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Dissipative magnetic breathers induced by time-modulated voltages
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During the last years, there has been a growing interest in the coupling between voltages and the magnetization
of insulating nanostructures. Applied voltages can change the magnetic anisotropy of magnetic tunnel junctions
and generate magnetization dynamics more efficiently than alternating magnetic fields and spin-polarized electric
currents because it avoids the Joule dissipation. Here, we study the formation of dissipative breathers in
nanomagnets forced by an oscillatory voltage. The breathers are localized states with an oscillatory envelope.
The voltage frequency is close to twice the ferromagnetic resonance frequency. Numerical simulations reveal
that the breathers can emit evanescent spin waves from their center in a dipolarlike shape when the voltage
is above a certain threshold. Based on an amplitude equation, we explain the existence and behavior of these
voltage-induced breathing solitons, while the anisotropic spin-wave emission corresponds to a spontaneous
symmetry-breaking instability.
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I. INTRODUCTION

The quest for a low power consumption manipulation of
magnetic materials has attracted considerable interest during
the last decades. Ferromagnetic systems possess natural fre-
quencies, and therefore an efficient magnetization control can
be obtained by inducing resonances with oscillatory magnetic
fields, electric currents, and voltages. In the presence of time-
varying currents or electromagnetic fields, the resonances that
require less energy injection are the ferromagnetic resonance
when the forcing frequency is similar to the natural one, and
the parametric resonance when the forcing frequency is about
twice the natural one. The last case is characterized by several
instabilities, in which the magnetization trajectories deviate
from their equilibrium orientation when the energy injection
is above a threshold. Parametric resonances have been stud-
ied in nanomagnets as induced by microwave fields [1–8],
spin and charge currents [9–13], acoustic waves [14], and
voltages [15–20]. This last mechanism is based on a voltage-
controlled magnetic anisotropy, an effect that has been ob-
served in transition-metal-based multilayers [21–25] such as
the one depicted in Fig. 1, semiconductors [26], magneto-
electric materials [27–29], and proposed in magnetic insu-
lators and nonmagnetic metal bilayers with interfacial rare-
earth atoms [30]. Voltages applied to insulating structures
do not generate Joule dissipation, which renders them lower
power consumption systems as compared to electric-current-
driven ones. Furthermore, with the aim of enhancing the cou-
pling between voltages and the magnetization, and reducing
the switching errors, studies considering several materials
[31–34] and electric-field-pulse shapes [35,36] have been
conducted.

In thin films with lateral dimensions larger than about
100 nm, the magnetization typically exhibits spatial textures,
such as domain walls [37,38], vortices [39–42], skyrmions

[43–48], and linear and nonlinear spin waves [49], to men-
tion a few. Among localized states, solitons are particle-
like solutions characterized by a position, width, and speed,
with a nontopological profile. When the solitons have an
oscillatory profile, they are usually called breathers. Even if
the formation of magnetic patterns is relevant in both ap-
plied and fundamental reasons, the magnetic textures induced
by time-dependent voltages have not been systematically
explored yet.

The aim of this work is to study localized states, or
dissipative solitons, induced by time-varying voltages. Based
on numerical simulations and the amplitude equation of the
magnetization, we show that solitons in magnetic-tunnel junc-
tions can exhibit two types of behaviors: they can be localized
oscillations symmetric around the soliton core or can have
an oscillatory envelope that emits spin waves in anisotropic
fashion, as shown in Fig. 2, respectively. In either case, one
of the magnetization components is constant in time, and the
two others oscillate.

