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A B S T R A C T

Driven nano-magnets have attracted increasing attention due to their potential applications and complex dy-
namical behavior. Spin valves are possibly the most studied driven nano-magnets because applied magnetic
fields and electric currents can control their magnetization. Due to these properties, spin valves are proposed
candidates for the new generation of memory units. Based on the Landau-Lifshitz-Gilbert-Slonczewski equation,
we show that this system exhibits a wide range of magnetization textures, such as patterns, domain walls, and
localized structures. Monitoring the Largest Lyapunov exponent, we demonstrate that these textures are chaotic.
We numerically characterize the dynamical behavior of this device using the magnetic energy and the magne-
toresistance. Finally, we present a phase diagram of the different types of spatial solutions as a function of the
applied current and the field.

1. Introduction

When a macroscopic system is driven out of thermodynamic equi-
librium, it exhibits spatially periodic states or patterns [1–3]. These
textures usually emerge as the result of a symmetry-breaking instability of
a uniform state. When the system is subjected to a more significant
energy injection, stationary patterns can become unstable and give rise
to more complex textures. For example, chaotic localized states arise
from steady localized states when a control parameter is increased
[4,5]. Furthermore, a usual hallmark of the spatially extended non-
equilibrium system is spatiotemporal chaos, characterized by dynamics
that are aperiodic in time and space with sensitive dependence on the
initial conditions [6,7]. Understanding the origin of spatiotemporal
order, the selection mechanisms of the spatial structures and the routes
that lead to spatiotemporal chaos from stationary patterns are major
themes of interest in nonlinear science.

Let us focus on the particular case of driven nano-magnets.
Dissipative magnetization dynamics is a phenomenon that has gained
renewed interest in the scientific community because of the applica-
tions in magnetic memory and current-induced magnetization devices
[8–10]. Magnetic states can be created and controlled by applying ex-
ternal magnetic fields [11], pure electric voltages [12], pure spin-cur-
rents [13] and spin-polarized electric currents. The last mechanism is
based on the spin-transfer-torque (STT) effect predicted by Slonczewski
[14,15] and Berger [16]. The STT consist of the transfer of spin-angular

momentum from electric currents to the localized spins of the magnetic
material [17–19].

The Landau-Lifshitz-Gilbert-Slonczewski equation is the continuous
description for driven nano-magnets [15]. It accounts for the general
case of magnetization interacting with both spin-polarized currents and
magnetic fields. This equation can be transformed into the well-known
generalized Nonlinear Schrödinger equation [20], which describes
nonlinear dissipative waves [21]. Then, the dynamics of driven magnets
have several similarities and share some behavior with other physical
systems outside of equilibrium [21–24].

In our case, by varying the electric current and the applied field the
system exhibit bistability between homogeneous states and patterns,
which is one of the main ingredients to find localized states [2,25],
known as solitons [26]. Solitonic modes have been experimentally ob-
served in nano-oscillators [27–29]. State of the art for conservative and
dissipative localized state can be found in Refs. [26,25,24]. In addition
to conventional soliton, there are other localized states that exist in
different types of systems [30–34,36,35,37].

In driven nano-magnets, complicated spatiotemporal magnetization
structures emerge due to the combined effects of the spin-polarized
current, spatial coupling and dissipation. As a consequence intricate
dynamical behaviors and chaos [38–45] may appear.

The purpose of the present work is to characterize the existence of
chaotic patterns, domain walls and localized structures in driven nano-
magnets. The paper is organized as follows. After introducing the setup

https://doi.org/10.1016/j.jmmm.2019.01.027
Received 30 August 2018; Received in revised form 16 December 2018; Accepted 7 January 2019

⁎ Corresponding author.
E-mail address: ana.cabanas.plana@gmail.com (A.M. Cabanas).

Journal of Magnetism and Magnetic Materials 476 (2019) 589–596

0304-8853/ © 2019 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03048853
https://www.elsevier.com/locate/jmmm
https://doi.org/10.1016/j.jmmm.2019.01.027
https://doi.org/10.1016/j.jmmm.2019.01.027
mailto:ana.cabanas.plana@gmail.com
https://doi.org/10.1016/j.jmmm.2019.01.027
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmmm.2019.01.027&domain=pdf


device and the theoretical description, the dynamical indicators are
presented in Section 2. The main numerical results and simulation de-
tails are described in Section 3. We numerically show that in a region of
the parameter space the pattern solution coexists with a homogeneous
one. In addition, we find a family of localized states that connect
asymptotically a uniform state with a chaotic pattern. Furthermore, we
study the dynamical evolution of the localized structures and the pat-
terns through time series analysis, the largest Lyapunov exponent and
the Fourier spectrum. Section 4 presents a summary and a phase dia-
gram of the system.

