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Front propagation into an unstable state in a forced medium: Experiments and theory
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Spatially forced systems can exhibit coexistence and a rich interface dynamics between manipulable states.
We show here how the propagation speed of a front into an unstable state can be modified through periodic space
forcing. Based on optical feedback, we set up a quasi-one-dimensional forced experiment in a liquid-crystal cell.
When changing the forcing parameters, fronts exhibit a ratchet motion. Unexpectedly, the average speed of fronts
decreases when the strength of the forcing increases. Close to molecular reorientation transition, an amplitude
equation allows characterizing analytically and numerically the observed dynamics.
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Introduction. Macroscopic systems with injection and dis-
sipation of energy are characterized by exhibiting stable at-
tractive equilibria [1,2]. The features of these equilibria are
characterized by the physical parameters of the system under
study. Those parameters, that can be manipulated externally,
are called control parameters. When one of the control param-
eters surpasses a critical value, the equilibrium loses stability
giving rise to new equilibria or transiting to a different equi-
librium. This phenomenon corresponds to a bifurcation [1–4],
since, it corresponds to a qualitative change of the dynamics
of the system under study [3]. The bifurcations mentioned
above correspond to a supercritical and subcritical transition,
respectively. A hysteresis loop characterizes subcritical tran-
sitions. Indeed, the system exhibits coexistence of equilibria.
In this region of parameters, due to the inherent fluctuations
of macroscopic systems and physical imperfections, one ob-
serves domains between the different states of equilibrium [4],
which are separated by domain walls. Due to the relative
stability properties between these equilibria, the interfaces
between domains are propagative, generating a complex spa-
tiotemporal dynamics. These interfaces are known as front
interfaces, domain walls, or wave fronts depending on the
physical context where they are observed [4–19]. These solu-
tions correspond to nonlinear waves. Front dynamics has been
observed in diverse contexts, such as walls separating mag-
netic domains, liquid-crystal phases, fluidized granular states,
chemical reactions, solidification and combustion processes,
and populations dynamics, to mention a few. Indeed, interface
dynamics is a robust phenomenon ranging from chemistry and
biology to physics. The propagation and dynamics of fronts
depend on the nature of the states that are being connected.
The invasion of the stable state into the unstable one usually
characterizes fronts between stable and unstable state. The
studies of combustion propagation of Faraday [8], gene propa-
gation of Fisher [9], and Kolmogorov et al. [10] are pioneering
studies in the understanding of this phenomenon. In honor of
these baseline studies, the fronts into unstable state are usually
called FKPP fronts (see [12], and references therein). The

propagation speed and shape of these fronts depend on the
initial conditions. In the case of bounded initial conditions,
the front always propagates asymptotically with the minimum
speed [13]. FKPP fronts have been observed in Taylor-Couette
instability [14], Rayleigh-Bénard convection [15], pearling
and pinching on the propagating Rayleigh instability [16],
spinodal decomposition in polymer mixtures [17], liquid-
crystal light valves with optical feedback [18], and population
dynamics [5]. In all these observations, the dynamics between
states of spontaneous equilibrium are analyzed. The mastering
and manipulation of these fronts propagations will allow
controlling the impact of these nonlinear waves in several
contexts, in particular, in the combustion process, crystal
growth, and spread of infectious diseases.

A simple strategy that can handle the nonlinear wave
propagation using the spatial forcing is presented. This Rapid
Communication aims to study the propagation of fronts into
an unstable state in a spatially forced medium. We investigate
front propagation into an unstable state in a one-dimensional
configuration. Based on optical feedback with a spatially am-
plitude modulated beam, we set up a quasi-one-dimensional
forced experiment in a nematic liquid-crystal cell. The molec-
ular reorientation as a function of the applied voltage in a
liquid-crystal light valve exhibits a subcritical Fréedericksz
transition [18]. By changing the forcing parameters, the front
into unstable state exhibits an oscillatory ratchet motion. The
average speed of fronts decreases when the forcing strength
increases. Theoretically, close to the Fréedericksz transition,
we consider an amplitude equation that accounts for the
observed subcritical bifurcation and spatial forcing. In the
limit of weak forcing, we can derive an analytical expression
for the front speed, which has a quite fair agreement with
the numerical simulations. In addition, we have numerically
characterized the front speed with respect to the forcing
parameters.

