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Spontaneous emergence of self-organized patterns and their bifurcations towards a regime of complex
dynamics in nonequilibrium dissipative systems is a paradigm of phase transition. Indeed, the behavior of
these patterns in the highly nonlinear regime remains less explored, even in recent high-quality-factor
resonators such as Kerr-nonlinear optical ones. Here, we investigate theoretically and experimentally the
alteration of the resulting Kerr frequency combs from the weakly to the highly nonlinear regime, in the
frameworks of spatiotemporal chaos, and dissipative phase transitions. We reveal the existence of a striking
and easily accessible scenario of spatiotemporal chaos, free of cavity solitons, in a monostable operating
regime, wherein a transition to amplitude turbulence via spatiotemporal intermittency is evidenced.
Moreover, statistics of the light bursts in the resulting turbulent regime unveils the existence of rogue waves
as extreme events characterized by long-tail statistics.
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I. INTRODUCTION

The concept of order-parameter description has played a
key role in understanding dissipative structures and self-
organized pattern in nonlinear systems. Indeed, this
description has been revealed to be a powerful theoretical
tool for classifying and describing dissipative structures in
weakly nonlinear regimes of nonequilibrium systems as
the ones subject to a moderate external driving power.
However, high external driving strengths lead dissipative
systems to strongly nonlinear regimes where they exhibit
extremely complicated dynamics such as spatiotemporal
chaos and turbulence. In such a case, the degree of
complexity of the highly nonlinear problem excludes
any attempt to find the appropriate order parameter that
remains an elusive task. The development of a complete
process for the study of the complex dynamics, including
spatiotemporal chaos and turbulence, occurring in highly
nonlinear regimes of dissipative systems is one of the most
challenging open problems in nonlinear science [1-3].
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Many recent advances in the understanding of complex
dynamics have been driven by experimental and theoretical
studies in modern optics, in fields as diverse as optical-fiber
cavities with quadratic or cubic nonlinear materials subject
to externally injected radiations [4—6]. The field of optics,
therefore, is ideally suited to the investigation of spatio-
temporal chaos and turbulence in dissipative systems far
from thermodynamic equilibrium (cavity and laser sys-
tems). Within a few decades, optical Kerr-nonlinear reso-
nators have emerged as the paradigmatic setup for the study
of externally driven nonlinear systems [7-9]. With length
scales ranging from the meter to micrometer [10,11], their
applications range from high-demand telecommunications
[12] to precision spectroscopy and light detection and
ranging (LIDAR) systems [13] based on the coherent optical
frequency combs that can be delivered. Kerr resonators are
also known for the property to continuously switch between a
monostable (single-valued transmission curve) and bistable
(S-shape transmission curve) regimes. Operating out of
equilibrium, Kerr resonators can exhibit nontrivial outputs
such as cavity solitons (localized coherent solution) [14—16]
and the modulation instability (MI) [17,18] (process by
which a homogeneous state breaks up into a periodic state).
Unlike cavity solitons requiring the system to be bistable, the
MI was reported both in bistable and monostable regimes.
There is currently a renewed interest for the MI in nearly
conservative physical systems after being tightly linked to
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the recent research activity and new developments in rogue
wave phenomena [19]. Optical analogs of the hydrodynamic
rogue waves are rare and short intense light pulses, charac-
terized by long-tail statistics in the probability distribution of
the intensity profile. They have been observed in numerous
optical systems and may result from the emergence of
coherent states or a collision of them. The Peregrine soliton,
and Akhmediev breathers in conservative systems described
by the nonlinear Schrodinger equation are the renowned
examples [20]. Out of equilibrium systems, to which the ring
resonators belong, have also been reported to exhibit rogue
waves as extreme events. In this context, they result from
deterministic processes leading to complex dynamical evo-
lIutions such as temporal chaos [21-24], spatiotemporal
chaos, and intermittency [25,26]. But from the general point
of view, the identification of the necessary ingredients for the
emergence of rogue waves and extreme events in dissipative
systems remains a challenging open problem, including
predictability [27], mechanisms of formation, and high
sensitivity to noise sources [28] of these giant waves.

Returning to Kerr resonators, despite the tremendous
interest on their dynamics, to the best of our knowledge,
the only reference to rogue wave generation is a theoretical
observation in the bistable regime with anomalous dispersion
[29]. Moreover, more generally, it is MI of the monostable
regime which has received much less attention. However,
the MI has been demonstrated to seed an extremely interest-
ing complex dynamics [30-32] when the pertinent control
parameter is brought far from the instability onset. Examples
include phase instability, spatiotemporal intermittency, and
turbulence.

In this work, we investigate experimentally and theo-
retically the transition from periodic patterns with a
triangular comb spectrum induced by MI in ring cavities
towards more complex dynamics using a combination of
three quantities:

(1) The Lyapunov dimension density.—The proof of the
matters of the spatiotemporal chaos in an extended
system is the existence of a continuous set of
positive Lyapunov exponents. Besides, this set
may increase with the number of degree of freedom
(d.o.f.) [33]. Therefore, any quantity directly defined
from a set of Lyapunov exponents yield to an
extensive quantity. For example, all definition of
the dimension of the attractor (the effective d.o.f. of
the system) produces a quantity proportional to the
volume of the system. The inverse of this propor-
tionality coefficient is an intensive quantity with the
same dimension of the volume of the system. Here,
we compute the Lyapunov dimension density from
the Kaplan-Yorke conjecture [33], which allows us to
determine the characteristic size of the independent
subsystems generated by the spatiotemporal chaos.