II. THEORETICAL DESCRIPTION OF A MAGNETIC
TUNNEL JUNCTION

Let us consider the magnetization dynamics of an ultra-
thin ferromagnetic material, such as Fe, Co, Ni, and their
alloys. The magnet is grown on the top of an insulating film
(see Fig. 1) to prevent the electric current flow. The application
of a voltage changes the energy of the magnetic atoms at
the metal-insulator interface. The magnet has a subnanometer
thickness to enhance the relative strength of the coupling be-
tween the magnetization and the voltage, which is an interface
effect. Additional magnetic layers with fixed magnetization
can be used to measure the state of the free magnetization film
via the tunnel magnetoresistance. We write the magnetization
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FIG. 1. Schematic representation of a magnetic tunnel junction
with an applied voltage. The darker material is a transition-metal
magnet, such as iron, cobalt, nickel, or their alloys. The thickness
of the magnetic material is usually less than a nanometer to increase
the relative importance of interface effects, such as the voltage-
controlled magnetic anisotropy one. The insulator prevents the flow
of charge current when voltages are applied. A typical insulator is
MgO. The color map on the upper surface shows that the transition-
metal layer typically exhibits well-localized textures, or solitons.

of the free film as M = Msm(t, r) in terms of its modulus Ms

and the unit vector m = mxex + myey + mzez, where ej is the
Cartesian unitary vector along the axis j . The magnetization
dynamics conserves its norm |M|2 = M2

s . The spatial and
temporal coordinates are rendered dimensionless by dividing
by the characteristic scales r ≡ R/lex and t = T/tc, where
R and T are the quantities with units, lex is the exchange
length, and the temporal scale is tc = (|γ |Ms )−1, where γ is
the gyromagentic ratio. For example, for 3-nm-thick cobalt,
lex = 3.4 nm and tc = 3.2 ps [51].

The dynamics of nanoscale ferromagnets is usually derived
from a set of energies and their respective torques. We con-
sider the following normalized energy E per unit of volume:

E

μ0M2
s V0

=
∫

d3r

[
−hmx + β

2
m2

y + β + η

2
m2

z

]
, (1)

where the first term on the right-hand side is the Zeeman
energy due to a magnetic field h pointing along the x axis. The
second and third terms are the anisotropy energies for an el-
lipsoid body with principal axes along the respective Cartesian
vectors. Constants β and η are combinations of demagnetizing
factors and uniaxial magnetocrystalline anisotropy constants.
The use of this local energy expression, instead of the full
nonlocal demagnetizing energy (i.e., the thin-film approxima-
tion), is convenient in this work since we study the creation
of textures, that are characterized by long times and slow
dynamics. We normalized E by the shape anisotropy constant
μ0M

2
s V0, where μ0 is the vacuum permeativity, and V0 is

the film volume. Using the norm conservation property m2
x =

1 − m2
y − m2

z , we eliminated the explicit dependence on m2
x .

Notice that η accounts for the anisotropy in the (my,mz)
plane. In magnetic multilayers, the anisotropy constant η

can depend on applied voltages [21–25,30] via the voltage-
controlled magnetic anisotropy (VCMA) effect. As a result
of this voltage dependence, an alternating electric field can
switch the magnetization from one equilibrium to another
in a precessional-like motion. The magnetization dynamics
obeys [51]

∂m
∂t

= −m × [hex − βmyey − (β + η)mzez]. (2)
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FIG. 2. Dissipative soliton and breather solutions for the magnetic tunnel junction with an applied voltage obtained from numerical
simulations of LLG equation (4) with β = 0, h = 1, α = 0.05, η0 = 0.2, ν = −0.035, δη = 0.25 (a), and δη = 0.28 (b). (a), (b) Account
for symmetrical and asymmetrical localized solutions, respectively. The surfaces and their projected plots show the three components of the
magnetization. The component mx is almost constant in time and is saturated around mx = 1 except by a hole, where mx ∼ −0.85 (a) and
mx ∼ −0.7 (b). The other magnetization components oscillate with a half of the forcing frequency in a symmetric (a) and an asymmetric (b)
fashion. Video with the temporal evolution of the dissipative soliton is available in the Supplemental Material [50].
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For a strong magnetic field h > 0 (or equivalently β > −η >