2. Model

Spin-transfer torques are usually studied in spin valves, a pillar
structure with nanometer-scale dimensions. A spin valve has at least
two magnetic layers separated by a nonmagnetic material layer, the
spacer. The lateral size is of order of 100 nm. The fixed layer, with
magnetization Mf , has a large magnetocrystalline anisotropy or is
thicker than the free layer acting as a polarizer for the electric current as
it is shown in Fig. 1. The magnetization of the thinner free layer, M, can
point in any direction. The control parameters are the external mag-
netic field Ha and the electric current J flowing through the spin valve.

We focus on the case in which both the polarizer and the magnetic
field are collinear. When a spin-polarized current enters into a ferro-
magnet, the conduction electron spins interact with the local magne-
tization of the magnetic film [17]. This interaction produces a preces-
sion and reorientation of the electron spin on transmission through the
ferromagnetic layer. Contributions arising from exchange, anisotropy,
self-magnetostatic and applied field interactions are taken into account
in the energy of the system that has the dimensionless form [46]
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where m is the unitary magnetization vector of the free layer in terms
of its saturation magnetization ≡M x t Mm M, ( , ) /s s. We assume that the
free magnetization layer is small enough in one of the lateral dimen-
sions to guarantee that the magnetization depends on one of the spatial
coordinates only, x. The dimensionless external magnetic field

≡ =M hh H e/ s aa a x points along the x-axis parallel to the magnetiza-
tion of the fixed layer. The energy E is normalized by the shape ani-
sotropy energy of the thin film μ M /2o s

2 , where = × −μ π4 10o
7 N/A2 is

the vacuum permeability. Typical experimental values for cobalt ma-
terials are ≈ ×M Co( ) 1.42 10s

6 A/m ≈ 17.8 kOe. The coefficients βx and
βz are the dimensionless anisotropy constants for the x-axis (easy axis)
and the z-axis (hard axis). They are account for the magnetocrystalline
anisotropy and demagnetization effects. We assume that both coeffi-
cients are positive ( =β 1/2x and =β 1z ) so βx will favor the free mag-
netization in the x-axis while βz will disfavor orientations along z-axis.
It is worth mentioning that for thick cobalt layers, the magnetization
equilibrium is in the sample plane [47,48]. On the other hand, sub-
nanometer thick cobalt, the magnetization points perpendicular to the
plane as a result of the interface anisotropy (see [49] and references
therein). Thus, the perpendicular-to-plane anisotropy coefficient βz can
be controlled by the layer thickness. The distances are normalized with

respect to the exchange length, ≡l a μ M2 /( )ex o s
2 . For instance, in a co-

balt layer of 3 nm thickness, the effective exchange lattice constant for
cobalt is ≈ × −a 1.5 10 11 J/m and consequently ≈l Co( ) 3.4ex nm.

The magnetization evolution of the free layer is described in the
continuous limit by the Landau-Lifshitz-Gilbert-Slonczewski di-
mensionless equation [46,15,17]:
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where heff is the effective field, α is the Gilbert damping constant, g is
the spin-torque coefficient, and ̂ ≡ ∣ ∣ =p M M e/f f x is the polarization
vector of the current. The dimensionless time, written in terms of the
modulus of the gyromagnetic constant, is = ∣ ∣t T γ Ms with

≈ ×γ| | 2.21 105 mA− 1s− 1. Therefore, in the case of cobalt, the char-
acteristic time scale of our equation is = ≈t γ M1/| | 3.2c s ps. An im-
portant feature of this equation is the conservation of the modulus of
magnetization m| | [20].

The first term on the right-hand side of Eq. (2) accounts for con-
servative precessions about the effective magnetic field. The effective
field acting on the magnetization is the functional derivative of the
energy E with respect to the magnetization [50] ≡ −δE δh m/eff .

The second term of Eq. (2) is the phenomenological dissipation in-
troduced by Gilbert [51] responsible for the relaxation of the magne-
tization to the equilibrium orientation. This relaxation phenomenon is
quantified by α and depends on the geometry and the material of the
spin-valve device. We assume that =α 0.05 considering that typical
experimental values are of −10 2 order [52,53].