(i1) The two-point correlation length.—Any destabiliz-
ing process of a well-defined periodic pattern may

cause a meaningful reduction of the coherence in
the system. In such a disordered state one may be
interested in the probability of two separated points,
taken at the same time, to evolve coherently. This
probability can be estimated by computing the equal
time two-point correlation function or, in short, the
two-point correlation function [34—-38]. It is common-
place to find a decaying exponential dependence of
this function on the separation distance between the
two points. Hence, the two-point correlation length
which corresponds to the inverse of this decay rate is
of particular interest to detect the phase transitionlike
processes when varying a pertinent parameter of the
system.

(iii) [Intrinsic laminar length.—Finite correlation range
can be the result of a mixed state where spatiotem-
poral coherent (laminar) subsystems coexist with
incoherent (or chaotic) ones. In this case, the
probability distribution function of the laminar
subsystem gaps can provide a significant signature
about the nature of the complex dynamics. Namely,
a power-law distribution entails the spatiotemporal
intermittency and an exponential distribution is a
characteristic of the fully developed turbulence.
However, it is more likely to find a range of the
probability distribution of laminar regions that fits a
decaying exponential law [2,30,31]. We will refer to
this quantity as the intrinsic laminar length.

Note that, although the use of these quantities is widespread
in hydrodynamics [2,30,31], only very few examples of
their use are known in optics despite the many analogies
between these areas. Besides, if the correlation length has
been already associated with the Lyapunov dimension
correlation or to the intrinsic exponential decay, the three
quantities have not been used together yet. In the following,
we numerically demonstrate that a monostable Kerr reso-
nator can exhibit a spatiotemporal chaotic regime. We
verify experimentally and numerically that the transition
to this, a chaotic behavior, coincides with a diverging
two-point correlation length in the system when varying the
external driving strength. The correlation length allows
us to identify a second transition in the dynamics. The
numerical computation of the intrinsic laminar length helps
to reveal this change as the transition from spatiotemporal
intermittency to fully developed or amplitude turbulence.
At this transition, we identify the appearance of extreme
events in the intensity profile. Finally, the temporal profile
of the rogue waves is obtained through the analysis of the
correlation function. Theoretical results and experimental
observations are in a good agreement.

The paper is organized as follows. In Sec. II the exper-
imental setup, based on a coherently driven passive optical-
fiber ring cavity, is illustrated and the main ingredients for
achieving the experiments are described. We also present
both the governing equations of the experimental optical
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device and the reduced Lugiato-Lefever model. In Sec. III
spatiotemporal chaos resulting from modulation instability
is analytically and numerically studied and the optimal range
of parameters are determined. The results of our investiga-
tions on the complex dynamics appearing in the system,
including spatiotemporal chaos, intermittency, and turbu-
lence are then presented. Our concluding remarks are
summarized in Sec. IV.

II. EXPERIMENTAL SETUP AND
MODELIZATION

Our experimental setup based on a coherently driven
passive optical-fiber ring cavity is depicted in Fig. 1. The
resonant passive fiber ring cavity is mainly made of a
26.5-m-long segment of highly nonlinear optical fiber. The
fiber combines a low group-velocity dispersion with
a high nonlinear coefficient so as to enhance MI gain
(B, = —0.89 ps’km™!, y = 10 W' km™" at 1552.4 nm).
It also exhibits a low third-order dispersion (f; ~
0.01 ps*km™") that can be neglected (the zero dispersion
wavelength is located below 1500 nm far from the pump
wavelength). A 90/10 input coupler is used to close the
fiber loop cavity, whereas a 99/1 output coupler permits us
to extract and analyze the intracavity field. The two
couplers are made of SMF28 fiber with a total length of
1.5 m that belongs to the cavity (i.e., the total cavity length
is equal to 28 m). The SMF28 fiber exhibits the following
usual parameters: ,=—21.7ps’km™! and y=1.2W~'km™!.
We split a continuous-wave (cw) laser at 1552.4 nm
(linewidth < 1 kHz) into two parts. The first part, the
control wave, is injected into the cavity to stabilize and

Pump generation and synchronization

reference

Fiber cavity

FIG. 1. Experimental setup. ISO, optical isolator; PC, polari-
zation controller; EOM, electro-optic (intensity) modulator;
EDFA, erbium-doped fiber amplifier; OBPF, bandpass optical
filter; OC, optical circulator; PD, photodiode; HNLF, highly
nonlinear optical fiber; AUTOCO, autocorrelator; OSA, optical
spectrum analyzer.

