145 for the LL model and y = 0.0578245, c =
−0.00630608, β = 1.15 for the SH model.

VII. PULSE SOLUTIONS FOR SMALL THIRD-ORDER
DISPERSION

Another strategy to understand the effect of the third-order
chromatic dispersion is to consider small β ′. Damped oscilla-
tions towards its flanks characterize the localized structure.
Analytical expressions of this motionless solution are not
accessible as a consequence of the chaos theory [35]. Let us
introduce φ0(τ − τ0) as the localized structure of model (16)
with β ′ = 0, where τ0 accounts for the temporal position of
the global maximum of the localized structure. Hence the
temporal variation of τ0 accounts for the speed of moving
localized structure. In order to calculate the speed of the LSs,
we consider the following ansatz:

φ(t, τ ) = φ0[τ − τ0(t )] + w(t, τ ), (29)

where τ0 is promoting to a temporal variable, which has
variation of the order β ′ [τ̇0(t ) ∼ β ′], and w(t, τ ) is a small
correction function of the order of third chromatic dispersion.
Introducing the ansatz (29) in the generalized real Swift-
Hohenberg equation (16), linearizing in w, and imposing the
solvability conditions, after straightforward calculations, we
obtain

τ̇0 = v ≡ β ′
∫ (

∂2φ0

∂2τ

)2
dτ∫ (

∂φ0

∂τ

)2
dτ

. (30)

Note that the speed of propagation of the pulse is proportional
to the third-order chromatic dispersion. From Eq. (30) we
see that, if β ′ is positive (negative), the localized structure
propagates towards the positive (negative) flank. Figure 11
shows a comparison between the analytical expression of the
speed of single peak LSs, Eq. (30), and numerical simulations
of the governing equation (16). From this figure, we can infer
a quite good agreement when β ′ is small.
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FIG. 11. Localized structure speed as function of β ′. Points are
obtained from numerical simulations of Eq. (16). The continuous line
corresponds to the plot of formula (30). Parameters are c = 0.5, y =
−0.05, and β = −1.

VIII. CONCLUSIONS

Employing a multiple-scale reduction near the bifurcation
threshold associated with the modulational instability and
close to a second-order critical point marking the onset of a
hysteresis loop (nascent bistability), we have derived a real
Swift-Hohenberg equation describing the evolution of the
envelope of the electric field circulating inside an optical Kerr
resonator. The presence of third-order dispersion renders the
obtained Swift-Hohenberg equation nonvariational meaning
there is no free energy or Lyapunov functional to minimize
in the instability problem we have considered. A linear and a
weakly nonlinear analysis has been performed to identify the
conditions under which a transition from super- to subcritical
modulational instability takes place. More importantly, we
have shown that the third-order dispersion allows for temporal
localized structures to move with a constant speed as a result
of the broken reflexion symmetry. We have characterized
this motion by estimating the speed associated with it. We
have also performed a quantitative comparison between the
results obtained from the Lugiato-Lefever model and the
Swift-Hohenberg equation. This comparison includes the tem-
poral profile and the speed of the LS demonstrating a very
good agreement between the two models. Finally, we have
derived a simple formula for the speed of the moving local-
ized structures in the limit of a small third-order dispersion
coefficient.
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