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Front depinning by deterministic and stochastic fluctuations: A comparison
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Driven dissipative many-body systems are described by differential equations for macroscopic variables
which include fluctuations that account for ignored microscopic variables. Here, we investigate the effect of
deterministic fluctuations, drawn from a system in a state of phase turbulence, on front dynamics. We show that
despite these fluctuations a front may remain pinned, in contrast to fronts in systems with Gaussian white noise
fluctuations, and explore the pinning-depinning transition. In the deterministic case, this transition is found to
be robust but its location in parameter space is complex, generating a fractal-like structure. We describe this
transition by deriving an equation for the front position, which takes the form of an overdamped system with
a ratchet potential and chaotic forcing; this equation can, in turn, be transformed into a linear parametrically
driven oscillator with a chaotically oscillating frequency. The resulting description provides an unambiguous
characterization of the pinning-depinning transition in parameter space. A similar calculation for noise-driven
front propagation shows that the pinning-depinning transition is washed out.

DOI: 10.1103/PhysRevE.99.062226

I. INTRODUCTION

Nonequilibrium systems, i.e., driven dissipative systems,
frequently exhibit rich and complex interface dynamics as
one state displaces another or defects nucleate, drift, and an-
nihilate [1–4]. This defect evolution is usually dominated by
interface, wall, or front dynamics depending on the physical
context under study. These nonlinear waves do not obey the
superposition principle, and each interface has a well-defined
profile that depends on the parameter values of the system.
The concept of front propagation originally emerged in the
context of population dynamics [5], gene propagation [6] as
well as flame propagation [7], and has since attracted grow-
ing interest in chemistry, biology, physics, and mathematics
[1–3,8].

In physics, fronts play a central role in a large variety of
situations, ranging from reaction-diffusion models and solid-
ification processes to pattern-forming systems arising in fluid
dynamics (see, e.g., [1,3,9] and references therein). From the
point of view of dynamical systems theory a one-dimensional
front of constant form corresponds to a heteroclinic orbit
connecting two spatially extended homogeneous states [10].
The propagation speed of the front depends on the type and
stability of the states connected by the front. One of the most
studied types of front is that connecting a stable spatially
homogeneous state with an unstable one, the so-called FKPP
or pulled front [2,11]. The speed of such a front is not, in
general, unique and depends on the initial condition [11].
Another well-known type of front, a bistable or pushed front,
connects two stable homogeneous states [4]. Such fronts are
found inside a bistability region between two homogeneous
states and are characterized by a single speed that is deter-
mined by the free energy difference between the two states
whenever the system is variational. In this case the state with
the lower energy displaces that with higher energy [4] and the

front speed only vanishes at the Maxwell point, at which both
states have the same energy [1].

The previous scenario changes when the front connects a
homogeneous state to a spatially periodic or patterned state.
As first pointed out by Pomeau [4], the presence of spatial
heterogeneity is expected to generate an energy barrier or
pinning potential that has to be overcome before the front
can propagate, i.e., front propagation only occurs when the
energy difference between the two states exceeds a nonzero
minimum value. In the vicinity of the Maxwell point the
energy difference is too small for propagation and the front
remains motionless or pinned. When the energy difference
is large enough and the front depins, it moves in a stick-
slip manner, with a mean speed that increases as the square
root of the distance from the parameter value for depinning.
The existence of a pinning range has been discussed in a
number of physical contexts, and in particular in the con-
text of the generalized Swift-Hohenberg model [12] and the
crystallization kinetics of cellular patterns (see the textbook
[1] and references therein). Experimentally, an observation of
the pinning-depinning transition in a spatially periodic optical
medium was reported in [13]. However, the inclusion of inher-
ent incoherent fluctuations (i.e., noise) drastically changes the
pinning-depinning transition [14,15]. Noise-induced escape
over the confining potential barrier [16] allows the system
to escape permanent pinning and ultimately always results
in front propagation. Likewise, one can consider fronts that
connect a state with coherent intrinsic spatiotemporal fluc-
tuations (chaos, spatiotemporal chaos, turbulence, etc.) with
a nonfluctuating homogeneous state. This type of front is
fundamental to the understanding of flame propagation in
combustion [17–19], emergence of turbulence in pipe flow
[20], turbulence propagation [21], and the propagation of spa-
tiotemporal chaos in an optical fiber cavity [22,23]. However,
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in these systems no pinning-depinning transition is observed.
In contrast, phase-coupled oscillators with a nonlocal cou-
pling exhibit states with partial synchrony called chimera
states. These states can be considered to be bound states of
a pair of synchronization fronts bounding a coherent state,
embedded in a background incoherent state [24–28]. Despite
the fluctuations in the background these fronts do not depin
and the length of the interval of coherence fluctuates about
a well-defined mean determined by the parameters of the
problem.