fix the linear detuning at the pump frequency w,, with the
help of a proportional integral differential controller that
finely tunes the laser wavelength. The second part, the
pump wave, is intensity modulated to generate 2 ns square
pulses at 7.36 MHz repetition rate (corresponding to the
cavity’s free spectral range). This stage simultaneously
enables the increase of the pump peak powers and the
circumvention of Brillouin backscattering within the cavity.
The resulting quasi-cw pump is amplified by an erbium-
doped fiber amplifier (EDFA), and launched into the cavity
through the 90/10 coupler. To minimize their mutual
interaction, the control and pump beams are counterpro-
pagating. Input polarization states are controlled via polari-
zation controllers to excite a neutral axis of the cavity fiber.
Temporal and spectral characterizations of the intracavity
field are provided by an intensity autocorrelator (with a
temporal resolution of 10 fs and a full time window limited
to 80 ps) and a high-resolution (2.5 GHz) optical spectrum
analyzer. The light field circulating in the effective fiber
ring cavity (yellow box of Fig. 1) can be described by the
following set of equations coupling the successive round-
trip propagation described by the generalized nonlinear
Schrodinger equation (1a) to the synchronously coherent
injection (1b) [39-41]:

ll’l

B o
n! aTAm(Z’T)

a r
8zAm(Z’ T) = _%Am(z’ T) + lZ
n>2

i
+ i}/<1 + —8T>Am(z, T)
@

x /)mR(T’)|Am(z,T— )|dT, (1a)
An1(0,T) = VOE{(T) + \/pA,, (L, T)e™®. (1b)

Here, f; stands for the round-trip time which is the time
taken by the pulse to propagate along the cavity with the
group velocity, @, is the linear phase shift, 6(p) is the
mirror transmission (reflection) coefficient, @ is the pump
frequency, and L is the cavity length. The complex
envelope of the electric field inside the cavity at the mth
round trip is A,,. Each of the coefficients 3, is responsible
for the nth order dispersion, y is the nonlinear coefficient,
and ay is the attenuation along the fiber. The independent
variable z refers to the longitudinal coordinate while T is
the time in a reference frame moving with the group
velocity of the light, and R(T) is the nonlinear response
including both instantaneous (Kerr effect) and delayed
contributions (Raman effect). From transmission measure-
ments, we deduced that the finesse F = 27/60. is nearly
19. Hence, the total power losses of the cavity .4 including
fiber absorption and coupler losses are about 30%
(Oer = 0.3). From the fiber parameters, we obtain that
our cavity is equivalent to a unique fiber ring cavity with
Poetr = =2 ps’km™! and y. = 9.6 W' km~!. Therefore,
without loss of generality, the evolution of the electric field
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inside the cavity is well described by the Lugiato-Lefever
equation (LL model) [41,42]:

2

) . 0 :
F=S—(+iby—ingE+ilyPy. (@)

or

where a=0./2, S = 2E;\/yL,w=A,,\/yL/a, t = at' / tg,
andz=T/T, withT,, = \/|fL|/(2a). A = (2krn — ®y)/a
is the detuning with respect to the nearest cavity resonance
k. The coefficient = %1 is the sign of the group-velocity
dispersion term and T, = \/|f,L|/(2a) and ¢ = mitg
accounts for the continuous time introduced to account
for the evolution of the intracavity field over the round trips.

In the bistable regime, the latter equation can exhibit
solitonlike solutions (i.e., cavity solitons) [12,43,44].
Increasing the driving strength this soliton first undergoes
an Andronov-Hopf instability yielding to self-pulsating
localized state. For larger values of the pump intensity,
this oscillatory localized state, in turn, becomes unstable.
The evolution of the resulting complex state has been
demonstrated to be of a spatiotemporal chaotic nature
[45,46]. In this region of parameters, some of the emerging
erratic spatiotemporal localized states have been sta-
tistically shown to satisfy the criteria of extreme events
[29]. From a general point of view, the extensive literature
in the highly nonlinear bistable regime contrasts with those
of the monostable case that we are interested in. The reason
is twofold, (i) bistability makes more accessible the
experimental observation of solitons, (ii) the complex
nonlinear dynamics is believed richer than in the mono-
stable regime. Indeed, in the monostable regime, most
studies are dominated by the weakly nonlinear analysis.
In that case, only MI is present and the system remains
stable and evolves in a regular way [42,47-51]. The
corresponding periodic pattern is characterized by a tri-
angular comb spectrum [47-51] whose behavior in the
highly nonlinear regime, however, remained unexplored.

To fill this lack, we then perform a set of spectral and
temporal measurements for a normalized linear detuning
set to A = 2(27k — ¢pg)/0.r = 0.55. Here, k refers to the
nearest resonance and O.;/2 = o = n/F represents the
power lost per round trip, with F the effective finesse of
the cavity. For this value of the detuning, the setup is said to
be in the monostable regime where no cavity soliton or
complex dynamics related to bistability can take place,
which prevents the formation of dissipative Kerr solitons.
Only the Turing pattern or modulation instability (MI) can
be observed at the onset of the cavity emission.

