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ARTICLE INFO ABSTRACT

2010 MSC: Patches of vegetation consist of dense clusters of shrubs, grass, or trees, often found to be circular characteristic
00-01 size, defined by the properties of the vegetation and terrain. Therefore, vegetation patches can be interpreted as
99-00 localized structures. Previous findings have shown that such localized structures can self-replicate in a binary
Keywords: fashion, where a single vegetation patch elongates and divides into two new patches, in a process resembling

elsarticle.cls cellular mitosis. Here, we extend these previous results by considering the more general case, where the plants

LaTeX interact non-locally, this extension adds an extra level of complexity and shrinks the gap between the model and

Elsevier real ecosystems, where it is known that the plant-to-plant competition through roots and above-ground facil-

Template itating interactions have non-local effects, i.e. they extend further away than the nearest neighbor distance.
Through numerical simulations, we show that for a moderate level of aridity, a transition from a single patch to
periodic pattern occurs. Moreover, for large values of the hydric stress, we predict an opposing route to the
formation of periodic patterns, where a homogeneous cover of vegetation may decay to spot-like patterns. The
evolution of the biomass of vegetation patches can be used as an indicator of the state of an ecosystem, allowing
to distinguish if a system is in a self-replicating or decaying dynamics. In an attempt to relate the theoretical
predictions to real ecosystems, we analyze landscapes in Zambia and Mozambique, where vegetation forms
patches of tens of meters in diameter. We show that the properties of the patches together with their spatial
distributions are consistent with the self-organization hypothesis. We argue that the characteristics of the ob-
served landscapes may be a consequence of patch self-replication, however, detailed field and temporal data is
fundamental to assess the real state of the ecosystems.

1. Introduction

Spontaneous shift from a uniform cover of vegetation into a frag-
mented ecosystem constituted by a spatially periodic distribution of
gaps, or patches, is a well documented issue in plant ecology. This
transition may occur either in water or nutrient limited territories. It is
now widely admitted that facilitative and competitive interactions be-
tween individual plants can directly or indirectly account for the for-
mation of vegetation patterns (Lefever and Lejeune, 1997; Klausmeier,
1999; HilleRisLambers et al., 2001; von Hardenberg et al., 2001; Tlidi
et al., 2008; Vesipa et al., 2015). The spatial distribution of such pat-
terns can be modified by the effect of climatic, terrain and anthro-
pogenic influences (Kefi et al., 2007; Kefi et al., 2007; Dakos et al.,
2011; Deblauwe et al.,, 2012). Quantitative studies based on field
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observations have been made on: the Sahelian gapped patterns, con-
stituted by Combretum micranthum trees (Barbier et al., 2006; Barbier
et al., 2008; Lefever et al., 2009); patches of vegetation in arid high
altitude environments in the tropical alpine ecosystems of the Andes
formed by Festuca orthophylla (Poaceae); and for grasses or by Pyc-
nophyllum tetrastichum cushions (Bolivia, Couteron et al., 2014).
Patterned vegetation landscapes are fragmented, i.e, the terrain is
only partially covered by vegetation. Some of these landscapes are
composed of vegetation patches, which may be sparsely or regularly
distributed. These patches usually have a characteristic size and well
defined circular shape. It has been shown recently that localized pat-
ches can be destabilized by a deformation of their circular shape, either
leading to the formation of labyrinthine patterns (Bordeu, 2016), or
dividing into two new identical patches of smaller diameter (Bordeu
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et al., 2016). The latter is a phenomenon often called self-replication
and resembles mitotic cell division. It has been studied in the context of
herbaceous populations in arid ecosystems (Bordeu et al., 2016). The
self-replication mechanism allows the transition from a single localized
structure into a qualitatively different state, namely a hexagonal peri-
odic pattern of vegetation. During the transition from localized to
periodic pattern, the total biomass increases as newly formed patches
contribute to the repopulation of the territory accessible to vegetation.
From a theoretical point of view, self-replication is a patterning phe-
nomenon better known in physico-chemical contexts rather than eco-
logical systems. It is a generic mechanism of pattern formation, which
has been observed and established in various non-equilibrium systems,
such as chemical systems (Pearson, 1993; Lee et al., 1994; Kaminaga
et al., 2005; Kolokolnikov and Tlidi, 2007), in plant ecology (Meron
et al., 2004; Bordeu et al., 2016, and nonlinear optics Tlidi et al., 2002).