Incoherent fluctuations, such as those arising from thermal
effects, are usually described by a random variable having
equal intensity at different frequencies (white noise), i.e., a
constant power spectrum density [29]. Thus, fluctuations of
any size are allowed, with the restriction that large fluctuations
are unlikely. In contrast, deterministic (chaotic) fluctuations
have a power spectrum dominated in general by certain in-
commensurate frequencies [30]. Moreover, since the strange
attractor responsible for the chaos is typically bounded, the
associated deterministic fluctuations have a maximum size.
This difference between the accessible deterministic and
stochastic fluctuations has a major impact on the dynamics of
fronts.

The basic question is whether coherent spatiotemporal
fluctuations always trigger a depinning transition in systems
exhibiting pinned fronts between two distinct states, in other
words whether deterministic fluctuations behave like additive
noise [16]. We show here that in the presence of coherent
spatiotemporal fluctuations fronts between a spatiotemporally
chaotic pattern and a homogeneous state may indeed remain
pinned, albeit in a narrower parameter range. We also show,
using a bistable model that exhibits a pinning-depinning tran-
sition driven by phase turbulence, that this transition is robust
but that the pinning-depinning boundary becomes complex,
generating a fractal-like structure in parameter space. We
describe the pinning-depinning transition using an effective
equation for the front position which takes the form of an
equation for an overdamped system with a ratchet potential
and chaotic forcing determined by the instantaneous location
of the front. These fluctuations are bounded and may be
insufficient to trigger a depinning transition. Using a series
of transformations we convert this problem into a linear para-
metrically driven oscillator with a chaotically oscillating fre-
quency. The resulting description allows us to characterize the
pinning-depinning transition unambiguously, by identifying
the unbounded (bounded) solutions of the oscillator problem
with pinned (depinned) solutions of the front problem, and
hence allows us to compute the boundary between the two,
i.e., the location in parameter space of the pinning-depinning
transition. A similar calculation for a noise-driven system
leads to the same ratchet potential but driven by additive white
noise. In this case the front always eventually depins.

II. MODEL

To investigate the propagation of an interface between
homogeneous and complex spatiotemporal states, we consider
the following model:

∂t u = u(α − u)(u − 1) + ∂xxu + βu cos (kx) + γ u∂xψ, (1)

where u(x, t ) is a scalar field. The first term on the right-
hand side describes a bistable system and corresponds
to the Nagumo nonlinearity in the context of population
dynamics [8]. The second term accounts for diffusion. The
third term represents spatial forcing with amplitude β and
wavelength λ = 2π/k which gives rise to a pattern state. Fi-
nally, the last term represents multiplicative spatiotemporally
chaotic forcing, with the auxiliary scalar field ψ taken to
satisfy the Kuramoto-Sivashinsky equation

∂tψ = −μ∂xxψ − (∂xψ )2 − ∂xxxxψ. (2)

Equation (2) describes the propagation of nonlinear waves of
chemical concentration in the Belousov-Zhabotinskii reaction
[32–34] and the propagation of flame fronts [35,36], and is
perhaps the simplest model that exhibits spatiotemporal chaos
[37]. In this context, ψ (x, t ) determines the position of an
interface between two distinct states. In this paper we use
this equation to provide spatiotemporal forcing of Eq. (1)
via the zero-mean coupling term ∂xψ . Note that the field
u(x, t ) does not feed back on ψ (x, t ). Thus, the spatiotemporal
forcing is prescribed. A model similar to Eqs. (1) and (2) was
originally introduced to understand the existence of localized
but spatiotemporally chaotic solutions [31].

The unforced Eq. (1), β = γ = 0, corresponds to the well-
known Nagumo model [8,38]. This model has two stable ho-
mogeneous states u = 1 and u = 0 that may be connected by a
front. Such fronts are typically nonstationary and so propagate
with a speed that depends on the value of the parameter α

(0 < α < 1). Thus α measures the relative stability of the two
competing states: for α < 1/2 (respectively, α > 1/2), the
state u = 1 (respectively, u = 0) takes over the system. There
is only one value of α, α ≡ αM = 1/2, at which the interface
is motionless. This particular value of α is called the Maxwell
point [1]. When the spatial forcing is taken into account
(β �= 0, γ = 0), the above scenario changes. Although the
state u = 0 persists unchanged, the state u = 1 is replaced by a
periodic state with imprinted wavelength 2π/k, cf. [13,39,40].
Hence, in this parameter regime, the system possesses fronts
between a periodic solution and a homogeneous state, a
situation that is conducive to front pinning [4]: the presence of
spatial heterogeneity generates an energy barrier that must be
overcome before the front can move. Consequently, the front
speed vanishes over a relatively large interval of parameters,
the so-called pinning range. Figure 1(a) shows a typical
pinning range as a green shaded area. Square symbols (�)
represent the numerically determined average front speed. The
plot shows that the pinning-depinning transition corresponds
to a supercritical bifurcation that takes place at αc = α±.
These critical points correspond to SNIPER (Saddle-Node In
a PERiodic orbit) bifurcations as found in related depinning
problems [41]. Indeed, the average front speed, 〈V 〉, grows as
the square root of the distance from the critical point, 〈V 〉 ∼√|α − α±|. Far from this critical point, the average front
speed grows linearly [42]. The resulting bifurcation diagram
was verified experimentally in a spatially forced liquid crystal
light valve experiment [13,39].