Figure 2 depicts the evolution of the intracavity spectrum
while tuning the input peak power. The first subfigure
Fig. 2(a) represents the spectrum recorded for an input peak
power Py = |A;,|> = 0.16 W (slightly above the MI thresh-
old, Py, = 0.15 W). Two weak MI sidebands detuned by
407 GHz appears in the spectrum. By increasing the pump
power, we observe their amplification and frequency
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FIG. 2. Experimental results. Intracavity spectra recorded for
different input pump powers: (a) 0.16 W, (b) 0.24 W, (c) 0.56 W,
(d) 0.9 W, (e) 3.1 W, and (f) 20.7 W.

detuning [Fig. 2(b)]. Also, the dynamics of cascade of
MI sidebands appears progressively forming a triangular
Kerr frequency comb (in a log scale) composed by four
harmonics of the MI frequency, equally spaced and detuned
from the pump by 530 GHz [Fig. 2(c)]. For higher pumping
power [Fig. 2(d)], intermediary spectral peaks centered
between the MI bands start to growth.

While increasing further the pump power, a more
complex and broader spectrum develops [Fig. 2(e)]. For
Py =20 W, a broad continuous triangular spectrum is
formed [Fig. 2(f)]. We also observe the emergence of
the broad Raman Stokes component detuned by —13 THz
from the pump. We cannot further increase the power
because of the formation of a Brillouin wave inside the
cavity which destabilizes the locking loop.

Moreover, we perform temporal measurements of the
intracavity field by means of a background-free second-
harmonic autocorrelator. Figure 3 displays the distinct
recorded autocorrelation traces corresponding to the spectra
from Fig. 2. In the beginning, for a power just upon the
MI threshold, we record a nearly flat trace corresponding
to a quasicontinuous intensity field [Fig. 3(a)]. With the
appearance and growth of MI sidebands, the trace becomes
regularly modulated [Fig. 3(b)]. The contrast of this modu-
lation is maximum when the triangular comb is reached [see
Fig. 3(c)] indicating the formation of a short-pulse pattern on
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FIG. 3. Experimental results. Autocorrelation traces recorded

for different input pump powers: (a) 0.16 W, (b) 0.24 W,
(c) 0.56 W, (d) 0.9 W, (e) 3.1 W, and (f) 20.7 W.

a finite background inside the cavity. The period of the pulse
train is about 1.85 ps in agreement with the expected
530-GHz repetition rate driven by the MI frequency. The
central peak corresponds to the autocorrelation of a single
pulse, whereas the adjacent peaks are the cross-correlations
between neighboring pulses. With the growth of the addi-
tional spectral peaks between the MI harmonics, the contrast
seen in the trace starts to be degraded [Fig. 3(d)]. Since the
cross-correlations between neighboring pulses is highly
sensitive to neighboring pulse differences, we can infer
the degradation of the formed pulses train because of these
new sidebands. For high pump powers, the modulation
completely disappears and only a central peak of coherence
remains [Figs. 3(e) and 3(f)]. This reveals the strong intensity
incoherence of the intracavity field (over a single round trip).

We also perform numerical simulations based on Egs. (1).
The simulated intracavity spectra obtained after 10000
cavity round trips (i.e., a stationary state circulating in the
cavity) as a function of the input peak power are not shown
here because of the high resemblance with those of Figs. 2.
However, temporal analysis of the simulated intracavity
field is shown in Fig. 4. In particular, the autocorrelation
traces (red lines, right axis) are found to be similar to the
experimental ones. Figure 4 also shows the corresponding
field evolution (black lines, left axis). Details from the field
evolution allow confirming the experimental results. At first,
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FIG. 4. Numerical results obtained from Egs. (1). Intracavity
temporal profiles and corresponding autocorrelation signals
obtained for different pump powers: (a) 0.188 W, (b) 0.24 W,
(c) 045 W, (d) 0.9 W, (e) 3.1 W, and (f) 12.5 W.

the appearance of the M1 sidebands induces the modulation
of the intracavity field until the formation of a train of
short pulses (of about 360 fs) on a finite background
[Figs. 4(a)-4(c)].

Next, the growth of intermediary bands progressively
degrades the regular pulse train, first, by doubling the
period [Fig. 4(d)] and then by strongly decreasing the
intensity coherence, i.e., an irregular wave forms with
the appearance of some rare pulses with high peak powers
compared to the average. To characterize this behavior from
a statistical point of view, we compute the probability
density distribution of the intensity peaks of the circulating
intracavity field (using data from the last 1000 round trips).
Figure 5 displays the probability density function versus
the pulse peak power. We remark that for an input power
of ~1 W (or below), we mostly observe a distribution
centered on a unique value of peak power that evolves
towards a bimodal distribution. This behavior is directly
related to the initial regular pulse train on a finite back-
ground whose period becomes doubled due to the growth
of intermediary spectral bands [Fig. 3(d)]. After that, the
temporal pattern is wholly degraded [Figs. 4(d) and 4(e)],
the corresponding statistics broadens and becomes pro-
gressively more tailed [i.e., towards a right-skewed dis-
tribution, see Fig. 5(c)]. For further increased power, the
statistics develops a long tail indicating the presence of
rare events with extremely high peak powers [Fig. 5(d)].
These events can reach a peak power ten times higher than
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(b) 0.9W, (c) 3.1W, and (d) 12.5 W.

the average intracavity power. Note that the calculated
rogue wave-intensity threshold, defined as Ixw = 21 (Igg
being the significant intensity equal to the mean of the
upper third of events in the distribution), is Igw = 5.1, 9.2,
17.6, and 34.9, respectively, for subplots from Fig. 5. As a
consequence, this criterion confirms that extreme events
then appear for input power powers ~2 W. To the best of
our knowledge, extreme events have never been reported in
this monostable regime of a passive Kerr-type cavity. For a
better understanding of the mechanism behind this pre-
diction, the rise of the observed spatiotemporal complexity
needs to be deeply characterized. However, it is an elusive
task to apply many of the tools of dynamical systems on
Egs. (1). Hence, for the sake of simplicity and without loss
of generality, in what follows, we will use the reduced
equation (2). For the accuracy of our prediction based on
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FIG. 6. Interpolation of experimental data extracted from the

experimental measured spectra.