In this contribution, we investigate the space-time dynamics of ve-
getation under a self-replication phenomenon by extending the pre-
vious work by Bordeu et al. (2016), Bordeu (2016), where a simple
local model was used to illustrate that self-replication was a possible
mechanism for vegetation propagation. Here we consider a general
integro-differential model instead of the simplified model of Bordeu
et al. (2016), Bordeu (2016), where non-local interactions are taken
explicitly into account. The non-localities arise from the facilitating
mechanisms, i.e. promoters of vegetation growth, competition me-
chanisms, which limit vegetation growth, and dispersion effects. This
model corresponds to a variant of the theory of vegetation patterning
established by Lefever and Lejeune (1997), which focuses on the re-
lationship between the structure of individual plants and the facilita-
tion-competition interactions existing within plant communities. It is
now widely recognized that the existence of facilitation and competi-
tion interactions play an important role in the formation of self-orga-
nized vegetation patterns. Numerical simulations of our model show
indeed a self-replication process that leads moderately arid ecosystems
to undergo a transition to higher biomass states, namely hexagonal
patterns of vegetation patches. Moreover, we show that this kind of
patterns may be obtained through the decay of a homogeneous vege-
tated landscape towards a less populated fragmented state, where
hydric stress induces contraction of vegetated areas. Depending on the
levels of aridity, the ecosystems may decay to a different type of pat-
terned states or even become desert.

We study the characteristics of both self-replication and fragmen-
tation processes through the analytic and numerical analysis of a gen-
eral integro-differential model. We show, from a theoretical perspec-
tive, that depending on the levels of aridity localized patches can be
more or less stable than the periodic pattern, a phenomenon previously
studied in simpler local models (Vladimirov et al., 2011). In an attempt
to conciliate the theoretical observations with real data, we consider
two ecosystems, namely, from Zambia and Mozambique, these land-
scapes are composed of vegetation patches reaching large sizes, of the
order of tens of meters in diameter (see Fig. 1). We perform statistical
analysis of satellite images and find that patches have correlated
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characteristic patch sizes and inter-patch distances along with other
properties that support the hypothesis of the self-organization nature of
these landscapes.

The article is organized as follows: in Section 2.1 the theoretical
model is introduced, together with the phase diagram. A description of
the methods used to analyze the satellite images are included in Section
2.3. The results are presented in Section 3. Theoretical results in-
dicating the relationship with the wavelength and the range of the fa-
cilitative and competitive interactions are presented in the appendix.
Finally, we present the Discussion, Conclusions and Perspectives of our
work.

2. Methods
2.1. Mathematical model

The modeling of ecosystems is a challenging and complex problem.
Here, we adopt the theory of vegetation patterns established by R.
Lefever and coworkers two-decades ago to model the spatiotemporal
dynamics of vegetation in which both space and in time are considered
to be continuous variables (Lefever and Lejeune, 1997). This theory
incorporates the non-local facilitative and the competitive plant-to-
plant interactions though kernels (Lefever and Lejeune, 1997; Tlidi
et al., 2008; Lefever et al., 2009; Lefever and Turner, 2012). In the
absence of these interactions, the resulting model is similar to the
paradigmatic logistic equation introduced by Verhulst to study popu-
lation dynamics (Verhulst, 2013; Mawhin, 2002). In what follows we
consider vegetation of a single species settled on a flat landscape under
isotropic and homogeneous environmental conditions. To simplify
further the description of the system, we assume that all plants are
mature. Thus, we neglect age classes. This approximation can be jus-
tified by the fact that individual plants grow on much faster time scale
comparing to the time scale of the formation of regular vegetation
pattern. The only variable is the vegetation biomass density which is
defined at the plant level. Let us introduce the biomass density, b(r,t),
that satisfies the following dynamical evolution (Tlidi et al., 2008;
Lefever et al., 2009)

dib(r,t) = b(r,t)[1=b(x,t) My (x,t)—ub (x,t)M(r,t) + DMy(rx,t), eh)