Experimental description. Liquid-crystal light valve
(LCLV) with an optical feedback loop is an optical experi-
ment that exhibits a transition of molecular reorientation of
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FIG. 1. Liquid-crystal light valve (LCLV) setup. (a) Schematic
representation of the liquid-crystal light valve with optical feedback.
Iin is the input light intensity, Pin is a polarizer, PBS is the polarized
beam splitter, L1, L2, and L3 are lenses, V0 is the external voltage
applied, FB is the fiber bundle, and CCD is the camera that captures
the images. (b) Snapshots of the LCLV without optical feedback with
the unforced and the forced masks applied. (c) Intensity profiles of
the liquid-crystal cell with and without forcing in (b).

subcritical type [20]. The experimental setup is schematically
represented in Fig. 1. The LCLV is composed of a thin
nematic liquid-crystal film between a glass and a photo-
conductive plate over which a dielectric mirror is deposed.
The liquid-crystal film has planar alignment with thickness
d = 15 [μm]. The liquid crystal used is a nematic LC-654
(NIOPIK). It is a mixture of cyanobiphenyls, with a positive
dielectric anisotropy εa = 10.7 and large optical birefringence
�n= 0.2. The photoconductor behaves like a variable resis-
tance, which decreases for increasing illumination. Liquid-
crystal light valve with optical feedback has been studied
extensively in the literature (see review article [21], and
references therein).

Transparent electrodes over the glass plates allow the appli-
cation of voltage V0 inducing an electric field. The LCLV is
illuminated by an He-Ne laser beam (λ = 632.8 [nm]) with
intensity Iin = 35 [mW]. The laser beam passes through a
Holoeye LC 2002 transmissive spatial light modulator (SLM),
allowing us to manipulate the spatial profile of the intensity
controlling therefore the front dynamics and imposing a quasi-
one-dimensional configuration Iin(x) = Iin + Ik cos(kx). The
optical path is schematically represented in Fig. 1(a). Over a
critical voltage, i.e., Fréedericksz voltage VFT, the molecules
tend to align along the direction of the applied electric field.
The molecular orientation changes locally and dynamically
following the spatial illumination distribution present in the
photoconductor wall of the cell. The light-driven feedback is
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FIG. 2. (a) Experimental bifurcation diagram performed in a
liquid-crystal light valve with optical feedback, intensity Iw as a
function of the applied voltage V0. The points correspond to val-
ues of total light intensity Iw at the LCLV. The dashed line is a
schematic representation of the aligned molecular state induced by
the anchoring of the walls. The painted area accounts for the region of
coexistence between stable and unstable state, where FKPP fronts are
observed. The insets are the snapshot of the typically observed states.
(b) Bifurcation diagram of model Eq. (1) without spatial forcing
(γ = 0) as a function of bifurcation parameter μ with β = 0.8.
Continuous and dashed lines account for stable and unstable state,
respectively. The painted area accounts for the region of coexistence
between stable and unstable state. The insets stand for typically
observed states.

obtained by sending back onto the photoconductor, Iw, the
light which has passed through the liquid-crystal layer and
has been reflected by the dielectric mirror. The light beam
experiences a phase shift which depends on the liquid-crystal
orientation (see [21], and references therein). By inserting
a polarized beam splitter, phase shifts are converted into
intensity variations modulating the illumination onto the pho-
toconductor, and hence the effective voltage applied to the
liquid-crystal layer. Finally, the laser beam is directed to a
charge-coupled device (CCD) camera where the images of the
LCLV are taken.

Experimental results. Using the SLM, we have illuminated
a channel in the LCLV of 3.5 mm long and 0.25 mm wide (see
the rectangles of the upper panels of Fig. 3). Indeed, the nature
of the system is almost one dimensional. For low external
voltages, no change is observed. The illuminated area remains
dark, which is a manifestation of no molecular reorientation
[see bottom inset in Fig. 2(a)]. Above a critical value VFT,
the region begins to change color to gray [see top panels
in Figs. 1(b) and 2]. The experimental bifurcation diagram
of this transition is illustrated in Fig. 2(a). The intensity
change of the illuminated area is abrupt, which is consistent

050201-2



FRONT PROPAGATION INTO AN UNSTABLE STATE IN A … PHYSICAL REVIEW E 98, 050201(R) (2018)

t =13,2 

[s]

space [mm]

(a) (b) 

[s]

[s]

[s]

space [mm]tim
e [s]

0                                                  3,45
0

40

0

40

0.5 mm 0.5 mm

0                                                    3,45

tim
e [s]

t1
t2t3 ta

tbtc

tim
e [s]

space [mm]

1

t =13,7 2

t =14,63

a

t =18,7b

t =20,3c

t =17,8[s]

[s]

x

y

xx

x

y

FIG. 3. Experimental front propagation, snapshots, and respec-
tive spatiotemporal diagrams of (a) an unforced medium and (b) a
forced one observed at V0 = 3.69 (Vrms). The upper panels account
for a temporal sequence of snapshots. The rectangle accounts for the
illuminated area with optical feedback, and the dashed curve is the
extracted region to obtain the spatiotemporal diagrams. The bottom
panels stand for the spatiotemporal evolution of the fronts in the
unforced and the forced system, respectively. The horizontal dashed
lines account for the moments where the top snapshots are extracted.