When γ �= 0 the pattern state around u = 1 becomes spa-
tiotemporally chaotic and as a result the pinning range shrinks
[Fig. 1(a)]. The pinning interval that remains decreases as the
forcing wave number k increases [Fig. 1(b)], and vanishes in a
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FIG. 1. Pinning-depinning transition of spatiotemporally chaotic
patterns embedded in a stable homogeneous state. (a) Average front
speed 〈V 〉 as a function of α. The filled squares (�) and circles (•)
represent the average speed of the front obtained from numerical
simulations of Eqs. (1) and (2) with β = 0.085, k = 0.7, and, re-
spectively, γ = 0 and γ = 0.055. The vertical bars show the standard
deviation of the front speed. The pinning region for β �= 0 and γ = 0
is shown using light shading. This region shrinks as a result of
spatiotemporally chaotic forcing, γ �= 0 (dark shaded region). The
insets show the spatiotemporal dynamics of the fronts in different
parameter regimes. (b) Pinning region in the (α, k) parameter space.
The white curve represents the boundary of the pinning region
of the spatiotemporally forced model (1) and (2) with β = 0.085,
γ = 0.055 computed numerically. For comparison we also show the
location of the theoretically predicted pinning-depinning transition
α± = αM ± √

βkA(k)/2 with αM = 1/2 and A(k) determined from
formula (10) (red dashed line) and from numerical integration of the
interface equation (8) (blue dashed-dotted line). Both procedures are
valid for γ � 1 only. The quality of the theoretical predictions can
be ascertained from the enlargement shown in the lower right panel.

cusp at (α, k) = (1/2,∞) as k → ∞ (not shown). Figure 2(a)
shows a typical spatiotemporal evolution of the chaotic pattern
state. This state may be characterized by means of Lyapunov
exponents, which provide information about the solution sen-
sitivity to exponentially close initial conditions [43]. From
a dynamical systems point of view, if the largest Lyapunov
exponent is positive, the system is chaotic, but not neces-
sarily spatiotemporally chaotic. To distinguish between these
two types of complex dynamical behavior, it is necessary to
compute the Lyapunov spectrum, i.e., the set of Lyapunov
exponents [43,44]. Spatiotemporal chaos has a Lyapunov
spectrum with a continuous set of positive values. In this case,
the number of positive exponents in the Lyapunov spectrum
depends on the length L of the domain. In contrast, chaos
in a low-dimensional system possesses a Lyapunov spectrum
with a discrete set of positive exponents whose number is

FIG. 2. Spatiotemporally chaotic pattern state of the Kuramoto-
Sivashinsky-Nagumo model, Eqs. (1) and (2), when α = 0.38, β =
0.085, γ = 0.03, and k = 0.6. (a) Space-time diagram. (b) The
corresponding Lyapunov spectrum. (c) Power spectra S(p) of the
pattern state u(x, t ) for three different values of the forcing amplitude
γ averaged over T = 106 snapshots. The forcing wave number k is
denoted by p0.

independent of L. Figure 2(b) shows the Lyapunov spectrum
of the spatiotemporally chaotic pattern state in Fig. 2(a),
computed from Eqs. (1) and (2) using the strategy proposed in
[45,46]. Here, N counts the number of points into which the
system has been discretized and i is an integer that indexes the
Lyapunov exponents. The figure shows that this state is indeed
spatiotemporally chaotic. All the numerical simulations were
conducted using finite differences for spatial discretization
and a fourth-order Runge-Kutta method for the time evolution.
Neumann boundary conditions were imposed on both the
Nagumo-Kuramoto and the Kuramoto-Sivashinsky equations.
The domain length was fixed at L = 300 with a space dis-
cretization interval dx = 0.6 and time step dt = 0.01 for the
time evolution.

With the aim of understanding the mode dynamics of
the state shown in Fig. 2(a), we introduce the time-averaged
power spectrum [37]

S(p) = 1

T

∫ T

0

∣∣∣∣
∫ L

0
u(x, t )eipxdx

∣∣∣∣
2

dt, (3)

where L is the system size and T is a large time interval. The
resulting spectra, computed from Eqs. (1) and (2) for several
different values of the forcing amplitude γ , are shown in
Fig. 2(c) and confirm the broad-band nature of the mode-mode
interactions involved in the spatiotemporally chaotic state
despite the dominance of the forcing wave number p0 = k and
its harmonics.

From Fig. 1 and the related results in Fig. 2 we infer
that the model (1) and (2) exhibits coexistence between a
spatiotemporally chaotic pattern u(x, t ) and the homogeneous
state u = 0. Under these conditions one expects to find
front solutions between these states. The insets in Fig. 1(a)
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FIG. 3. Temporal evolution of the front position x = δ(t ) in the
model (1) and (2) in the pinning and depinning regimes when α =
0.45, β = 0.085, k = 0.9, and γ = 0.01 (pinned front, right panel)
and γ = 0.02 (unpinned front, middle panel).

depict typical front solutions of this type and their temporal
evolution for different values of the parameter α. The filled
circles (•) in Fig. 1(a) represent the average front speed
computed numerically and these show that for k = 0.7 and
γ = 0.055 the pinning-depinning transition not only persists
but also acquires complex dependence on the forcing wave
number k.