where r and t are the spatial coordinates and time, respectively. The
time derivative is represented by 3;. The parameter u, is the decay-to-
growth rate ratio. It can be viewed as an indirect measure of resource
scarcity or stress, that limits net biomass production and is what we
refer to as aridity parameter. The first and the second terms on the
right-hand-side of Eq. (1) account for the plant-to-plant facilitation and
competition feedbacks, respectively. They describe the spatial extension
of feedback effects in terms of the characteristic ranges Ly and L. over
which facilitative and competitive interactions operate, respectively.
The facilitative interaction acts on the level of the aerial plant structure
(crown) that involves sheltering, litter, water funneling or any other
effect, such as seed production and germination that contribute to the
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Fig. 1. Satellite images (Google Earth Pro), of vegetation patches in (a) the Mufumbwe District in the North-Western Province of Zambia [13°46'39.83"S, 25°16'39.59"E], and (b) the
Fombeni, Mozambique [18°41'02.17"S, 35°3155.95"E]. The red arrows indicate overlapping patches, possibly undergoing self-replications.
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biomass natural growth (Brooker et al., 2008). Let L, be the crown
radius projected on the surface element A = 7L, centered on a point r.
Assuming that the length of facilitative interaction is equals to the ra-
dius of the crown, i.e., Ly = L,. On the other hand, in resource-limited
environments, plants should compete for their survival. In face of cli-
mate change and increasing drought periods, plants should adapt their
root structures to overcome resource scarcity (Schenk and Jackson,
2002; Barbier et al., 2006). Through their root structures (rhizosphere),
each individual plant tends to deprive its neighbors of vital resources,
such as water or nutrient uptake. Measurements of roots lateral spread
indicate that they extend beyond the radius of the aerial structure
(crown) by an order of magnitude (Barbier et al., 2006; Barbier et al.,
2008; Lefever et al., 2009; Couteron et al., 2014).

The competitive interaction between plants tends to oppose the
facilitation mechanisms, by impeding vegetation growth. In arid land-
scapes, the length of facilitative interaction (crown) is much shorter
than the length of the competitive interaction operating at the level of
the rhizosphere which is the volume of soil around living roots. Let
consider also that the range of the competition is such that L. =L,,
where, L, is the radius of the rhizosphere. The third term in Eq. (1)
describes the spatial propagation of vegetation via seed dispersion. The
parameter D is the rate of propagation of the vegetation. The compe-
titive plant-to-plan interaction is considered to be of the form

X —Ir'I/L, , ,
M, (r,t) =exp(— e ¢b(lr +r'l,t)dr'\,
’ N, S @
where, y, is the strength of the competitive interaction, and N; is a
normalization constant, that depends on the spatial dimension. In two
dimensions, N. = 2zL?2. The spatial propagation of vegetation via seed
dispersion is assumed to have the form

_ 5 —Ir12/L} ’ ’
My(rt) = ;fe d[b(r + 1, 0)=b(xt)]dr’, @)
the parameter L; and § are, respectively, the dispersion range of seeds
and the strength of dispersive process. To simplify further the analysis
we assume that the seed dispersion is described as diffusion
My(r,t) ® DV%(x,t). This can be obtained by considering a small dis-
persion range and a simple Taylor expansion, which leads to D = §L}/4.
To simplify further the problem, we consider that the facilitation is well
described by a local process modelled by My(r,t) = exp(y b), where Xyis
the strength of the facilitative interaction.

The analysis we make in this work generalizes previous results.
Here, the complete non-local integro-differential model is analyzed,
which accounts for an important step forward in the understanding of
the behavior of this type of system. For a complete linear stability
analysis of this model see Appendix A.1.

2.2. Localized vegetation patches

The non-local Eq. (1) exhibits stable circular localized structures
which are supported by one of the homogeneous steady state, bo = 0
(unpopulated state) or bs (homogeneously vegetated). In the context of
vegetation dynamics, localized structures that emerge from the un-
populated state by = 0, correspond to circular patches of vegetation
which are surrounded by bare terrain. As previously mentioned, peri-
odic states and localized patches emerge as a self-organizing response of
the system to changes in the parameters. Aridity (i), is of particular
interest, as it can be directly related to field measurements, and also
relates to an ever-increasing concern due to global warming. An in-
crease in aridity (lower hydric resources available or other stress fac-
tors) may cause a contraction of savannas and woodlands, in a process
called desertification, triggering the formation of vegetation patterns or
even deserts. The necessary and sufficient condition for the formation of
localized patches is the coexistence between a homogeneous cover and
a periodic vegetation pattern. Implying the existence of an hysteresis
loop. Inside this loop, there is a so-called pinning range of the aridity
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parameter where localized gaps or patches are stable (Lejeune et al.,
2002; Rietkerk et al., 2004; Tlidi et al., 2008). Similar pinning behavior
occurs in many spatially extended systems where a homogeneous
steady state coexists with a spatially periodic state (Pomeau, 1986; Tlidi
et al., 1994; Champneys, 1998; Coullet et al., 2000). Pinning was first
reported for front solutions by Pomeau (1986), and has also been ap-
plied to gap vegetation patterns (Vladimirov et al., 2011). Localized
structures and localized patterns are a well documented phenomenon,
concerning almost all fields of natural science including chemistry,
biology, ecology, physics, fluid mechanics, and optics (Tlidi et al., 2014;
Knobloch, 2015; Meron, 2015).