with a subcritical molecular reorientation transition [20].
Characterization of this instability using the total inten-
sity is consistent with the subcritical Fréedericksz transition
[see Fig. 2(a)]. Namely, increasing the voltage (V > VFT), the
gray state changes slightly. Similarly, decreasing the voltage,
the gray state is maintained until a critical value Vb < VFT.
Hence, the system exhibits a hysteresis or bistable region.
Note that the Fréedericksz transition from black to gray
region is characterized by the emergence of a gray spot that
begins invading the system. This phenomenon corresponds
to a FKPP front propagation between the unstable (black
region) to the stable state (gray region). Figure 3(a) shows
this phenomenon observed at V0 = 3.69 (Vrms). Note that as a
consequence of the inevitable imperfections of the experiment
[see Fig. 1(c)], as the front propagates, the speed slightly
changes. The average speed of propagation is 3.3 (mm/s).
In most of the observed cases, the fronts are triggered from
the edges of the illuminated region (see top panels of Fig. 3).
The previous scenario changes if we consider a spatial mod-
ulation of the applied light. We observe that the gray state
becomes a spatially modulated state. Figures 1(b) and 1(c)
show, respectively, the state and its profile before and after
applying a modulation to the illumination light to the LCLV.
The modulated state can be understood as a spatial modulated
light inducing a voltage on the spatially modulated liquid

crystal orientation. Likewise, note that although the light is
modulated, the non-reoriented (black) state is not modulated
since the light induces a parametric effect on the dynamics
of molecular reorientation [20]. Hence, in the forced case one
expects to observe fronts between a stable induced periodic
state and an unstable uniform one. Figure 3 shows a front
propagation between these states. Unexpectedly, the front
speed into unstable state in a forced medium is slower. Note
that the speed is at least three times smaller. Therefore, by
means of spatially modulated forcing, one can control the
propagation speed of the front.

Theoretical description. Based on the elastic theory with
the inclusion of electrical terms that account for the optical
feedback and the applied voltage, close to the Fréedericksz
transition, the liquid-crystal molecules begin to reorient. The
molecular orientation is characterized by the director �n ≈
[u sin(kπ/d ), 0, 1 − u2 sin2(kπ/d )] [20], where u(x, t ) ac-
counts for the most unstable spatial mode. This mode satisfies
the following dimensionless equation [20]:

∂tu = [μ + γ sin(kx)]u + βu2 + u3 − u5 + ∂xxu, (1)

where x and t , respectively, account for the spatial transverse
coordinate and time, μ is the bifurcation parameter that
accounts for the competition between the electric and elastic
force, and μ = 0 corresponds to the reorientation transition
point. γ and k stand for to the amplitude and the wave number
of the forcing, respectively. Namely, γ is proportional to
input light intensity Iin. β is a phenomenological parameter
that accounts for the pretilt induced by the anchoring in
the walls of the liquid-crystal layer. The methodology of
how to derive the parameters {μ, α, β} and the relation
with the physical parameters are given in Ref. [20]. The
γ parameter, using the same procedure, has the form
γ ≡ αεaIk[εa cos(kd�n)(dIinα[1 + cos(2kd�n)] + 2V0) +
ε0kd�n cos(kd�n)(dIinα[1 + cos(kd�n)] + V0)]/d. The
term proportional to β breaks the reflection symmetry of
amplitude u. This effect always renders the transition into
a discontinuous with a small hysteresis. Nonlinearities in
model Eq. (1) stand for the competition between elastic
and electrical forces induced by optical feedback [20].
The last term of Eq. (1) describes the transverse elastic
coupling. Note that the amplitude u(x, t ) has no physical
sense when it is negative. The theoretical model is valid near
the reorientational transition when the system exhibits a small
hysteresis cycle. However, in that region, experimentally it is
difficult to control the spatial forcing, since the light intensity
is weak (Iin � 1). Therefore, the theoretical model Eq. (1)
qualitatively describes the experiment.

Figure 2(b) illustrates the typical bifurcation diagram of
model Eq. (1) without spatial forcing (γ = 0). We note
that the bifurcation diagram is similar to the experimen-
tally observed (cf. Fig. 2). When the bifurcation parame-
ter is positive, the system exhibits coexistence between the
u = 0 (nonoriented) unstable and the u = u+ (reoriented,
0 = μ + βu+ + u2

+ − u4
+) stable state. In this region of pa-

rameters, one expects to find FKPP fronts between uni-
form states. Figure 4(a) shows the typical front observed
numerically.