To characterize the dynamics of the front in greater detail,
we monitored its position x = δ(t ) defined by the condition

δ(t ) ≡
∫ L/2
−L/2 x∂xu(x, t ) dx∫ L/2
−L/2 ∂xu(x, t ) dx

, (4)

where L is the system size. Thus δ(t ) corresponds to a value
of the field u(x, t ) between the two equilibria. In particular,
in the unperturbed problem u(x = δ) = 1/2, a value exactly
halfway between the two equilibria. Figure 3 illustrates the
temporal evolution of the front position in the pinning and
depinning regimes, respectively. As a result of chaotic forcing
the pinning-depinning boundary becomes complex, gener-
ating a fractal-like structure [see Fig. 1(b), white curve].
Complex fluctuations around a given location characterize
the front position inside of the pinning region (see Fig. 3,
dark orange curve). Outside of the pinning region, the front
position exhibits stick-slip dynamics with complicated os-
cillations around a fixed position alternating with jumps to
a new position. This process repeats, with jumps of order
of the wavelength 2π/k and always in the same direction
(see Fig. 3, dark blue curve). The complexity of the front
motion can be quantified in terms of the largest Lyapunov
exponent which characterizes the behavior of the sudden
jumps in the front position δ(t ) as parameters are varied in
the spatiotemporally chaotic regime [43]. Figure 4 shows the
largest Lyapunov exponent, λLLE, of this motion, computed
from 200 slightly different initial conditions, as a function of
the parameter α. The exponent λLLE tends to increase with
increasing α but cannot be used to infer the location of the
pinning region. In other words, the chaotic behavior inside and
outside of the pinning region exhibits similar characteristics,
and λLLE is not a good indicator of the pinning-depinning
transition.

FIG. 4. Largest Lyapunov exponent λLLE of the front position as
a function of α for k = 0.7, γ = 0.055, and β = 0.085. The shaded
region shows the pinning region.

III. ANALYTICAL CHARACTERIZATION
OF INTERFACE DYNAMICS

In this section, we explain the pinning-depinning transition
in terms of the front position δ(t ). An equation describing the
dynamics of δ is deduced using perturbation methods. Similar
approaches have been used to explain the existence of both
stationary [42] and time-dependent [31] localized structures.

The unforced model, Eqs. (1) and (2) with β = γ = 0, has
an exact stationary front solution at the Maxwell point αM =
1/2 connecting the two homogeneous states u = 0 and u = 1:

uF (x, δ) = 1

2
+ 1

2
tanh

(√
2

4
(x − δ)

)
. (5)

To understand the effect of spatial (β �= 0) and spatiotempo-
rally chaotic (γ �= 0) forcing, we suppose that both β and γ

are small and that the system is close to the Maxwell point,
i.e., γ ∼ β � 1 and α̃ ≡ αM − α, with α̃ ∼ γ ∼ β. Let us
consider the following ansatz:

u(x, t ) = uF (x − δ(t )) + W(x, t ), (6)

where the front position δ(t ) is promoted to a temporal func-
tion representing the dynamics of the interface. The remainder
term W(x, t ) is assumed to be small, of the order of β, γ ,
and α̃. Introducing the above ansatz in Eq. (1) together with
the definition of the comoving coordinate z ≡ x − δ(t ), and
linearizing in W, we obtain

−L̂ W = ∂zuF δ̇ − α̃uF (uF − 1) + βuF cos(kz + kδ)

+ γ uF ∂zψ (z + δ, t ), (7)

where the linear operator L̂ ≡ 3uF − 3u2
F − 1/2 + ∂zz. To

solve the above linear equation, we introduce the inner prod-
uct 〈 f |g〉 = ∫ ∞

−∞ f ∗(z)g(z)dz. Using this inner product, it is

easy to show that L̂ is self-adjoint, L̂ = L̂ †. Note that ∂zuF

is an element of the kernel of L̂ †. Applying the solvability
condition, equivalently the Fredholm alternative [47], one
obtains, after straightforward calculations,

δ̇ = −∂U

∂δ
− 6

√
2γ B(t ). (8)
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The first term is the gradient of an effective time-independent
potential given by

U (δ) ≡
√

2α̃δ + βA sin(kδ + φ), (9)

where

A ≡ 6π
√

1 + 2k2 csch(
√

2πk), (10)

φ ≡ arctan(
√

2k). (11)

The potential U (δ) in Eq. (9) is called a washboard potential
or equivalently a generalized Peierls-Nabarro potential be-
cause of its use in describing the dynamics of dislocations
in crystals [48–50]. However, it also describes the motion
of charged particles in a periodic crystal in the presence of
an electric field, and arises in other spatially forced physical
systems as well. In particular, the potential has been used
to explain the existence of localized spatiotemporally chaotic
solutions in both continuous [31] and discrete media [27,51].