0), the above equation describes an oscillator with an approx-
imated solution given by(

my

mz

)
= A0e

iω0t

(√
h + β + η

−i
√

h + β

)
+ c.c., (3)

where ω0 = √
(h + β )(h + β + η) is the natural frequency

and A0 is a constant that depends on the initial conditions. The
symbol c.c. stands for complex conjugate. The x component
mx = [1 − (m2

y + m2
z )]1/2 is a slave variable of (my,mz) due

to the norm conservation.
Beyond the conservative and uniform model described

above, the exchange interaction energy in the continuum ap-
proach is Eex(μ0M

2
s V0)−1 = ∫

d3r|∇m|2/2, and it induces a
torque of the form Tex = −m × ∇2m, with ∇ ≡ ex∂x + ey∂y

being the gradient operator. Due to the small thickness of the
magnet, we assume it to be uniformly magnetized along the
z axis, ∂zm ≡ 0. The exchange torque favors uniform mag-
netic states. The system dissipation can be added as an extra
torque, known as Gilbert damping Td = αm × (∂m/∂t ). This
torque accounts for the energy transfers to the conduction
electrons, lattice vibrations, and other degrees of freedom. The
phenomenological parameter α is usually in the 10−4–10−2

range [51].
To counterbalance the magnetic dissipation, we consider

in the next section an oscillatory voltage. This voltage injects
energy into the system in the form of a temporal modulation
of the magnetic anisotropies. In particular, we consider η(t ) =
η0 + δη cos(�t ), where η0 and δη are the constant and os-
cillatory components, respectively. It is known that paramet-
rically driven systems exhibit instabilities when the forcing
frequency is close to � = 2ω0/n, where n = 1, 2, 3, . . . [52].
Furthermore, for systems with a small dissipation parameter
α � 1, the required energy injection at which the resonance
occurs scales as α1/n [52]. We focus here in the resonance
with the smallest injection threshold, which occurs for n =
1. The corresponding forcing frequency � = 2(ω0 + ν) is
in the GHz range, and ν is a small detuning parameter. In
experiments, the constant η0 can be modulated by a constant
voltage, as well as by the thickness of the ferromagnetic film.
For example, FeCo has η0 ≈ 0 for a thickness of 0.54 nm [23],
while η0 > 0 (η0 < 0) for larger (smaller) thicknesses.

We sum the aforementioned torques to obtain the total
Landau-Lifshitz-Gilbert (LLG) equation [51]

∂m
∂t

= −m × [hex − βmyey − [β + η(t )]mzez]

− m ×
[
∇2m − α

∂m
∂t

]
, (4)

that describes a driven and damped magnetic oscillator.

III. PARAMETRIC RESONANCE INDUCED
BY ALTERNATING VOLTAGES

When a system is forced at about twice its natural fre-
quency, it can exhibit a parametric instability. At the onset of
this instability, chains of coupled oscillators exhibit intriguing
dynamic behaviors such as Faraday waves [53,54], dissipative
solitons [55–57], localized states with phase structures [58],

breathers [59], domain walls [60], among others. One system-
atic strategy to investigate their dynamics is to characterize the
envelope close to the resonance frequency. Let us introduce a
perturbation from the simple solution of formula (3):(

my

mz

)
= A(t, r)eiω0t

(√
h + β + η0

−i
√

h + β

)
+ c.c. + W, (5)

where A(t, r) is a space-time-dependent amplitude. The func-
tion W is a higher-order correction |W| � |A| � 1, that one
needs to include to satisfy Eq. (4) at nonlinear orders. After
straightforward calculations one obtains the equation for the
envelope A (see details in Appendix A):

∂tA = −iC0A|A|2 − iκ∇2A − μA + i�e2iνtA∗, (6)

which is known as the parametrically-driven damped nonlin-
ear Schrödinger equation (PNDLS) [61]. The coefficient of
the saturation is