In addition to analytically deriving predictions from Eq. (1), we will
provide a case study for which the interpretation of vegetation
patchiness based on localized structures and self-replication is plau-
sible.

2.3. Data analysis

Through the use of satellite images obtained from Google Earth, we
have located regions in Zambia and Mozambique where vegetation
patches dominate the landscape (see Supplementary information,
Table 1).

2.4. Patch detection algorithm

In order to detect the vegetation, we developed a simple algorithm
that segments the images, detects vegetation patches and extract
properties of interest (Matlab vR2016b, see Supplementary Information
6.1). The boundaries of every detected patch are used to extract the
patch geometrical features, such as area, perimeter, equivalent dia-
meter, and centroid positions, which are then used in the spatial ana-
lysis.

2.5. Equivalent radius and nearest-neighbor distance

The equivalent radius of each structure r,, is calculated as

=
V7
where Ay corresponds to the area of the structure. The nearest neighbor
distances is obtained by finding the minimum of the distance every
patch and all the other patches.

Fog =

@

2.6. Spatial distribution analysis

2.6.1. L-function
For the analysis of the spatial distribution of patches we make use of
the modified Ripley’s function L, for this, only the centroids of the
patches are used. We define L as (Ripley, 1976)
[ A

L(r) = \: WS(;’)

()
where r is the distance from the reference point. N and A are the total
number of points and the area, respectively. S(r) is the number of
points that lay inside a circle of radius r centered on a patch of reference
chosen randomly, this is repeated for multiple patches. As control we
compute the L function for a set of randomly distributed point (null
model), by repeating this 200 times, construct the 95% confidence in-
tervals. When the observed values of L go above (below) the confidence
interval, we say the distribution of point is clustered (dispersed).

2.6.2. Radial distribution function

Similarly to the L-function, the radial distribution function g(r), is
computed using only the positions of the centroids of the detected ob-
jects, we define g(r) as (Couteron and Kokou, 1997)
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N(r
g(r) = S0,
27 Arp (6)

where N (r) is the number of points that lie inside a ring of radius r and
width Ar, centered on a given object. The numerator of this expression
corresponds to the total number of points that lay inside the ring for the
case of homogeneously distributed objects, p is the overall number
density. The radial distribution function, g (r}, measures the correlation
of the position of the points, values of g(r) > 1 (g(r) < 1) indicate
positive (negative) correlation. N(r) in numerically computed by mea-
suring the distance between every two patches in the images, and then
performing a histogram, where the bin-width corresponds to Ar.

2.6.3. Fourier transform
The Fourier transform is used considering the binary image U (x,y)
of the structures detected. It is defined as

Okuky) = [ [ UGep)exp(=27ikex +kyy) ddy e

where (xy) are the spatial coordinates of the image pixels, and (kx.k,)
are the spatial frequencies, usually U is referred to as the spectrum of U.
Peaks in the spectrum indicate dominant wavelengths or typical sizes of
the patches detected in the satellite images (see Couteron and Lejeune,
2001; Deblauwe et al., 2011).

3. Results
3.1. Self-replication: From vegetation patches to extended pattern

Detailed mathematical analysis is provided for the first time for Eq.
(1) (see the Appendix A.1). This analysis shows that under a wide range
of the aridity parameter, there is coexistence between homogeneous
and pattern states. Thus, supporting stable localized vegetation patches.
Moreover, as observed in models with only local interactions (Bordeu
et al., 2016), vegetation patches in the non-local model may also be
affected by a Turing-Prigogine instability, where the patch elongates,
increasing in size to finally split into two patches, through the decay of
the central “bridge” that connected them. This mitotic dynamics occurs
repeatedly to each of the new patches, allowing the single initial patch
to end up covering the whole system, through the formation of a per-
iodic hexagonal pattern, as can be observed in Fig. 2. It is through the
self-replication mechanism that a single vegetation patch can induce a
increase in the total biomass of a system although the aridity is too high
to allow for an homogeneous cover of vegetation. Fig. 6 shows the in-
crease of the total biomass on the transition from a single to four pat-
ches through self replication (Fig. 3).
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Fig. 3. Evolution of the total biomass on the transition from a single to four patches
through self replication. Points obtained through direct simulation of Eq. (1), for a system
of size 128 x 12&-points, and parameters: u = 1.02, Lc = 4.50, yy =2, ¥, =1, D=1, dt = 0.1,
and dx = 1.0. Multiplicative noise amplitude (1.1, facilitates the initial break of symmetry.
The insets show the different stages of the evolution. The total biomass is normalized with
respect to the total biomass of a mature patch. Thus, during maturation a single spot
reaches a normalized biomass of 1, to replicate into two patches to reach a total of almost
2. After a second replication (four patches) the system reaches a normalized biomass of 3.