The second term on the right-hand side of Eq. (8) corre-
sponds to additive time-dependent forcing with amplitude

B(t ) ≡
∫ ∞

−∞
uF (z)∂zuF (z)∂zψ (z + δ, t ) dz. (12)

Although this chaotic forcing appears to depend on the front
position δ this fact does not change the statistical properties of
B(t ) which remain on average homogeneous.

Equation (8) describes an overdamped system with a
ratchet potential and chaotic forcing. When the potential bar-
rier between equilibria is sufficiently large the front position
fluctuates around an equilibrium position and we call the front
pinned. On increasing the forcing amplitude γ above a critical
value, the front position begins to explore nearby equilibria
in order to minimize energy, leading to a pinning-depinning
transition, i.e., to the onset of front propagation. Thus front
propagation corresponds to a chaotic ratchet motor.

In the absence of spatiotemporally chaotic forcing, γ = 0,
an analytical expression for the pinning-depinning transition
can be deduced from the stationary solution of Eq. (8). The
width of the pinning region is determined by the condition
A2(k) = 2α̃2(k)k2/β2. Figure 1(b) shows the smooth depen-
dence of the resulting pinning-depinning transition α±(k) on
the wave number k (dashed red line).

When spatiotemporally chaotic forcing is included, γ �= 0,
the pinning-depinning boundary α±(k) is fundamentally al-
tered, and now takes on a fractal structure. In Fig. 1(b) this
boundary is indicated by the white curve. To understand the
complex dynamics exhibited by the fronts near this bound-
ary and the complex structure of the boundary in parameter
space, one must first characterize the spatiotemporally chaotic
forcing given by Eq. (12). Figure 5 shows the temporal
evolution of the function B(t ) obtained from the Kuramoto-
Sivashinsky model (2) with μ = 3.0. The statistical char-
acterization of the spatiotemporally chaotic forcing and its
probability density function can be determined from Eq. (2),
and is shown in Fig. 5(b). Note that the histogram of the
values acquired by the function B(t ) is similar to a Gaussian
distribution [the fit in Fig. 5(b) has standard deviation 0.2355]
although the distribution has compact support (see the zoom
of the histogram tail). This is a consequence of the fact that
the function ∂zuF (z) in the integrand in Eq. (12) cuts off

0.0

0.1
x10-3

1.0 1.1

100

10-2

FIG. 5. Statistical characterization of the spatiotemporally
chaotic forcing term B(t ) in Eq. (12). (a) Typical temporal evolution
of B(t ) obtained from the Kuramoto-Sivashinsky forcing (2) with
μ = 3.0 and domain length L = 300, computed with a discretization
interval dx = 0.6 and time step dt = 0.01. (b) Probability density
function of B(t ) in terms of a histogram (blue columns). The red
curve represents a Gaussian fit. The left inset displays the probability
density function of B(t ) in a semi-log plot, while the right inset shows
the tail of the histogram, suitably magnified, showing the truncation
of the distribution. (c) Correlation function C(τ ) ≡ 〈B(t )B(t + τ )〉,
where the symbol 〈·〉 denotes an average over the time t .

the contributions from the spatiotemporally chaotic process
∂zψ (z, t ) at large |z|, implying that B(t ) does not behave as
an infinite sum of independent identically distributed random
variables. Consequently, B(t ) is not a Gaussian white noise,
a fact confirmed by the correlation function C(τ ) shown in
Fig. 5(c). This correlation function does not decay to zero as
τ → ∞, in contrast to a genuine stochastic process.
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In the following we explore the consequences of the above
finding.

IV. PINNING-DEPINNING TRANSITION
AS A PARAMETRIC RESONANCE

The pinning-depinning transition of a front can be under-
stood as a parametric resonance [52]. To see this we transform
Eq. (8) into a linear parametric oscillator equation using a
series of nonlinear changes of the dependent variable δ(t ). The
effective frequency of the resulting oscillator problem fluc-
tuates chaotically as a result of the spatiotemporally chaotic
forcing. In order to identify the threshold for the transition
in these circumstances we need to perform long integrations
and impose stringent convergence criteria as first done in
Ref. [53].