C0 ≡ (h + β )(β + η0)(4h + 4β + η0)/(4ω0)

+β(h + β + η0)(4h + 4β + 3η0)/(4ω0), (7)

the parameter of the dispersion is κ ≡ [2h + 2β + η0]/(2ω0).
The term that accounts for the voltage-induced injection of
energy is given by

� ≡ (β + h)δη

4ω0
, (8)

and the effective dissipation is

μ ≡ α

(
h + β + η0

2

)
. (9)

Equation (6) can be further simplified by the change of
variables A(t, r) = C

−1/2
0 eiνt+πi/4B(t, x), where r = κ1/2x:

∂tB = −i(ν + |B|2 + ∇′2)B − μB + �B∗, (10)

where ∇′ ≡ ∂/∂x. The above equation rules the envelope
dynamics driven by voltages. The phenomenology of the
PDNLS equation when the parametric forcing is a magnetic
field or electric current can be found in Refs. [62,63] and
references therein. We explore in the next subsections the
localized solutions of Eq. (10).

A. Dissipative solitons at the onset of the parametric resonance

Let us start here by reviewing the soliton solution in
one spatial dimension. Using polar decomposition B = Reiφ ,
where the modulus R(t, x) and phase φ(t ) obey

∂tR = −μR + γR cos(2φ), (11)

∂tφ = −ν − R2 − R−1∂xxR − γ sin(2φ). (12)

The above model has dissipative soliton solution of the
form [64]

cos(2φs ) = μ/γ, Rs (x) =
√

2�sech(
√

�x), (13)

where � ≡ −ν −
√

γ 2 − μ2. Figure 3(a) shows this localized
state. Notice that this function is real only when the voltage-
induced energy injection surpasses the magnetic dissipation
γ � μ. In addition, the forcing frequency must be smaller
than twice the natural one, 2ω0 − � = −2ν > 2

√
γ 2 − μ2.
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FIG. 3. One-dimensional dissipative soliton. (a) Soliton state in
the complex envelope, where Re(B ) and Im(B ) stand for the real
and imaginary parts of B, respectively, obtained for γ = −ν = 1

2 ,
μ = 0.45. (b) The solitons exist when γ > μ, that is, the injected
energy is larger than the dissipated one; and −ν >

√
γ 2 − μ2 (on

the left of the so-called Arnold-tongue zone).

Figure 3(b) depicts in the parameter space darker (green
online) zone of soliton solutions. Once the region of the
parameter space where this solution exists is determined,
one can search for it using direct numerical simulations of
the LLG equation, with the numerical method described in
Appendix B. It is worth mentioning that in the region where
solitons exist, the uniform state m = ex (ferromagnetic state)
is also stable. Then, depending on the initial condition, the
system can reach any of the two possible solutions. Figure 4(a)
shows the magnetization components of a soliton state in one
spatial dimension. When the injection of energy is larger and
the detuning is more negative, the soliton envelope starts to
oscillate pumping spin waves with a breathinglike fashion
[see Fig. 4(b)]. These breather states have been reported in
several systems with one spatial dimension (see Ref. [65]
and references therein). On the other hand, to the best of our
knowledge, their two-dimensional counterparts have not been
reported. Furthermore, the analytic solution for the symmetric
soliton is unknown in two dimensions. Approximations based
on hyperbolic functions can be found in Ref. [66].

IV. VOLTAGE-INDUCED TWO-DIMENSIONAL
BREATHERS

Numerical simulations of the LLG equation (4) close to
parametrical instability exhibit oscillatory dissipative solitons.
Figure 2(a) shows the typical observed solitons for the mag-
netic tunnel junction with an applied voltage (δη = 0.25).
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FIG. 4. Snapshot of the localized states for h = 1, α = 0.05,
β = 0, ν = −0.035, η0 = 0.2. (a) Soliton with monotonic-decaying
envelope, and δη = 0.25. (b) Soliton with oscillatory-decaying enve-
lope, or breather, for δη = 0.28.