To study the parameter zone where self-replication is observed, we
have performed a direct numerical approach for computing the rate at
which the elongating unstable mode grows, see Fig. 4. We have found
that given a size-scale, L., for the nonlocal interactions in Eq. (1), there
is a wide range of aridity, u, for which an initial localized structure will
destabilize through the self-replicating mechanism (see Fig. 4). Lower
values of L., imply shorter-range nonlocal effects, this generates a left-
shift in the self-replicating window to lower values of aridity as can be
seen in Fig. 4 when comparing the red (L. =4.25,+) and yellow
(L. = 4.00,°) curves to the blue curve (L, = 4.50, x).

Moreover, we have found that for aridity parameter values below
the self-replicating region, there is a different route for the self-re-
plicating mechanism (see ring instability inset, Fig. 4), here, an initial
localized structure grows radially. After reaching a critical radius, the
central portion of the structure decays, forming a doughnut-like shape.
This structure is also unstable. By the consequent decay of two opposite
sides of the doughnut, the structure ends up dividing into two new
localized patches.

Following the simulations of a single initial localized patch (Fig. 2),
we performed large-scale simulations, containing hundreds of randomly
distributed patches, the objective of this, was to assess how

I

Iz

Iz

ls

Iz

Fig. 2. Evolution of a self-replicating localized vegetation patch, for a sequence of time points f; < f, < ... < ts < t5. Obtained through direct simulation of Eq. (1), for a system of size
128 X 128-points, and parameters: 4 = 1.02,)(f =2, =1,L, =45 D =1,dt =01, and dx = 1.0.
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Fig. 4. Growth rate of the unstable mode, corresponding to an elongation, leading to
division. For: (%) L. = 4.50; (*) L.=4.25; ) L= 400, as a function of the aridity
parameter y. Lines are linear interpolations. Outside the limits denoted by dashed lines,
initial localized structures may remain stable (large x values), or destabilize through a
ring instability, leading to division (smaller u values). Points obtained through direct
simulation of Eq. (1), for a system of size 128 X 128-points, and parameters:
X =2,X =1,D=1,dt =01, and dx = 1.0. Multiplicative noise amplitude 0.1, facilitate
the initial break of symmetry.
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fundamental is the self-replicating process in the emergence of the
characteristic wavelength in the system. We proceeded as follows: (i)
Considering a system of 256 x 256-points (dx = 2.0), we built and initial
condition consisting of a spatial Poisson point process with rate 0.001,
this generates on the order of 600 points randomly distributed in the
two-dimensional plane. Each of the points is considered as the center of
alocalized patch of 3-points radius, the generated state can be observed
in Fig. 5a. (ii) The random field is used as initial condition for simu-
lating Eq. (1) for a parameter region inside the self-replication windows
(see Fig. 4, L. = 4.50). (iii) We let the system evolve, and obtain a
transient state, that can be seen in Fig. 4c, although here we cannot
observe new structures, because the evolution time was too short, it is
enough time for the system to split the existing cluster into distinct
structures.

When computing the Fourier transform of both the initial and the
evolved state, we see that for the case of the initial state (Fig. 5b) the
Fourier transform (apart from the central peak) exhibits a characteristic
wavelength of the order of the size of the localized structures (4 = 3
A.U), due to the almost mono-dispersed sizes of the computer generated
structures (almost, because some of the structures merged to generate
bigger clusters), the same phenomenon was observable in the analysis
of Zambia’s landscape (Fig. 5¢).

On the contrary, when analyzing the evolved state (Fig. 5d), we see
immediately the emergence of a characteristic wavelength much larger
than the size of the structures (4 = 14 A.U.), this wavelength emerges as
a result of the self-organizing nature of the system, where clusters split,
rapidly arriving at a characteristic distribution.