The third term of Eq. (2) stands for the spin-transfer torque effect.
The spin-polarized current will transfer angular momentum to the free
layer. For electrons moving from the fixed to the free film ( <J 0 and

<g 0), the torque of the current has the same direction as the Gilbert
damping and stationary behaviors are observed. For electrons flowing
from the free to the fixed layer ( >J 0 and >g 0), the spin-transfer-
torque injects energy into the system. This energy injection is re-
sponsible for the emergence of self-sustained precessional motions [20].
The spin-transfer torque coefficient is [55,54,52,56]

̂= −g J edμ M Pf m pℏ (2 ) ( · ),o s
2 1 where e is the electron charge, ℏ the Planck

constant, J is the current density and is of order 108 A/cm2 [46], d the
thickness of the layer and P describes the polarization at the interface
between the ferromagnet and the spacer. For small applied currents, the
magnetization dependence of the spin-transfer torque, ̂f m p( · ), can be
assumed irrespective of m such that ≈f 1. This is known as the sine-
approximation [54,55], and it is commonly adopted for certain types of
nanopillars [55,52,56].

We focus on the self-organized dynamics that emerge as a con-
sequence of the balance between two opposite effects: the current sta-
bilizing the parallel state and the external field destabilizing it. Both the
external magnetic field ha and the polarization of the current ̂p point
along the x-axis direction that allows the magnetization switching be-
tween the two equilibrium states, the parallel =m ex and the anti-
parallel state, = −m ex.

Fig. 2 shows the bifurcation diagram of the system in the parameters
space g h{ , }a , reproduced from Ref. [57], which is briefly described as
follows. The parallel state is stable in the colored (light green) region.
The horizontal (red) curve realizes stationary instability, while the
dashed-dotted (green) thick diagonal line accounts for the Andronov-
Hopf bifurcation [1–3], and it produces precessions for

⩾ + +g α h β β( /2)a x z . This behavior has been reported on a nanopillar,
where the frequency is typical of the order of microwaves [8].

When considering the exchange energy spatial instabilities may ap-
pear [2]. In the system under study, this occurs for ⩾ = −g g β /2c z
which is represented by the vertical dashed blue line in Fig. 2. A ne-
gative value of g favors the parallel configuration due to the current
transport and the magnetic moment of the fixed layer whereas a ne-
gative value of ha destabilizes the parallel state. The spatial instability
of the parallel state will occur when the current is not strong enough to

Fig. 1. Schematic representation of a spin-valve device, the light (green) and
dark (blue) layers represent the nonmagnetic and the magnetic metal film,
respectively. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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annul the effect of the external field, that is for ⩾ = −g g β /2c z . On the
other hand, the instability condition for the antiparallel state is ⩽g β /2z
[58]. Two natural equilibria, the parallel ex and antiparallel state − ex,
are both extremes of the free energy E of the system and are related by
the transformation → − −g h g h( , ) ( , )a a . Therefore, due to the symme-
tries of Eq. (2) the antiparallel state of the free magnetization has an
analogous phase diagram to the parallel state with the opposite sign of g
and ha.

For values of >g gc, that is when one crosses the dashed vertical
line, the appearance of spatial patterns arises due to the instability of
the parallel state =m ex. We will focus our study on the striped
(purple) region characterized by a smaller magnetic field. In particular,
we will study how an increase of our control parameter g, what is
equivalent to diminish dissipation [57] or increase injection, will in-
duce rich spatiotemporal dynamics in the system.

3. Simulations

Eq. (2) is numerically solved using a variable-step fifth-order Run-
ge–Kutta (RK5) scheme for the temporal evolution [59]. The differ-
ential operators are approximated by centered schemes of sixth order.
Space is discretized in =N 501 points using finite differences of stepsize

=xΔ 0.054, this corresponds to a length of = − =L N x( 1)Δ 27 in ex-
change length units. To study the extensive properties of the system and
the robustness of the solutions, we have also performed several simu-
lations for different values of N and xΔ . We use Neumann boundary
conditions, that is, ∂ =m 0x at =x L0, . After any transients have faded
away, we have continued the calculations for at least twice the full
transient time with a maximum integration time 104.