TABLE I. Comparison between extracted and expected effec-
tive parameters.

Calculated Expected
A 0.42 0.55
T, (ps) 0.48 0.43
a=|p,L|/(2T2) 0.12 0.15
F=n/a 26.36 20.94
Our = 20 0.24 0.30

this model (2), it is worthy to determine the effective
parameters from the experimental measurements.

Close to the emission threshold, from Eq. (2), the
dimensionless frequency shift of the MI is given by Q. =
V2I, = A/(27) when n = —1. Q2 is then a linear function
of the intracavity field with the y intercept corresponding to
—A. By setting P;, the mean intracavity intensity and @,. the
physical frequency shift we can infer that 2 = aP;, + b
with a and b to be determined. P;, can be also given in ratio
of its value at the MI threshold Pih, such that I, = P;,/P.
Hence, it follows

th
s _aPh (. 2b
a)C 2 < N + ap}[[: .

> _ [pL
aph 20

On the other hand, in the weakly nonlinear regime, the
amplitude of the MI varies linearly with the distance at the
threshold. From the experimental data, we have extracted
the w, and the corresponding magnitude. The result is
given in Fig. 6. From Fig. 6(b) the threshold is obtained as
Pﬂ} = 1.985/3.615 = 0.55 W. By considering the effective
length L = 28 m and group-velocity dispersion parameter
Poetr = —2 ps’km™! we have calculated the effective
parameters corresponding to the configuration of the setup.
The most relevant are shown in Table L.

Consequently,

A=

1
——, and T,=—
an; 2r

III. FROM MODULATION INSTABILITY TO
SPATIOTEMPORAL CHAOS

After the validation of effective parameters, we now
follow the evolution of the modulation instability from the
weak to the unexplored large driving strength regime.
Figure 7(a) shows the evolution of the recorded intracavity
power spectrum when the power of the driving beam
(i.e., the pump) increases. We first recall the two signifi-
cant and striking features that have drawn our attention to
the evolution of these spectra. The first one is a transition
from a purely triangular comb (in a log scale) to a quasi-
periodic-like spectrum formed by the appearance of
secondary instability bands in between the primary comb

011054-6



TURBULENCE-INDUCED ROGUE WAVES IN KERR ...

PHYS. REV. X 9, 011054 (2019)

f@
faa) | Py=0.16 W, Po=0.24 W, 0=0.56 W|
o
&
g Numerics.
S L
®
s | 1 1
& -3 - 0 3 30 3 30
Frequency shift (THz)
(b) TREIRTET ‘ PR NI Y 100
s = 1.0 A3N s = 2.0]
25 ‘..','LEW !
X :" I ) : | : :
= aeaeeaiad
15 - 52 " f : A {\
QONALRAND
E'N ( {
"ALY A
. ‘:l.t‘ " ,::‘ 20
2' Sesnnnn
AR N
ié - a— 0
-7 0 7 -7 0 7 -7 0 7 -7 0 7 -7 7 -7 0 7
7 (ps) 7 (ps) 7 (ps) 7 (ps) T (pS) 7 (ps)

FIG. 7.

(a) Experimental (red) and numerical (blue) intracavity spectra recorded for different input pump powers. For clarity,

experimental spectra are vertically offset by —20 dB. (b) Evolution of the intracavity intensity profile over several round trips, computed
numerically from the Lugiato-Lefever equation (2) for the same values of the pump powers in the top panel. The value of I is calculated
in ratio of the intracavity mean power at the threshold P. The detuning parameter is A = 0.55.

teeth. The second change arises while a continuous
spectrum is observed in place of the comblike profile.
Later, this continuous spectrum only broadens as the
pump power increases. A typical behavior is shown in
Fig. 7(a) obtained from the numerical simulations based
on the Lugiato-Lefever equation (2). The bottom panel
[Fig. 7(b)] shows the corresponding density plot of the
temporal traces for successive round trips. The key feature
of this evolution is the apparent complexity of the dynamics

when the spectrum goes beyond the triangular-shaped comb
(I; ~2.0). The analysis of the structural changes in the
optical spectrum is performed through the computation
of the Lyapunov spectrum (see Appendix A for details) of
this reduced model for an increasing pump power. The
results are displayed in Fig. 8(a). From this figure, we can
observe a value of the pump power (/; = 2.0) below which
the continuous Lyapunov spectra are composed of only
negative exponents. Above this value, the spectra show a