Simulacion t =0 AU (Initial state)

Circular average FT

Circular average FT

450

-
h
(=1

200

2
=

03
k=1/n

0.4 0.5

Fig. 5. Large scale simulations, (a, b)-shows the 256 x 256-point (dx = 2.0) initial condition generated from a Poisson point process with structures of 3-point radius, and its corresponding
Fourier transform, respectively. (c, d)-Shows the evolved state after 1000 iterations (d¢= 0.1), and the corresponding Fourier transform, respectively. Parameter:
u=1021L =45 =2,% =1, and D = 1. Measurements done in dimensionless units (A.U.).
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Fig. 6. Fragmentation: homogeneous cover decays as aridity increases. (a) u = 0.85, initial condition, the system is in a completely vegetated state. (b) mu = 0.95 the homogeneous state
decays to a labyrinthine pattern. (c) mu = 1.02, (self replicating region) labyrinthine pattern decays to a non-periodic patch pattern. (d) mu = 1.04, (stable localized patches region)
labyrinthine pattern decays to isolated patches without evident global order. (e) Shows the temporal evolution of the total biomass (normalized by the biomass of a the single LP in Fig. 3),
diamonds show the transition from u = 0.85 to u = 0.95, upward-triangles show the transition to u = 1.04, while downward-triangles show the transition to x = 1.02. Simulation
parameters: 256 X 256-point grid (dx = 2.0), df =0.1, L. =4.5, y =2, X, =1, and D = 1. Multiplicative noise with amplitude .01 is used to facilitate the initial destabilization of the

homogeneous state.

3.2. Fragmentation: from homogeneous cover to patchy landscapes

We have shown that through self-replication a single or multiple lo-
calized patches may increase the total biomass of a system leading ulti-
mately to a hexagonal patterned state. However this is not the only route
by which a system can reach such patterned state, a second route is pre-
sented in Fig. 6, where an homogeneous vegetated state (u = 0.85) is de-
stabilized by an increase in aridity towards a labyrinthine pattern
(1 = 0.95). Further increasing aridity drives the system towards two pos-
sible final states, the first possibility is a reduction in aridity that takes the
system to the region where localized patches are unstable and suffer from
self-replication (u = 1.02), here, the labyrinthine pattern breaks down into
multiple localized patches that cover the system by generating a patterned
state. Note that the bare state become stable when ,, > 1. On the other
hand, when aridity is shifted from u = 0.95 to u = 1.04, where localized
patches are stable, then the system reaches a different state, consisting on a
low number of isolated patches distributed in a disordered manner.

It is important to mention that a discontinuous transition from the
stable homogeneous cover region (1 = 0.85) directly to any of the non-
periodic patch regions (4 = 1.02 or 1.04) generates an overall decay of
the homogeneous state to the bare state. Thus, an intermediate level of
aridity is necessary for allowing the destabilization of the homogeneous
cover into a non-periodic patch pattern.
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3.3. Remote-sensing observations

We have studied the spatial distribution of localized patches in eight
distinct regions, four located in the Fombeni region, Mozambique, and
other four located in the Mufumbwe District, North-Western Province of
Zambia. The vegetation in Zambia is dominated be a medium size tree
Brachystegia spiciformis. The vegetation patterns observed in these regions
are not periodic, and are composed by vegetation patches, possibly com-
posed by groups of trees forming compact clusters. Each patch can cover an
area of up to thousands square-meters, with an effective radius of tens of
meters, as can be observed in Fig. 1a and f (and SI Figs. 11 and 12).

The maximal values of the radius of the structures extends over
hundreds of meters, however, the typical value (mode) varies from
region to region, ranging from 7 meters (zones 3, and zone 4 in Zambia)
up to 36 meters (Zambia zone 4), most of the regions show a marked
characteristic size of the structures (see Fig. 7a and f, and SI Figs. 11
and 12) and nearest-neighbor distance (see Fig. 7b and g), indicating a
preferred spatial patch distribution.

To study the spatial organization of the patterns, we perform two
measurements, the first is a modified Ripley’s function L, which mea-
sures the level of clustering of a spatial point process (see formula (5)),
and the second one is the radial distribution function (6), used to
measure the correlation in a point process. Both observables are closely
related (Couteron and Kokou, 1997), yet together they allow for further
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Fig. 7. Measurements performed on the detected patches for zones 2 of Mozambique (top) and

Zambia (bottom). (a) & (f) show the histograms for the equivalent radii of the structures

and (b) and (g) show the histogram of the nearest-neighbor distances between them. the modified K-function L(r) (lines show the 95% confidence interval) shown in (c) and (h), while (d)
and (i) show the radial distribution function g(r). Finally the circular average of the two-dimensional Fourier transform, i.e, the spectra are shown in (e) and (j).