The rest of this section is divided into two parts. At the first sub-
section, the quantities that are commonly used to describe complex
regimes are introduced. At the second one, the numerical results are
analyzed to identify the different type of dynamical behaviors.

3.1. Dynamical indicators

A simple physical quantity that globally characterizes the dynamics

in time is the spatial average of the magnetization, given by:

∫≡t
L

t x dxm m( ) 1 ( , ) .av L

0 (3)

This indicator is used to study the temporal dynamics of the magneti-
zation. As a consequence of its structure composed of alternating fer-
romagnetic and non-magnetic layers, spin valves exhibit a phenomenon
called Giant Magneto-Resistance (GMR) [60,61,53,62]. This resistance
accounts for the spin-dependent scattering, which renders devices with
antiparallel magnetizations more resistive compared to other config-
urations. It is possible to produce a large change in resistance (can be as
high as 200% [60]) of the multilayer in response to altering the relative
magnetization orientation of the ferromagnetic layers, low when the
magnetizations of neighboring ferromagnetic layers are parallel (rP) and
high when they are antiparallel (rAP).

The electrical resistance r is a congruous indicator because it can be
easily measured experimentally. The spatial average is usually ap-
proximated as [63]
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A hallmark of chaotic dynamical behaviors is the exponential separa-
tion of the nearby trajectories in time. Lyapunov exponents describe the
rate of exponential divergence from perturbed initial conditions
[65,64] and serve as a useful tool to quantify chaos. The largest Lya-
punov exponent (λmax) is defined as
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0 is the initial time, and δm satisfies the

partial differential equation:
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∂

=δ
t

δm J m¯· , (6)

where J m¯ ( ) is the Jacobian matrix of the system. In a continuous
system, two magnetic configurations that were infinitesimally close at

=t 0, separate in phase space exponentially fast when the system is
chaotic, >λ 0max . On the other hand, for a negative largest Lyapunov
exponent ( <λ 0max ), the two initially close states converge to the same
equilibrium. The marginal case =λ 0max corresponds to solutions where
orbits are time-periodic, quasi-periodic, or non-chaotic saddle state. In
the present case, we discretize the time and use magnetization trajec-
tories separated by a distance ∼ −δ t xm‖ ( , )‖ 100

8. In order to avoid any
transients we calculate λmax from = ×t 2 100

4 up to = ×t 3 10max
4. With

the purpose to overcome exponential divergences, we rescale δ t xm‖ ( , )‖
by the initial norm δ t xm‖ ( , )‖0 every 100 iterations.

3.2. Results

Two simple solutions can be distinguished as it is shown in Fig. 3,
the uniform antiparallel state, = −m 1x (dashed line), and a chaotic
pattern around the parallel state =m 1x (continuous line). For = −h 2a ,
the antiparallel uniform state is stable only for > −g 0.15 [58,57].
Hence, the system presents coexistence between these two magnetic
configurations. In the next subsubsections, we analyze the dynamical
properties of these solutions and the spatial connections between them.

3.2.1. Patterns
The system presents chaotic and regular patterns as a function of the

control parameters. The inset of Fig. 3 shows the spatiotemporal evo-
lution of the component mx for a chaotic pattern. The time evolution is
up to 2000 iterations (time steps) displaying an aperiodic dynamic with
positive =λ 0.1641max . The temporal average of the energy and the
reduced magnetoresistance are 〈 〉 =E 1.711 and 〈 〉 =R 0.159, respec-
tively. A small value of the resistance agrees with the hypothesis of low
resistances for nearly parallel configuration in spin valves [66–68].

Fig. 2. Bifurcation diagram of the spin-valve described by Eq. (2) in the para-
meter space g h{ , }a . The parallel state is stable in the dotted (light green) region.
The dashed-dotted (green) diagonal line accounts for the Andronov-Hopf bi-
furcation. The bold (red) curve realizes stationary instability. The vertical
(blue) dashed line accounts for the spatial instability curve. The blue diamond
and the green dot correspond to the states depicted in Fig. 3 and Fig. 5, re-
spectively. The bifurcation diagram has been reproduced from Ref. [57]. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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To study the extensive properties of the chaotic pattern, we have
performed several simulations with different lengths, = −L N dx( 1)· ,
by varying the number of points N that compose the size of the box for a
fixed value of the discretization step size dx. The Fig. 4 shows four
different cases for =N 101, 201, 301, 401. The right upper insets cor-
respond to the spatiotemporal profiles of the component mx . It can be
appreciated an aperiodic and more complex behavior as the size of the

system is increased. The values of the largest Lyapunov exponent are
displayed for each case, a positive value of λmax denotes chaotic be-
havior. In addition, a continuum Fourier spectrum is observed, which is
a common feature of chaotic states. Our results reveal that chaos is
present for all the values of N considered here. Notice that the number
of observed frequencies of the spectrum is increased with N, expected
for extensive chaos.