-

500

o

L1 %300
o &a00}

Lyapunov Spectrum

() .
1 29
s : ot
100 : oo
-1 : e
‘ ‘ : 48
1
ag.2l ‘ K
20| (b) 5l AT =1536 O
107 AT =2048 A
o it 7y — 256,
é1_3 | & ‘AT 2569 <©
N &3t 4.5
0.4 2T & Simulation 3 L
‘ - Expefiment i ) )
2 3 4 2 3 4 5
1/ hn 1/ hn
FIG. 8. (a) Lyapunov spectra computed from the numerical integration of Eq. (2) with increasing pump power. (b) The Lyapunov

dimension density dimension. (c) Dependence of the Kaplan-Yorke dimension (blue triangles) and the proportion of extreme events (red
squares) on the pump power. (d) The equal-time two-points correlation length with respect to the input parameter. (e) Square of the
maximum exponential decay rate of the laminar periods inside a round trip of temporal profiles.

011054-7



SALIYA COULIBALY et al.

PHYS. REV. X 9, 011054 (2019)

region with positive exponents that increases with pump
power suggesting the emergence of a chaotic dynamics in
the spatiotemporal complexity observed for /I, > 2.0 in
Fig. 7(b). An indicative quantity of the number of d.o.f.
needed to describe the chaotic dynamics is the dimension of
the strange attractor. An estimator of this dimension, based
on the Lyapunov spectrum, has been conjectured by Kaplan
and Yorke [52]. The dependence of this Kaplan-Yorke
dimension Dyy on the control parameter is shown by
Fig. 8(c), which confirms the increasing of the complexity
with the pump power. Besides this growth of the Kaplan-
Yorke dimension with the pump power, we must also
consider the conjecture that the dimension increases with
the size of the system—extensive nature of the spatiotem-
poral chaos [33,53-56]. To focus only on the effect of the
pump power, it is necessary to use an intensive measure-
ment of the complexity. This can be done through the
Lyapunov dimension density (see Appendixes A and B).
Indeed, Dxy may change linearly with the volume of the
system [33,34]. That is, for a 1D system, Dgy = fglAT
where AT is the extension of the system and &z represents
the Lyapunov dimension density of the system for a fixed
value of the pump power. Therefore, it is an intensive
quantity that provides an estimation of the extension of the
independent subsystems generated by the chaotic dynam-
ics. We have performed a systematic calculation of the
Lyapunov dimension density &5 and the results are given in
Fig. 8(b). It appears that the characteristic range of chaotic
fluctuations decreases as the driving power increases.
Considering that the spatiotemporal chaos produces a
subsystem of the order of &5, one might wonder how far
these subsystems interact. This can be addressed by char-
acterizing the average temporal disorder provided by the
equal-time two-point correlation length &, obtained from the
exponential decay of the following integral [34,35,38]:

C(ar) = (y(Ar+7.0) = Wy (7. 1) = w))). (3)

The brackets (-) stand for the average process (see
Appendix C for practical computation). For our system,
the result is shown in Fig. 8(d). We clearly observe a
nonmonotonic evolution of the correlation time in a
subsequent range of pump power. This behavior is well
confirmed by corresponding experimental data, sug-
gesting that short-range fluctuations measured by ¢&s
may be decoupled from the long-range order measured
by &, [38]. In general, for unidimensional (1D) systems, &
and &, are proportional, specifically when the later one is
computed from the magnitude of the considered field.
For now, only one study has reported different evolutions of
&s and &,. However, in that case &, has been computed from
the phase [37]. Hence, the decoupling between &z and &,
measured here from the same dynamical component—
the magnitude of the intracavity field—is an unexpected
observation.

From Figs. 8(b) and 8(c) we can see that the correlation
length &, can be larger up to ten times the Lyapunov density
dimension. Therefore, a significant number of the subsys-
tems may be dynamically correlated. Two central questions
arise from this observation. Are the spatiotemporal chaotic
subsystems contiguous or not and if not what is the
characteristic time in between? An appropriate method to
answer these questions is to address the dynamics of the
different points of the system in terms of laminar (regular)
and turbulent (irregular) periods according to a cutoff
threshold [57]. If the chaotic subsystems are not contiguous,
the dynamics may lead to a fluctuating mixture of turbulent
and laminar periods [5,31], the so-called spatiotemporal
intermittency. If so, the probability distribution of the
laminar periods should be a mixture of the power law
(long-range correlation) and the exponential law (short
range) [31]. In this mixture distribution, the exponent of
the power law (i) is expected to be insensitive to the input
parameter or the value of the cutoff threshold. By contrast,
the decay rate (m) of the exponential law depends on both
parameters. Since the dependence on the cutoff threshold is
only a decaying exponential, the y intercept (1) contains
the dependence on the control parameter S through 7,. We
will refer to m, as the intrinsic exponential decay.

A. Transition to amplitude turbulence via
spatiotemporal intermittency

Before going further, it may be helpful to describe with
details how we have detected the laminar and turbulent
domain in the temporal traces. This characterization was
done following the process explained in Ref. [31]. As
reminded by authors in the latter reference, the distinction
between laminar and turbulent regions solely in terms of the
amplitude does not have a rigorous justification. However,
as we will see later, the domain boundaries obtained using
the amplitude also correspond to a local change in the
periodicity of the patterns. Notice that a rigorous distinction
condition should be based on local frequency fluctuations
over a round trip.