Note that this solution is symmetric, and characterized by
the emission of circular evanescent waves. The component
mx is saturated around the mx = 1 value, except in a small
central region where it has a hole and mx reaches ≈−0.7.
The my and mz components oscillate in a ringlike fashion.
The form of the oscillation is due to the norm conservation
m2

x + m2
y + m2

z = 1, and that |mx | is large in both the central
region and outside the soliton. Then, my and mz can be large
only in the ring-type region where mx ≈ 0. For this figure, we
use the following set of parameters: h = 1, β = 0, η0 = 0.2,
δη = 0.25, α = 0.05, and ν = −0.035. The corresponding
parameters of the amplitude equation are � = 0.0571 and
μ = 0.055.

Counterintuitively, when increasing the amplitude of the
voltage, the solution becomes asymmetric as it is illustrated
in Fig. 2(b). This soliton solution has an oscillatory envelope
(breathinglike mode) that is usually known as breather. The
breather is asymmetric and is characterized by having two
dominant lobes. The orientation of the lobes is determined by
the initial conditions. These breathing solutions are charac-
terized by the radiation of evanescent waves with a dipolar
structure. Hence, increasing the amplitude of the voltage
oscillation, the magnetic film exhibits a transition between a
symmetric soliton and an asymmetric breather.

Breathers are commonly observed in one-dimensional
parametrically driven systems. Their existence in two-
dimensional systems, to the best of our knowledge, has not
been reported before. This could be due to the uniqueness
of magnetic tunnel junctions to modulate both the linear and
nonlinear effects via an applied voltage.

To characterize the level of asymmetry of the breather
solutions, one can compare the difference between the mag-
netization profiles along the x and y axes [see Fig. 5(a)]:

δ(t ; �) ≡ max
s

|my (t, r0 + sex) − my (t, r0 + sey)|, (14)

where the maximum value is calculated for distances 2dx �
δ � 50dx, where dx is the spatial step size of the simulations.
Figure 5(c) depicts the temporal evolution of the δ(t ; �).
Clearly, this quantity exhibits a periodic behavior. The Fourier
transform of this temporal signal exhibits a well-defined fre-
quency and its harmonics [see Fig. 5(d)]. In addition, taking
the maximum over time, one gets a global indicator

�(�) ≡ max
t

[δ(t ; �)], (15)

which quantifies the degree of asymmetry of the solutions
as a function of the alternating voltage (effective) parameter
�. Figure 5(b) shows this curve. As we can see, there is a
continuous or supercritical transition between the symmetric
and the asymmetric states. Indeed, this transition corresponds
to the spontaneous breaking of rotation symmetry of the
breather solution.

From the viewpoint of nanomagnetism, we see that
anisotropic solutions have larger gradients compared to the
isotropic ones since they involve nonuniformities in both the
radial and the angular coordinates. Thus, anisotropic breathers
have larger exchange energies and are stable only when the
energy injection is above a threshold. From the above nu-
merical results, we can conclude that the symmetric breather
suffers an instability in which an asymmetric oscillatory mode
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FIG. 5. Asymmetric breather solution. (a) Schematic representa-
tion of the dynamical indicator to measure the asymmetry level of the
breather solution, which is the difference between trajectories around
the soliton core, δ(t, s; �) ≡ |my (r0 + sex, t ) − my (r0 + sey, t )|.
(b) Bifurcation diagram of the solitons, where we plot the maximum
value of δ for each value of the � parameter. In the S zone, the
localized state is centrosymmetric, while in the A region, the soliton
emits asymmetric waves. The dots are numerical results, while the
curve is the fitting �(δη) = 5.421

√
δη − 0.2629. (c), (d) Show the

temporal and Fourier series of δ(t ), respectively, for δη = 0.263.
The dominant frequency of the spectrum is for f = 0.332 which is
about twice the soliton frequency (0.166). Then, the period of the
asymmetric oscillation is T = 1/f = 3.