We begin by writing x(t ) ≡ tan [kδ(t )/2]. Equation (8)
then becomes an inhomogeneous Riccati equation,

ẋ = a + 2 � x + b x2, (13)

where

a(t, α̃, γ , β, k) ≡ − k√
2
α̃ − 3

√
2kγ B(t ) − 3k

2
√

2
βA cos φ,

b(t, α̃, γ , β, k) ≡ − k√
2
α̃ − 3

√
2kγ B(t ) + 3k

2
√

2
βA cos φ,

�(t, β, k) ≡ 3k

2
√

2
βA sin φ. (14)

Next, using the Riccati transformation x = −ẏ/[b(t )y], we
find that the auxiliary variable y(t ) satisfies a damped second-
order linear ordinary differential equation,

ÿ −
(

2 � + ḃ

b

)
ẏ + a b y = 0, (15)

which can in turn be transformed into an undamped Hill
equation using the change of variable y(t ) = z(t ) exp[ξ (t )],
where ξ ≡ ∫

(2� + ḃ/b)dt/2:

z̈ +
{

b̈

2b
− ḃ2

2b2
− 1

4

(
2� + ḃ

b

)2

+ ab

}
z = 0. (16)

This linear equation represents a parametrically driven oscil-
lator with a frequency that fluctuates chaotically. Note that this
frequency diverges at b = 0. Figure 6 shows that while b can
indeed pass through zero, it does so infrequently. Moreover,
since the term in braces, hereafter referred to as ω2, is then
large and negative the solution z = 0 is then strongly unstable
and hence far from the pinning-depinning transition which
remains unaffected.

In the following we study the boundedness of solutions of
Eq. (16) as a function of the parameters, employing the strict
convergence criteria developed for the stability of the z = 0
solution for quasiperiodic frequencies [53]. Specifically, we
evolve the equation up to a maximum of 107 time steps. To de-
fine the notion of convergence, we introduce the radius R(t ) ≡√

z(t )2 + ż(t )2 representing the instantaneous amplitude of
the solution in phase space. A solution z(t ) will be called
unbounded (bounded) if it exceeds (fails to exceed) Rmin =
10−1 during an integration time of 0 � t � 107. Unbounded

(a) (b)

(c) (d)

FIG. 6. Statistical characterization of the auxiliary function b(t )
defined in Eq. (14b). (a) Temporal evolution and (b) histogram of
b(t ). (c) Reconstruction of the dynamics in (b, ḃ) space. (d) Proba-
bility density function of ḃ/b in terms of a histogram.

trajectories z(t ) correspond to pinning in the original problem.
In Fig. 7 the shaded (unshaded) region obtained in this manner
corresponds to pinned (depinned) fronts.

A. Hill equation with chaotic frequency

To gain insight into the dynamics of the front position in
the presence of chaotic forcing, we consider an overdamped
pendulum, described by an angle θ and subject to the effect of
a chaotic torque,

θ̇ = − sin θ + r(t ), (17)

where r(t ) = r0 + ξX (t ), r0 and ξ are control parameters, and
X (t ) is a zero-mean component of the Lorenz model [54],
satisfying

Ẋ = σ (Y − X ), Ẏ = X (ρ − Z ) − Y, Ż = XY − βZ.

(18)

FIG. 7. Region with unbounded solutions (blue, pinned fronts)
of the the Hill equation (16) shown in the (α̃, γ ) parameter space,
where α̃ = αM − α. The equation has a chaotic frequency arising
from B(t ). Outside this region the solutions are bounded (depinned
fronts). Parameters are β = 0.085 and k = 0.7.
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x

FIG. 8. Statistical characterization of the chaotic forcing func-
tion X (t ) showing the probability density distribution of X (t ) in the
Lorenz model with β = 8/3, σ = 10, and ρ = 28. The top inset
shows the corresponding strange attractor. The bottom inset shows
a zoom of the tail of the probability distribution. (b) Correlation
function C(τ ) ≡ 〈X (t )X (t + τ )〉.

We employ the traditional parameter values β = 8/3, σ = 10,
and ρ = 28 used by Lorenz to study the chaotic behavior of
this system [54]. Note that X (t ) has a symmetric distribution
about X = 0 and that its correlation function does not decay
as shown in Fig. 8. These properties mimic the behavior of
the effective forcing B(t ) in Eq. (12), cf. Fig. 5. Moreover,
the forced overdamped pendulum, Eq. (17), resembles Eq. (8)
for the front position δ(t ) in the sense that for ξ = 0 and
r0 � 1 (r0 > 1) the trajectories of the pendulum in phase
space are bounded (unbounded). However, when ξ �= 0 and
chaotic forcing is present the characterization of the stability
of a trajectory in phase space becomes a nontrivial problem.

Using variable changes similar to those used to trans-
form Eq. (8) into Eq. (16), that is, using h ≡ tan (θ/2), h =
−2ẏ/[r(t )y], y(t ) = z(t ) exp[ξ (t )], where ξ (t ) is now given
by ξ = − ∫

(1 − ṙ/r)dt/2, we can cast Eq. (17) into a Hill
equation as well:

z̈ +
{

r̈

2r
− ṙ2

2r2
− 1

4

(
1 − ṙ

r

)2

+
(

r

2

)2
}

z = 0. (19)

When the term in braces, i.e., the square of the instantaneous
frequency ω2, is a periodic function of time, it is well known
that this equation has both bounded and unbounded solutions
depending on the oscillation frequency [55,56]. This situation
persists when the oscillation frequency is quasiperiodic but
the boundary between bounded and unbounded solutions be-
comes a complex function of the parameters whose complete
characterization remains an open problem [53]. In the present
case r(t ) also occasionally passes through zero, but as in
Eq. (16), this does not affect the pinning-depinning transition.