On the other hand, since two solutions coexist, other families of
states can be created. In the next subsections, we analyze the possibility
of having different types of solutions that connect both magnetic con-
figurations, fronts (or domain walls) and localized structures.

3.2.2. Fronts
Front solutions usually emerge in systems with bistability

[2,21,25,69], that is, systems with two stable solutions. However, front
states do not require bistability to exist. In the present context, the
fronts are domain walls that separate regions where the magnetization
has different orientations. In particular, fronts connect asymptotically a
uniform state—the antiparallel equilibrium—with a spatiotemporal
pattern around the parallel state. The upper panel of Fig. 5 shows a
front state at fixed parameters = −h 2.0a and = −g 0.14. By varying the
initial conditions, we can create different types of fronts or localized
domains. The first configuration accounts for a solution that connects
both extended states and the second is characterized by displaying a
state surrounded by the other one.

In addition, the lower panel of Fig. 5 shows the largest Lyapunov
exponent (λmax) with the same front initial condition. The simulations
proceed by fixing the applied magnetic field ha and sweeping the cur-
rent density g in steps of =gΔ 0.01. We observe regular behavior for g
values close to ≈ −g β /2c z or ≈g 0. In the intermediate region, positive
values of λmax denote chaotic behavior. The chaotic region with positive
λmax is also increased as the strength of the applied field is increased.
The reason for this fact is the amplitude growth of the pattern for higher
values of ha. Transitions among regular and chaotic states are visible
when λmax jumps abruptly from a negative or zero value to a positive

Fig. 3. Magnetization component mx at = −h 2.0a and = −g 0.18. The light
(red) dashed line corresponds to the uniform state = −m 1x and the continuous
(blue) curve corresponds to the chaotic pattern around =m 1x . The inset shows
the spatiotemporal diagram of mx for the chaotic pattern around the parallel
state. The value of =λ 0.164max , while temporal average of the energy and
giant-magneto resistance are 〈 〉 =E 1.711 and 〈 〉 =R 0.159, respectively. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 4. Characterization of the chaotic pattern at = −h 2.0a and = −g 0.18. Fourier power spectrum S f( ) of mx for different sizes of the simulation box N=101, 201,
301, 401. The right upper insets correspond to the spatiotemporal profiles of the component mx . The value of λmax is showed for each case.
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one. The error of λmax is of order −10 4.

3.2.3. Localized structures
Since we have observed front states, one expects the existence of

localized structures, which are interpreted as a bounded state of two
domain walls [25,33]. Notice that localized structures can be observed
in a wide range of physical phenomena [34]. In the coexistence region,
we can induce different localized structures by making a local pertur-
bation of the extended magnetic configuration state. The developed
localized structure will present a particular size and shape depending
on the given initial condition, as it is observed in Fig. 6. On the left
panel a valley initial condition is given with

= 〈 〉 = −λ E0.106, 1.841valleymax and 〈 〉 =R 0.904valley . The center and the
right panels represent an initial hump condition given at different po-
sition of the box with 〈 〉 = −E 1.409hump and 〈 〉 =R 0.815hump . Here,

=λ 0.018max and =λ 0.016max , respectively. Notice that the localized
states emit waves with different amplitude and wavenumber. The dif-
ference between the energy and the resistance values for the valley and
the hump state can be useful when analyzing the experimental results.

Due to the GMR effect [60,61], the lowest resistance state corre-
sponds to a magnetic parallel configuration because a portion of the
current in which the spin is aligned with the magnetic layers shows
little angle scattering [70]. On the other hand, the high resistance state
is because no portion of the current may pass through the layer without
significant scattering when the layers are antiparallel oriented. Eq. (4)
implies that =R 1 for the antiparallel state and =R 0 for the parallel
state. Therefore, the minimum of the reduced magnetoresistance is
reached at =m 1x , while the maximum is found at = −m 1x .