In the coexistence region, when the spatial forcing is taking
into account γ �= 0, the zero state is persistent, since the
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FIG. 4. Front propagation of model Eq. (1). Spatiotemporal dia-
gram and front profile for μ = 1, β = 0.8: (a) γ = 0, (b) γ = 0.3,
and k = 0.2; (c) γ = 0.3 and k = 0.5; and (d) γ = 0.3 and k = 1.

forcing is proportional to the amplitude. However, the uniform
stable state u+ becomes a periodic one. Fronts propagation
between these two states are observed when the unstable
state is disturbed. Figure 4 shows the observed fronts into
an unstable state in a forced medium when the forcing wave
number is modified. Numerical simulations of fronts into an
unstable state exhibit a fair agreement with the experimental
observations. Numerically, we have characterized the average
speed as a function of the bifurcation parameter, strength, and
wave number of the forcing. Figures 5(a)–5(c) summarize the
results. For small wave number k, the front speed decay as
the forcing strength increases to a particular critical value, for
which it begins to increase the front speed. For large wave
numbers, always the front speed is increasing. Likewise, the
front speed increases initially with the wave number, but for
large values, it saturates and decays slowly.

When the characteristic experimental length of the width
of the front is of the order of 10 μm (determined by the elastic
constants and the rotation viscosity of the liquid crystal),
and the characteristic length of the forcing is fractions of
millimeters, then the proper physical limit of model Eq. (1)
is a small wave number (k � 1). Hence, the experimental dy-
namical behavior of the front is consistent with the simplified
model (1).

Front dynamics. To study the dynamics of fronts propaga-
tion into an unstable state in a forced medium, we consider
the limit when the forcing is small (γ � 1). The unforced
model Eq. (1) has front solutions of the form u0(x − vt − p0),
which does not have exact analytical solutions, but one can
achieve excellent asymptotic approximations [5]. v is the front
speed, and p0 is the front position, corresponding to the spatial
position where amplitude u has an equidistant value between
the equilibria. The front is characterized by having the highest
spatial variation around this point. To account for the forcing,
we consider the following ansatz for the front solutions:

u(x, t ) = u0[x − p(t )] + w[x − p(t )], (2)

where the front position is promoted to a temporal function
and w is a small corrective function of the order of the
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number (b) of the forcing. The points are obtained from numerical
simulations of model Eq. (1) with μ = 1.0, β = 0.8, and the contin-
uous curves emphasize the tendency of the front speed. (c) Average
speed as a function of bifurcation parameter μ. The painted area
accounts for the region of coexistence between a stable and unstable
state. (d) Instant front speed as a function of time. The points are ob-
tained from numerical simulations of model Eq. (1). The continuous
line is obtained used formula (3). (e) ψ (x ) auxiliary function used
to compute formula (3), obtained numerically by solving the linear
equation (v∂ξ − μ − 2βu0 − 3u2

0 + 5u4
0 − ∂ξξ )ψ = 0.

perturbative term. Introducing the above ansatz in Eq. (1),
linearizing in w, imposing the solubility condition, and after
straightforward calculations, we get (see similar calculation
with more detail in [22])

ṗ = v +
√

K2
1 + K2

2 cos(kp + φ0), (3)

where K1=γ 〈u0(ξ ) sin(kξ )|ψ〉/〈∂ξu0|ψ〉, K2=γ 〈u0 cos(kξ )
|ψ〉/〈∂ξu0|ψ〉, tan(φ0) = K1/K2, ξ ≡ x − vt − p is the co-
ordinate in the mobile reference system, ψ is an auxiliary
function that satisfies the linear equation (v∂ξ − μ − 2βu0 −
3u2

0 + 5u4
0 − ∂ξξ )ψ = 0, which is calculated numerically [see

Fig. 5(d)], and 〈f |g〉 ≡ ∫ L

−L
f (ξ )g(ξ )dξ is an inner prod-

uct, where 2L is the system size. The previous coefficients
are evaluated numerically, and we compare the front speed
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formula (3) with the front speed obtained directly from Eq. (1)
[see Fig. 5(c)]. We have quite a good agreement.

From Eq. (5) of the front position, one finds that the
dynamic of the front is equal to an overdamped particle in
a washboard potential. That is, the front Eq. (3) satisfies a
ratchet motion equation [23]. Therefore, close to saddle-node
instability, one expects the front to propagate slowly as a result
of the ghost effect [24]. Namely, the particle alternates a drift
force between a finite positive and a near to zero value. In this
former regime, the particle moves slowly. Hence, this explains
why the spatial forcing generates that the front spreads slowly
in the presence of small forcing.

Conclusions. We show here how the propagation speed of
a front into an unstable state can be modified using a spatial
forcing. The front propagation exhibits a ratchet motion. The
front’s average speed decreases when the strength of the
forcing increases. Hence, we present a simple strategy that
can handle the nonlinear wave propagation using the spatial
forcing.
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