To study the boundedness of solutions of Eq. (19) as a
function of the parameters, we employ the same strategy as
in the previous section. Figure 9 depicts a sample trajectory

(a)

(b)

FIG. 9. Temporal evolution of the Hill equation (19) with Lorenz forcing computed for (a) ξ = 0.001, r0 = 0.6 [z(t ) unbounded, θ (t )
pinned] and (b) ξ = 0.001, r0 = 1.1 [z(t ) bounded, θ (t ) depinned]. The panels from left to right show the trajectory in the (z, ż) phase space,
the temporal evolution of R(t ), the effective squared frequency ω2 in the Hill equation, and the angle θ (t ) reconstructed from the temporal
evolution of z(t ) in the region of (a) pinning and (b) depinning.
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(a)

(b)

(c)

FIG. 10. (a) Parameter space of the Hill equation (19) with
Lorenz forcing. Shaded (unshaded) regions correspond to pinned
(depinned) fronts as determined by the condition R(t ) > 10−6

[R(t ) < 10−6] in time 0 � t � 107 analogous to that used in Eq. (16),
starting from an initial condition with R(0) = 10−9. (b), (c) Temporal
evolution of θ (t ) and the analogous quantity R(t ) ≡

√
θ (t )2 + θ̇ (t )2

as obtained from Eq. (17) in the region of (b) pinning and (c) depin-
ning, corresponding, respectively, to locations P1 and P2 in parameter
space (a).

in the (z, ż) phase space, the temporal evolution of the ra-
dius R(t ) ≡

√
z(t )2 + ż(t )2, the coefficient ω2(t ) in the Hill

equation (19), and the reconstructed variable θ (t ) correspond-
ing to (a) pinning, and (b) depinning. Observe that in (a) ω2 is
on average negative while in (b) it is positive.

Using this type of analysis, one can explore the parameter
space of the problem and map out in detail the boundary
between pinning and depinning within Eq. (17). Figure 10
summarizes this analysis in the (r0, ξ ) plane: blue points
represent trajectories that diverge. The boundary between
the trajectories that have and have not diverged is evidently
complex, and remains to be characterized in detail. The figure
also shows the evolution of θ (t ) and the quantity R(t ) ≡√

θ (t )2 + θ̇ (t )2 obtained numerically from Eq. (17) in the
region of (b) pinning and (c) depinning, respectively.

V. MULTIPLICATIVE NOISE INDUCES
FRONT PROPAGATION

The first description of macroscopic matter is usually done
using a small number of coarse-grained or macroscopic fields,

FIG. 11. Average speed of a front connecting homogeneous and
pattern states as function of α for the stochastic model, Eq. (20), with
β = 0.085 and k = 0.7. The red dot-dashed curve and the blue curve
with filled circles show the deterministic and stochastic evolution of
the front between a homogeneous and a periodic state, respectively.
The insets show sample spatiotemporal evolution of the front before
(lower left) and after (upper right) the Maxwell point when γ = 5.

whose evolution is described by deterministic differential
equations. This reduction is a consequence of temporal scale
separation, which allows a description in terms of the slowly
varying macroscopic variables. An improved description in-
cludes fluctuations due to the elimination of a large number
of fast variables whose effect can be modeled by including
suitable inherent stochastic terms (or noise) in the differential
equations. The stochastic term can be classified into two
types: additive (multiplicative) noise that does not depend
(depends) on the variable under study. Additive noise induces
propagation of a static front connecting a stable homogeneous
equilibrium and a pattern state [14,15]. The effect of multi-
plicative noise on fronts that connect a pair of homogeneous
states has also been studied (see the textbook [57] and refer-
ence therein). In particular, the dynamic evolution of a system
with fronts connecting an absorbing state (a state without
fluctuations) and a fluctuating one has been discussed, and
the emergence of spatiotemporal intermittency established
[58].

In this section we compare the pinning-depinning results
obtained with deterministic spatiotemporally chaotic forcing
[Eqs. (1) and (2)] with the corresponding results obtained
with explicitly stochastic forcing. In both cases the forcing
is multiplicative. For this purpose we consider the following
stochastic model:

∂t u = u(α − u)(u − 1) + ∂xxu + βu cos (kx) + γ uζ (x, t ),

(20)

where ζ (x, t ) is a Gaussian white noise with zero mean
value, 〈ζ (x, t )〉 = 0, and correlation 〈ζ (x, t )ζ (x′, t ′)〉 = δ(x −
x′)δ(t − t ′). Here, the coefficient γ represents the noise
strength, as in Eqs. (1) and (2), and the symbol 〈·〉 indicates
averaging over the realizations of the noise.