Fig. 7 shows the reduced magnetoresistance (blue line) and the
largest Lyapunov exponent (red dashed line) at = −h 2.0a as a function
of g for localized states. At ≈ −g 0.14 the resistance undergoes an abrupt
jump to a higher value and the magnetization suffers a transition be-
tween chaotic and regular dynamic. It is noteworthy that the localized
structures with low resistance are chaotic, although the regular ones
have a high resistance when the applied current is close to 0.

According to this result, in Fig. 8 we study the values of the applied
current that produces switching of the magnetic layers between the
low-resistance (parallel) and high-resistance (antiparallel) states for
different values of ha. The simulations reproduce abrupt changes as the
current is increased following a linear law such as
〈 〉 = +R g0.79 0.28change change . The shifts fulfill the condition of instability
for the antiparallel state ⩽ − −g α h β β( /2)a x z . For instance, at

= −h 2.0a the system increases the resistance at ≈ −g 0.15 while at
= −h 5.0a the change occurs at ≈ −g 0.30. The inset shows a linear law

Fig. 5. (Up) Spatiotemporal dynamics of the component mx at = −h 2.0a and
= −g 0.14. Here, = 〈 〉 = −−λ E6.8·10 , 1.41max

3 and 〈 〉 =R 0.815. (Down) Largest
Lyapunov exponent for a front initial condition as a function of ha and g.

Fig. 6. Spatiotemporal dynamics of the component mx for localized structures with different initial conditions at = −h 2.0a and = −g 0.14. On the left panel a valley
initial condition is given, the center and right panels have a hump initial condition located in different positions of the box. Here =λ 0.106max1 and =λ 0.018max2 , and

=λ 0.016max3 , while 〈 〉 = − 〈 〉 = − 〈 〉 = − 〈 〉 =E E E R1.841, 1.409, 1.409, 0.9041 2 3 1 , 〈 〉 =R 0.8152 and 〈 〉 =R 0.8153 respectively. Notice that the localized states emit waves
with different amplitudes and wavenumbers.

Fig. 7. Reduced magnetoresistance thick (blue) line, and largest Lyapunov
exponent dashed (red) line, as a function of the current g at = −h 2.0a with a
hump initial condition. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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between the magnetic energy and the resistance
〈 〉 = − − 〈 〉E h R( 2.053 0.418)a . The magnetic energy is not directly ac-
cessible, but voltage measurements are sufficient to calculate the re-
sistance [67,68] and consequently the energy. This behavior remains
valid for both, fronts and localized structures, hence it can be useful to
identify the transitions among states experimentally.

Fig. 9 presents two bifurcation diagrams as a function of the current
at a fixed applied field = −h 4.5a . Firstly, we calculate the temporal
series of the magnetic energy and the reduced magnetoresistance and
after we record the values of g every time a local maximum is reached.
To distinguish between regular and chaotic states, we compute the
largest Lyapunov exponent. The (gray) shaded area, between

= − −g ( 0.43, 0.33), stands for the chaotic behavior of the system where
the largest Lyapunov exponent is positive. Indeed, the transition from
regular to chaotic dynamics is demonstrated. Notice that the chaotic
behavior disappears by means of the so-called crisis mechanism at

= −g 0.33. A crisis is defined as the collision between a chaotic attractor
with a periodic orbit or an unstable fixed point [71,2]. For periodic
solutions, the magnetization follows a unique trajectory, that is, a single
maximum is reached. The appearance of regions compounded by
multiples points indicates coexistence of states with different dynamical
behavior. The first bifurcation at = −g 0.47 [enlarged in the upper right
inset of Fig. 9.a)] is a signature of the coexistence between states with
period doubling. Nevertheless, for − ⩽ ⩽ −g0.247 0.235, some mul-
tiple-period states also appear. A significant jump at = −g 0.29 indicates
a change in the type of regular states. As we increase g (beyond

= −g 0.23), the system suffers a reduction of the periodicity with no
significant changes in the values of the energy and the resistance.

For a more in-depth insight, we study two particular cases. The
spatiotemporal profiles of mx for a chaotic and a regular state are re-
presented in the left and right insets at the bottom of Fig. 9.a), re-
spectively. The middle and the lower parts of Fig. 9 show a parametric
plot of the spatial averages of the magnetization mx

av and my
av and the

corresponding Fourier power spectra of mx
av. The red dot at = −g 0.40

corresponds to the chaotic state with = ±λ 0.029 0.001max . Two char-
acteristic signs reflect the chaotic dynamic: the parametric plot showed
as a sharp curve in panel b) and the broadly distributed Fourier spec-
trum of panel c). The red triangle at = −g 0.25 indicates the regular case
with = ± −λ (7.08 0.62)·10max

5. The closed curve illustrates the regular
behavior at panel d) and the well-defined peaks of the Fourier spectrum
at panel e) related to five different predominant frequencies.