According to the aforementioned process separating our
temporal profile in a laminar and turbulent region is done as
follows:

(1) Detecting hills and valley in the temporal tracer

[Fig. 9(a)].
(2) Computing the amplitude of the local peak to peak
amplitude [Fig. 9(b)].
(3) Fixing a threshold below which a local peak is said to
be laminar or turbulent otherwise [Figs. 9(c) and 9(d)].
After the last step of this process, the statistical study of the
laminar duration is done. According to the theory, spatio-
temporal intermittency is characterized by a power-law
decay of the number of laminar time duration, while an
exponential decay governs a fully amplitude turbulent
regime. However, in case of Ising-type transition the
probability density distribution of the laminar time should
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FIG. 9. Illustration of the process transforming the temporal trace into black (turbulent) and white (laminar) region. In (a) the hills and
valley are detected. (b) The temporal trace is transformed into the value of local hills (blue), valley (red), and peak-to-peak (gray,
AH = (H); — (V),). These local values are given by the moving average over three consecutive values: (V);, = (V,_; + 2V, + V) /4.
(c) Setting ¢ a detection threshold, the temporal trace is locally transformed into laminar (below threshold, white) or turbulent (below
threshold, black). Varying this threshold we can see that the statistics of the black or white region changes. (d) Example of binarized
round-trip dynamics increasing (from left to right) the detection threshold.

follow a mixture function as suggested by the authors in  exhibits almost no dependence neither on the detection
[31]. Figure 10 shows the log-log plots of the probability  threshold nor the control parameter. Considering the mean
density function of laminar region when increasing the  value u = 4.8 £+ 0.4, we were able always to find a portion
pump power. As expected, the slope of the best-linear fit — of the statistics that satisfies the law PDF(x) o« x7#,
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FIG. 10. Log-log plot of the probability density distribution of the laminar duration time (z;) computed from the numerical
simulations for A = 0.5, taking different values of the detection threshold c. The slope y of the green lines correspond to the mean value
of the best linear fit estimated with the PDF obtained for 2.0 < I, < 2.75. Therefore, we can write that PDF(x) = Ax™*.
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for A = 0.5, taking different values of the detection threshold c. For a given value of the control parameter, the slope m of the green lines
decreases as ¢ increases such that m(1I, ¢) = m(I,)e~/“. Hence, the intrinsic slope (1) corresponds to the y intercept as illustrated

by (b).

characteristic of a spatiotemporal intermittent evolution.
Elsewhere, there are also some portions of the statistics that
may decay exponentially: PDF(x) o e™"* [see Fig. 11(a)].
However, this decay rate depends on ¢, and the control
parameter /, such that m (I, ¢) = my(I;)e~/“ as shown in
Fig. 11(b). Finally, as it can be seen from Fig. 8(e) m(/,)
itself presents a power-law increase on the control parameter.

Indeed, the different size of the system shows the same linear
evolution of m3 upon . This figure also allows us to identify
two critical points—yvalues of the control parameter / from
which m scales as a power law. At the first transition which
occurs at /; ~ 2, the distribution of laminar periods follows
a power law. Therefore, we conclude that 7, ~ 2, that we set
to I, = I3™, corresponds to the onset of the spatiotemporal

P(t) = (At " + B)emls) —

4,

= Ll

£
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FIG. 12. Probability density distribution (+4) of the laminar duration time computed from the numerical simulations for A = 0.5, for
¢ =0.9. The solid line corresponds to the fit following the function P(x) = (Ax™* + B)e ™.
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(a) Superposition of the round-trip temporal profiles containing an extreme event (gray lines). The blue (red) line corresponds

to the function |C(A7)|* obtained from the numerical (experimental spectra) data. Their maxima have been rescaled to the value of the
highest peak amplitude. (b) Logarithmic scaled probability density functions of spatiotemporal peaks when increasing the pump power.
The green line refers to peaks above twice the characteristic height and the black line is the Rayleigh distribution with unity mean value.

intermittency. Since I, = I3T ~ 2 also coincides with the
onset of the spatiotemporal chaos, we can conclude that the
spatiotemporal intermittency is the route to this chaos
[31,57]. The second critical phenomenon which occurs at
I, = I ~ 3 reveals the onset to the fully developed ampli-
tude turbulence [58], given that the distribution of laminar
periods follows an exponential law [57]. For IS™ < I, < IT
we are able to fit the probability distribution as P(z) =
(At™* + B) exp(—mrt) [see Figs. 12(a)-12(d)], typical of a
phase transition process [31]. In this range of parameters,
from the numerical data, we can observe the presence of
intensity bursts in the intracavity field temporal profile.
Figure 13(a) shows the typical profile of 100 largest bursts
when increasing the pump power. It reveals that the largest
peaks are always surrounded by smaller ones located at a
position corresponding roughly to &,. This shows evidence
that 2&, quantifies the region needed by the bursts to rise
and disappear. We have also plotted over these profiles the
experimental two-point correlation function |C(A7)|*. We
emphasize that the correlation function gives an accurate
estimation of the temporal profiles of the intensity bursts,
specifically inside the turbulent regime. We have then
considered the statistical analysis of these intensity peaks
in connection with extreme event studies [59]. Figure 8(c)
shows the evolution of the ratio (pgg) of bursts that can be
considered as extreme events using the criterion defined in
hydrodynamics [59] and Fig. 13(b) gives some of the
corresponding probability distributions. From these two
results, we observe that the emergence of extreme events
appears to coincide with the onset of the turbulent regime at
I, = I Furthermore, in the vicinity of a local maximum of
the correlation length and just before the emergence of the
extreme events, we notice the bimodal shape of the prob-
ability density function (PDF). This suggests the existence of