Since the noise in Eq. (20) is multiplicative and propor-
tional to u, the state u = 0 is an absorbing state. In contrast,

062226-8



FRONT DEPINNING BY DETERMINISTIC AND … PHYSICAL REVIEW E 99, 062226 (2019)

the state u = 1 is an equilibrium state that exhibits persistent
fluctuations. The front position x = δ(t ) between these states
exhibits random motion. Figure 11 shows the average front
speed in the model. As a result of inherent fluctuations, one
observes that the pinning region disappears and the front is
only (statistically) stationary at a single point of the param-
eter space, the Maxwell point. The location of this point
in turn depends on the intensity level γ of the noise. The
disappearance of the pinning region in the present case is
notable and is due to the fact that some realization of the
stochastic process always overcomes the nucleation barrier
introduced by the periodic forcing [15], a phenomenon known
as a noise-induced transition [16].

To characterize this behavior one can use the same strategy
as in Sec. III, and write down an equation for the front
position x = δ(t ). Using the ansatz (6) in Eq. (20), linearizing
in W, and applying the appropriate solvability condition, one
obtains

δ̇ = −∂U

∂δ
+ �ξ (t ), (21)

where the potential U (δ) is defined in expression (9), and

ξ (t ) ≡ − 3γ

2
√

�

∫
ζ (z + δ, t )uF ∂zuF dz, (22)

� ≡
(

3γ

2

)2 ∫
[uF (z)∂zuF (z)]2 dz = 27γ 2

40
√

2
. (23)

Here, � measures the strength of the effective noise at the level
of the front. Equation (21) is a Langevin equation for the front
position with a Gaussian white noise. Specifically,

〈ξ (t )〉 ≡
〈
− 3γ

2
√

�

∫
ζ (z + δ, t )uF ∂zuF dz

〉
,

= − 3γ

2
√

�

∫
〈ζ (z + δ, t )〉uF ∂zuF dz,

= 0 (24)

with the same procedure for the other cumulants. In particular,
〈ξ (t )ξ (t ′)〉 = δ(t − t ′). Thus all the properties of the reduced
noise ξ (t ) are inherited from the spatiotemporal noise ζ (z, t ).
Note that in contrast to B(t ) the noise ξ (t ) is not bounded,
despite the presence of the cutoff represented by the term
∂zuF (z) in the integrand in Eq. (22). This is because ξ (t )
depends on the noise realization, in addition to its time-
dependence. This difference has profound consequences for
the pinning-depinning transition.

Equation (21) describes an overdamped system with a
ratchet potential and additive white noise. Owing to generic
asymmetry of the potential U whenever α �= 0 and the lack
of a global stationary state, the system continuously converts
random fluctuations into directed motion of the front, i.e., the
noise induces front propagation. This behavior is known as
a Brownian motor [59]. Thus the main difference between
chaotic and stochastic forcing is that the former exhibits a
pinning-depinning transition while the latter does not.

VI. CONCLUSIONS AND REMARKS

The description of many-body systems using differential
equations for macroscopic variables with fluctuating terms
that account for ignored fast variables has been very
successful. A classic example of this type of description is the
Langevin equation associated with Brownian motion. This de-
scription assumes, explicitly or implicitly, that the fluctuations
are incoherent and so can be modeled by a prescribed stochas-
tic process. If the number of fast degrees of freedom is large
this process is taken to be Gaussian white noise. In general one
expects similar behavior in the presence of deterministic fluc-
tuations arising from a chaotic or turbulent system. However,
as shown here, there are important differences between these
two descriptions when it comes to the dynamics of fronts. This
is because the front profile provides a cutoff that determines
the effective noise acting on the front. This cutoff, specified by
the function ∂zuF (z), acts like a smoothed out δ-function. In-
deed, if we replace ∂zuF (z) by Gδ(z), we obtain from Eq. (12)
the result B(t ) = GuF (0)∂zψ (δ, t ) as the noise acting at the
location x = δ of the front. Since ψ (δ, t ) is specified by the
bounded dynamics of the Kuramoto-Sivashinsky equation (2)
B(t ) represents bounded fluctuations which may or may not
trigger a depinning transition. In contrast, in the stochastically
driven system (20) a similar procedure leads to the expression
ξ (t ) = G′uF (0)ζ (δ, t ). Since ζ (t ) is a Gaussian white noise
by assumption, we see that so is ξ (t ). However, the stochastic
description allows rare but arbitrarily large fluctuations at
any one location and this fact ultimately triggers a depinning
transition—all that one has to do is wait long enough. This
is not so in the deterministic case. We believe that it is this
distinction between the effective noise at the front location
that is ultimately responsible for the survival of pinning in the
deterministic case and its disappearance in the stochastic case.
This distinction may play a significant role in the evolution
of macroscopic quantities in other circumstances as well, as
in Ref. [60].

The dynamics of fronts is well known to be highly sen-
sitive to details of the system just ahead of the front, as in
the example studied by Brunet and Derrida [61,62] where
departures from the continuum description were found to have
an important effect on the speed of an invasion front. In this
paper we have obtained a similar result and showed that de-
terministic spatiotemporal fluctuations can trigger a pinning-
depinning transition of spatiotemporally chaotic patterns, a
transition that is washed out when stochastic fluctuations are
used instead. This fact represents a fundamental distinction
between these two cases.
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