4. Final remarks

In summary, we have shown that spin valves that combine the ef-
fects of the spin-polarized current, the spatial coupling and the

dissipation allow the emergence of chaotic textures. We characterized
the observed dynamic quantitatively using the largest Lyapunov ex-
ponent. The coexistence region is characterized by spatial domains with
interfaces that connect asymptotically a non-trivial uniform state with a
spatiotemporal pattern, the front solutions. As a consequence of the
dynamical behavior of the pattern, we found that localized structures
can be regular or chaotic. We characterize these states with the largest
Lyapunov exponent, bifurcation diagrams, parametric plots and the
Fourier spectrum for the spatial average of the magnetization. These
indicators show multiple transitions between chaotic and regular states.
In fact, the chaotic pattern showed in Fig. 3 exhibits chaos for different
device sizes as it is shown in the Fig. 4.

Finally, let us present the phase diagram of the system, displayed in
Fig. 10. The vertical black line corresponds to the limit of the critical

Fig. 8. Reduced magnetoresistance versus current g for different values of the
applied magnetic field ha. The inset shows a linear dependence
〈 〉 = − − 〈 〉E h R( 2.053 0.418)a with a front initial condition.

Fig. 9. a) Bifurcation diagram of the magnetic energy and the reduced mag-
netoresistance maxima Emax and Rmax with a hump initial condition at = −h 4.5a

as a function of g. The (grey) shaded region indicate chaotic behavior
( >λ 0max ). Frames b) and d) are the parametric plot of mx

av and my
av and c) and

e) are the corresponding Fourier power spectra of mx
avfor a chaotic case (red

dot) at = −g 0.40 and a regular case (red triangle) at = −g 0.25 displayed in the
left and right insets respectively. The amplitudes of the power spectra are
normalized and expressed in arbitrary units. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article.)
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current = −g 0.5c and delimits the appearance of stationary patterns.
For small values of ha near gc the patterns are regular, but as we in-
crease ∣ ∣ha , the pattern amplitude grows, and the texture becomes
chaotic. The regions marked as C1 and C2 correspond to the areas of
coexistence among patterns, fronts, and localized and homogeneous
states characterized in Figs. 3, 5, 6 and 9, being fronts the most likely
particle states. Inside C1 we find a rich variety of structures of different
sizes and shapes. The inset displays a particular soliton state, namely a
breather soliton [32,37], found at = −h 2a and = −g 0.125. A complex
time-dependent behavior characterizes this state because both the
amplitude and the width can vary in space and/or time. This internal
motion can be periodic, quasi-periodic or chaotic, in our case the
breather has a periodic motion. Within the region C2 we find front,
pattern, and valleys solutions. Chaotic and regular patterns appear in
the green dotted region. As we approximate to =g 0 the uniform state
around = −m 1x becomes stable with no positive λmax. This variation is
also reflected in the left panel of Fig. 5. Moreover, according to Fig. 7 at

= −h 2.0a the regular states for > −g 0.14 have a higher value of the
resistance due to an antiparallel homogeneous solution, same as the
states at = −h 4.5a for > −g 0.27. We confirm the relationship between
the condition of instability for the antiparallel state

⩽ − −g α h β β( /2)a x z and the values of g where the states suffer an
abruptly increase of the resistance. Hence, the structures with low re-
sistance are chaotic while the high resistance structures have regular
behavior.

From Fig. 10, we conclude that the variation of the control para-
meters ha and g can induce primary and secondary bifurcations to the
system. We determine two relevant zones of coexistence regions in
which we find patterns, fronts and localized states. Experimentally, one
can identify chaotic dynamic generated by the deterministic perturba-
tion. For example, when g is increased at a fixed value of ha, the current-
driven power spectrum should turn into nonchaotic dynamics to chaos
and back to regular regimes. Since thermal fluctuations are inevitable
for room-temperature applications, we have also studied the stability of
the solutions as a function of the temperature. In particular, we found
that the localized states are stable in wide a range of temperature.
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