insight into the spatial organization. All regions Zambia and zones 1
and 4 in Mozambique exhibit scarcity of neighbors at close distance
(observations below the 95% confidence interval) and then transition
towards clustering is observed for larger distances (Fig. 7c and h). Si-
milarly, when analyzing the correlation of the point distribution
through the radial distribution function, we observe a positive corre-
lation (g(r) > 1) regime in all the zone, in particular, regions with high
clustering exhibit long range positive correlation, while zones 1 and 3
in Mozambique, which show no clustering exhibit a positive correlation
only for a small distance (Fig. 7d and i). Because of the size of the
regions considered (see SI Fig. 10) where the terrain is not homo-
geneous, and there is a qualitative change in the structures even within
a single zone, this prevents the definition of a characteristic wavelength
through a spatial Fourier transform on every region. Positive examples
are zones 2 in Mozambique and Zambia, where an incipient char-
acteristic wavelength can be defined (Fig. 7e and j).
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To study if there is a relationship between the size of the patches
and the distance between them, we make use of the results from the
analysis of radius and nearest-neighbor distance (NND) between
structures (see SI Figs. 11 and 12) and study the correlation between
them through a linear correlation analysis (see Fig. 8). We observe a
strong correlation between the two quantities, indicating that there
might be a underlying mechanism controlling both the structures size
and the distance between them.

4. Discussion

Numerical observations of the non-local model studied suggest that
self-replication may be an important path for the propagation of ve-
getation, which allows for the propagation of the vegetation even in
arid conditions where the homogeneous cover is not viable due to the
lack of resource (nutrients and/or water). Moreover, it has been shown



M. Tlidi et al.

Zambia ,
zone 2

Correlation coefficient
R =0.92317
P-value

P =0.0010696 Zambia

zone 1

el
T

Mozambique
zone 4

Maozambique
zone 3

NND (from histograms) (m)

Lh

Zambia T\"(}Zﬂ['(lblqlll:
zone 2 -

zone 3

~ Mozambique
zone |

40

< Zambia
zone 4

10 . . . . .
5 10 15 20 25 30
Equivalent radius (m)

w

Fig. 8. Correlation between the mean equivalent radius of the structures and the nearest-
neighbor distance for each of the eight regions analyzed, there is a positive linear correlation
between these two quantities (P < 0.05), which allow us to discard the null hypotheses.

that a transition from a homogeneous vegetation cover to a patch pat-
terned state may only occur if the transition occurs towards the self-re-
plicating region. However, in real-ecosystems processes occur at a slow
time scale and there is a high number of uncontrolled parameters which
prevent the assessment of the validity of the numerical observations. We
however illustrate the plausibility of the process by referring to observa-
tions at a single point in time of patchy vegetation in Africa.

The properties of the landscapes observed in Mozambique and
Zambia show some indications that support self-organization. These
systems exhibit a characteristic distance between patches, and a char-
acteristic patch size, together with clustering and long range correla-
tions in the spatial distribution. This may indicate that patches are in-
teracting with each other resulting in the spatial distributions observed.
From our modeling perspective, localized patches which are too close to
each other (high density) will compete for resources ending up with the
disappearance of the one placed in the less favourable location. If the
patches are too far apart (low density), the extra space will allow the
growth of the patches resulting in self-replication and the formation of
new patches that will fill the previously unoccupied region. We must
here make clear that we cannot corroborate the existence of these dy-
namical processes from the data analysis performed. The remote sen-
sing data provides no temporal information and limited spacial re-
solution. Further on-site investigations are necessary to comprehend
plant-plant interaction in specific contexts, and to assess if there are
local factors that contribute to the self-organization of the landscape.

Despite all of this, we have observed features that support the patch
self-replication hypothesis, for example, the observation of rings, which is
a second route to self-replication (see Fig. 4). Rings are usually transient
state, leading to division into two or more patches (Bordeu et al., 2016;
Meron et al., 2004). Examples of this can be observed in different regions
of Zambia (for example, [14°4010.36"S, 25°49'37.34’E], and the sur-
rounding areas). It is harder to observe the formation of rings in Mo-
zambique, and we believe this relates to the facts that the structures in this
location are smaller, preventing the ring instability to take place. Moreover
the direct correlation between the size of the patches and the nearest
neighbor distance, is also rendered by the model, which indicates that
there is a dominant wavelength in the system that controls both the size of
the structures and distance between them. This wavelength depends on
the aridity parameter (see Appendix A.1).