emerges. The amplitude of the instability mode grows con-
tinuously as a function of the injected energy parameter �.
From the dynamical systems point of view, we can identify
the transition as a supercritical Andronov-Hopf instability
with a nonuniform critical mode. The analytic treatment of
this instability is a difficult task because the amplitude of
the breathers is not small and does not allow a perturbation
treatment. It is still possible to develop an understanding from
symmetry arguments, as follows. Any initial condition around
the soliton solution m(S)

y and m(S)
z can be decomposed as

(
my

mz

)
=

(
m(S)

y

m(S)
z

)
(t, r) + δm, (16)

where δm is a small perturbation that obeys ∂t δm = Lδm,
where L = L(m(S)

y ,m(S)
z ,∇2m(S)

y ,∇2m(S)
z ) is the Jacobian of

the LLG equation evaluated on the soliton solution and its
gradients. The general solution of the perturbation reads as

δm(t, r) =
∑

j

ψj e
λj tvj (t, r) + c.c., (17)

where ψj is the amplitude fixed by the initial condition, λj

are the Lyapunov exponents, and vj are the corresponding
functions. When one of the Lyapunov exponents has a positive
real part λ0 � 0, then the mode grows and the linear equation
is no longer valid. In this case, the amplitude of the growing
mode ψ is rendered a dynamical quantity. When |ψ | � 1 and
it preserves its phase variance (i.e., the voltage-induced oscil-
lation expresses only in the critical mode v0), then complex

field ψ obeys the so-called Ginzburg-Landau equation

∂tψ = λ0ψ − (c1 + ic2)ψ |ψ |2, (18)

where we can decompose λ0 = εR + iεI . The coefficient εR

is related to the energy injection and dissipation and c1 ac-
counts for the saturation (nonlinear dissipation effects). The
linear and nonlinear frequency shifts are given by εI and c2,
respectively. The solutions of the above model are ψ = 0 for
εR < 0, and

ψ =
√

εR

c1
e
i(εI −εR

c2
c1

)t (19)

for ε > 0. Note that the dynamical indicator � is related to
the mode ψ via

� = max
t,s

|ψ[v0,y (t, r0 + sex ) − v0,y (t, r0 + sey)]| (20)

=
√

εR

c1
g0, (21)

where the parameter g0 = maxt,s |v0,y (t, r0 + sex) −
v0,y (t, r0 + sey)| encodes all the information about the critical
mode of the instability. Then, the phenomenological model
proposed here is in agreement with the numerical simulations
shown in Fig. 5, with εR = δη − 0.2629. We cannot directly
access the eigenfrequency εI or the nonlinear correction of
the frequency εRc2/c1 because the Fourier spectrum of the
asymmetric mode reveals only that ψ0e

λ0tv0(t, r) oscillates
at (nearly) twice the soliton frequency. Thus, the instability
occurs approximately at the forcing frequency.

Let us estimate here the physical parameter values that
characterize the soliton and breather states. Considering a
3-nm-thick cobalt, lex = 3.4 nm and tc = 3.2 ps, and using the
symmetries of the LLG equation shown in Appendix B (with
ξ = 1

10 ), the natural and forcing frequencies (one divided by
the period) are ω0ξ ∼ 5 GHz and fF ξ ∼ 10 GHz, respec-
tively. The field is hξ = 1

10 , and for a saturation magnetization
of μ0Ms = 1.82 T, the field with units is about Mshξ = 0.18
T. The typical soliton radius (i.e., radius of the |mx | ≈ 0
curve) for these parameters is about 120 nm. Let us stress
that using the stability conditions of Fig. 3 together with
Eqs. (8) and (9), one can find the necessary alternating voltage
and frequency detuning to observe breathers in a system
with a different set of applied field and anisotropy constant
parameters.