two main subpopulations in the intensity profile like in the
metal-insulator phase transition [60,61].

IV. CONCLUSION

In summary, we have shown that the dynamics of the well-
known periodic Turing patterns associated with the triangu-
lar-shape frequency comb in a Kerr-nonlinear ring cavity can
be subject to transition to spatiotemporal chaos. Our findings
show that combining the study of different order parameters
instead of trying to get the better one might be the sound
approach to describing the spatiotemporal complexity. Once
established that the whole system can be split into indepen-
dent subsystems through the computation of the Lyapunov
dimension length, the equal-time correlation length has
provided the range over which their fluctuations are dynami-
cally connected even not contiguous. Indeed, chaotic sub-
systems (turbulent) are shown to be separated by coherent
subsystems (laminar). By analogy with fluids, the resulting
mixture undergoes a transition to turbulence via spatiotem-
poral intermittency. Our findings also show that nonexcitable
passive resonators can generate spatiotemporal pulses whose
probability distribution exhibits a long tail (i.e., extreme
events). Hence, the scenario of the dynamics observed in the
monostable operating regime is different from the bistable
case where the breathing cavity solitons lead to the emer-
gence and the dynamics of spatiotemporal chaotic behaviors.
Both operating regimes show spatiotemporal chaos.
However, their nature and emerging mechanism are differ-
ent. Our results highlight how experiments in optics with
controllable complexity using technology-driven compo-
nents can be used to develop an understanding of funda-
mental nonlinear dynamics in dissipative systems. We
anticipate applications in establishing links between different
branches of nonlinear science for which the occurrence of
critical phenomena and extreme events is universal.
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APPENDIX A: LYAPUNOV SPECTRUM

Given a solution of the considered system, the Lyapunov
spectrum characterizes the evolution of the perturbations
around it. This spectrum is composed of the set of
Lyapunov exponents. Positive exponents manifest a chaotic
nature of the dynamics.

The procedure to obtain the Lyapunov spectrum is the
following [62]. Let us take the linearized system 0,6X =
JoX, where 6X is the perturbation around the considered
solution and J the respective Jacobian. Introducing a matrix
L, that contains n orthonormal vectors v;

L(t:to)E[Vl V2 Vn]
X1 X2 X130 .. X
X21 X2 XQ:; X>
= "I, (an
Xa1 Xa2  Xg3 - Xdp

where d is the dimension of the system and n the number of
Lyapunov exponents to be computed. After a time incre-
ment dr, the matrix L evolves to L(zy + dt) = UL(t,)
where U = ¢J*¥_ Using the modified Gram-Schmidt QR
decomposition on L(fy + dt), the diagonal elements of R
account for the Lyapunov exponents 4, (i=1,...,n)attime
to + dt, that is

Jilto + di) = %m R;i (1o + di)]. (A2)

Repeating this procedure several times, after a large number
of iterations N, the Lyapunov exponents can be approxi-
mated by

b= = ﬁ;m R (1o + kdf)].  (A3)

APPENDIX B: SPATIOTEMPORAL CHAOS
DIMENSIONS §&;

Considering the extensive feature of the spatiotemporal
chaos, the Kaplan-Yorke dimension,

[y
Dyy = p+ =45, (B1)

Ap+1
where p is the largest integer that satisfies » 7, 4; > 0.
Dyy may change linearly with the volume of the system
[33,34]. That is, for a 1D system, Dy = &5 AT where AT
is the extension of the system and &5 represents the
Lyapunov dimension density of the system for a fixed
value of the control parameter. This quantity gives an
estimation of the extension of the dynamically independent

subsystems.

APPENDIX C: EQUAL TIME CORRELATION
LENGTH &,

The correlation length &, is defined as the exponential
decay of the equal time two-point correlation [34,35,38]:

C(Ar) = (ly(Ar + 7. 1) = W)l (7. 1) = (w))),

where the brackets (-) stand for the average process. The
direct determination of C(Ar) is quite costly in calculation
time. However, by using the Wiener-Khintchin theorem
[37,63], it is computed by the following process: first time
averaging the Fourier spectra and next taking the inverse
Fourier transform of its magnitude squared. Since the
experimental spectra result from an averaging process over
a large number of cavity round trip, C(A7) can also be
computed taking the inverse Fourier transform of the
measured spectrum. Hence, for the LL equation (2), we
have computed &5 end &, with respect to the input pump
intensity.
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