V. CONCLUSIONS AND REMARKS

The voltage-controlled magnetic anisotropy effect is a
forcing mechanism that can produce magnetic reversions and
ferromagnetic resonances with a relatively low power con-
sumption. Then, this mechanism is a promising candidate for
memory technologies. Beyond the magnetization dynamics
relevant to applications, voltages are capable of producing a
strong response in magnets since they modulate the nonlinear
effects. Here, we have shown that a voltage oscillating at about
twice the magnet natural frequency is capable of producing
parametric instabilities and localized states. Those localized
states can have both a stationary and an oscillatory envelope.
In the last case, the soliton center emits spin waves in an
anisotropic fashion. The transition between the isotropic and
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anisotropic states is a supercritical oscillatory instability. The
existence of such solutions is possible due to the quasi-
Hamiltonian nature of ferroferrimagnetic systems and the
possibility to manipulate the parameters of both the linear and
nonlinear terms in the LLG equation. These attributes make
this system ideal to study nonlinear dynamics.
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APPENDIX A: DERIVATION OF THE
AMPLITUDE EQUATION

In this appendix, we consider a voltage with a constant
and an oscillatory part η(t ) = η0 + δη cos(�t ), and derive
the equation for the magnetization oscillation envelope. In
this calculation, the parameters that account for the injection
and dissipation of energy obey the scaling |δη/η0| ∼ α �
1, that is necessary for a perturbation approach. The other
parameters are assumed to be of order one, h ∼ β ∼ η0 ∼ 1.
Let us consider the dynamics of the small and spatially slow
transverse components my and mz:

m2
y ∼ m2

z ∼
∣∣∣∣∇

2my

my

∣∣∣∣ ∼
∣∣∣∣∇

2mz

mz

∣∣∣∣ � 1. (A1)

This is not necessarily a good quantitative approximation
for all values of η0 and δη; however, it serves to derive a
model with qualitative validity. Using the above scaling, and
after straightforward calculations, the LLG equation can be
simplified to

∂

∂t

(
my

mz

)
≈ [

Mω0 + M∇ + MNL + Mosc + MD
](my

mz

)
.

(A2)

Let us review in the following each one of the matrices. The
dominant part of Eq. (A2) is given by

Mω0 ≡
[

0 −h − β − η0

h + β 0

]
, (A3)

which accounts for the linear conservative effects. Nonlinear-
ities arise from the magnetic anisotropies

MNL(my,mz) ≡ m2
y + m2

z

2

[
0 β + η0

−β 0

]
, (A4)

while the exchange matrix is

M∇ ≡
[

0 1
−1 0

]
∇2. (A5)

The dissipative effects are summarized in the matrix

MD ≡ −
[
α(h + β ) 0

0 α(h + β + η0)

]
. (A6)

The oscillatory effects contribute as

Mosc ≡ cos(�t )

[
0 −δη

0 0

]
. (A7)

The parametric instability takes place when � = 2(ω0 + ν),
where ν is a small detuning |ν|/ω0 � 1. Let us introduce the
following change of variables:(

my

mz

)
= Aeiω0tu + c.c. + W, (A8)

where the amplitude A varies slowly in time and space,
|∇2A| ∼ |∂tA| � |A| � 1, and the vector u is

u ≡
(√

h + β + η0

−i
√

h + β

)
. (A9)

This ansatz is a perturbation of the system state obtained when
δη = α = |∇2m| = 0, given by Eq. (3). Due to the nonlinear
nature of Eq. (A2), a function of the form Aeiω0tu cannot be
a solution of the system. We need then to promote the A0

constant of formula (3) to a space-time-dependent field and
add a nonlinear correction to the solution

W = W(A,A∗,∇2A,∇2A∗, t ).

The function W is a higher-order correction to be found later,
and it might scale as |W| ∼ |A|3. Replacing the ansatz (5) in
Eq. (A2), and linearizing around the correction W, one obtains

L̂W = [∂tA − gA]eiω0tu + (∇2 − iαω0)

×Aeiω0t

(
i
√

h + β√
h + β + η0

)
i
√

h + βδη

2

×A∗e2iνt eiω0t

(
1
0

)
+ c.c.

+ 1

2
A|A|2eiω0t

(
i(β + η0)(4h + 4β + η0)

√
h + β

β0(4h + 4β + 3η0)
√

h + β + η0

)

+A3e3iω0t fc, (A10)

where

L̂ ≡ Mω0 − ∂t =
[ −∂t −h − β − η0

h + β −∂t

]
, (A11)

and the function fc contains all the constants of the cubic term
A3e3iω0t . Notice that in the above equation both the nonlinear
function W and the evolution of the envelopes ∂tA and ∂tA

∗
are unknown. By the Freedholm alternative, Eq. (A10) can be
solved (for W 
= 0) if its right-hand side is orthogonal to the
elements of the kernel of the adjoint operator L̂†. We define
the inner product of functions space

(a, b) ≡ ω0

2π

∫ t0+2π/ω0

t0

(a∗ · b)dt, (A12)

where the center dot denotes the inner product of vectors with
complex components, i.e., the dot product of C2. Then, the
adjoint operator L̂† is

L̂† =
[

∂t h + β

−h − β − η0 ∂t

]
,

and its kernel is given by the vectors
e±iω0t (±i

√
h + β,

√
h + β + η0)T . Using Freedholm
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alternative, the aptitude A obeys (the PNDLS [61])

∂tA = −iC0A|A|2 − iκ∇2A − μA + i�e2iνtA∗, (A13)

where

4ω0C0 = (h + β )(β + η0)(4h + 4β + η0)

+ β(h + β + η0)(4h + 4β + 3η0), (A14)

κ = 2h + 2β + η0

2ω0
, (A15)

� = (β + h)δη

4ω0
, (A16)

μ = α

(
h + β + η0

2

)
. (A17)

APPENDIX B: NUMERIC METHOD

Let us start recalling that the Landau-Lishitz-Gilbert
model (4) is invariant under transformation of the form
{∂t ,∇2; h, β, η} → {ξ∂t , ξ∇2; ξh, ξβ, ξη}, where ξ is a real
number. This is particularly useful when all parameters are
small because we can use ξ = h−1 and then obtain a much
shorter simulation time.

Regarding the discretization of the spatial coordinates
in one dimension, we write x(i) = idx, and then mi (t ) ≡

m(t, idx), for a step size dx and position label i. The
Laplacian of the magnetization can be approximated as [67]

dx2 · ∂xxmi = 1

90
(mi+3 + mi−3) − 3

20
(mi+2 + mi−2)

+ 3

2
(mi+1 + mi−1) − 49

18
mi + dx8

560

∂8mi

∂x8
,

(B1)

where the last term is the discretization error. Notice that
if |∂8mi/∂x8| ∼ 1 and �x ∼ 0.5, then the error of the
Laplacian expression is of order dx8(∂8mi/∂x8)/560 ∼ 7 ×
10−6, which is small enough for this study. Apart from the
improved precision given by Eq. (B1), the results are the same
when other discretization expressions and other dx values are
considered. The two-dimensional discretization is analogous
since ∇2 = ∂xx + ∂yy .

We found it useful to use the spherical representation of the
magnetization

m = sin(θ )[cos(φ)ex + sin(φ)ey] + cos(θ )ez, (B2)

where the dynamical variables are the polar θ (r, t ) and
azimuthal φ(r, t ) angles. This representation is convenient
because the mapping (B2) preserves the magnetization norm,
and we are far from the θ = 0 and π poles. The set of
{θi (t ), φi (t )} is then integrated in time using the fifth-order
Runge-Kutta scheme of Ref. [68] with a constant temporal
step size of dt = 0.001.
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