5. Conclusions and perspectives

By making use of a generic interaction redistribution model, and by
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establishing new theoretical results in the most general case (instead of an
approximation of the model as in Bordeu et al. (2016)), we have shown
that self replication of localized patches is generically present even in the
most general model involving non-local competition and facilitating in-
teractions. We have shown, through this model, that a localized structure
may undergo multiple self-replications to finally cover the whole space
available with a regular hexagonal pattern, and by doing so, let the total
biomass in the system increase in time. Moreover, the self-replication re-
gime may be an important stage in the decay of homogeneous covers of
vegetation to hexagonal pattern states. It may be seen as an alternative to a
more abrupt decay in biomass without this, the decay in the biomass is
more abrupt resulting in a low number of sparse patches. We hypothesize
that these processes are occurring in the observed landscapes of Mo-
zambique and Zambia. The model has allowed us to provide theoretical
predictions of the space-time evolution of the biomass as a function of the
level of the aridity. This could be used as an indicator to identify whether
stressed ecological systems may self-replicate or, on the contrary exhibit
decaying dynamics.

Through the analysis of satellite images, we have given evidence to
support the self-organization hypothesis. Despite the limited amount of
data, which prevents being assertive about the underlying processes, we
believe that self-replication could be considered as a possible me-
chanism for the regeneration dynamics of these landscapes. This phe-
nomenon may occur for a moderate level of the aridity. Moreover,
when considering a homogeneous cover, a gradual increasing of the
level of the aridity results in a decay of the total biomass. The de-
gradation of the ecosystems though fragmentation leads to either a
periodic vegetation patterns or a random distribution of localized pat-
ches of vegetation. However, a periodic pattern is only obtained if the
system relaxes in the region where self-replication exists, and patches
are unstable.

As mentioned in the Discussion section, more data, specially field
measurements, long time-lapse imaging and controlled experiments are
necessary to confirm any claim on the nature of the observed patterns.
However, measurements done here are a first step to understand the
distribution of the observed patterns, and illustrate that self-organiza-
tion is a strong candidate to explain them. Despite that there is no direct
observations of self-replication, the current state of some patches drive
us to think that self-replication might be an ongoing process, for ex-
ample in the “dividing” patches showed in Fig. 1.

The knowledge of the below-ground structures of the type of vegeta-
tion considered in this contribution is rather limited. From the current
literature only rooting depth data and a quantitative index of the vertical
distribution of roots are available, which are irrelevant for the present
study. Moreover, the full lateral roots extension has not yet been mea-
sured. For this reasons it was beyond the scope of the present contribution
to perform a quantitative comparison between theoretical results and field
observations. On the other hand, the model presented here has been
previously confronted quantitatively to experimental measurement for two
type of plants (Festuka orthophylla Couteron et al., 2014 and Combretum
micranthum Barbier et al., 2006; Barbier et al., 2008; Lefever et al., 2009).
We believe that the same measurement could be realized for the type of
vegetation of Zambia and Mozambique.
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Appendix A
A.1. Stability analysis of the integro-differential model

The stationary homogeneous states of Eq. (1), describing uniform vegetation covers, are hy, = 0, and b;, given by the solutions of
u = (1-by)exp(Aby), ®

where the feedback difference A = ) —x. measures the community cooperativity. The first, & = 0, represents a territory totally devoid of vegetation,
i.e., a bare state. The second, b corresponds to uniform plant distributions that can be either monostable if A < 1 or bistable when A > 1. In the
monostable case, A < 1, the biomass density decreases monotonously with the aridity parameter ¢ and vanishes at ¢ = 1 (cf. Fig. 9). It exist only if
u < 1. In the bistable case, A > 1, the uniform plant distributions extends up to the turning point sometimes also referred to as tipping point (saddle-
node bifurcation point). The coordinates of this point are b = (A—-1)/A and u; = exp(A—1)/A.

To study the linear stability analysis of the stationary homogeneous states, b;, we introduce a small amplitude deviations from b, of the form

b(r,t) = bg + cexp(A(k)t + ik ), 9

where ¢ is a small parameter and the deviation from the by is expressed in terms of Fourier modes exp(4(k)t + ik-r) in the space of wavevector k. By
replacing Eq. (9) and by linearizing with respect to &, the dispersion relation obeyed by the eigenvalues 1 (k) reads

Xe (1_bs)

A(k) = [xfu—bs»l— ]bse?ff”s—DkZ_

(A + (kL)) (10
The critical points associated with the Turing-Prigogine instability are given by,
2
K by bk —ke an
A (k) = 0. 12)

These two conditions provide the thresholds b. = byp and the most unstable wavenumber k. = krp associated with the Turing-Prigogine instability.
The critical wavenumber at the onset of the instability is given explicitly by

2
2 1 |( x.bre(1=brp)eXrbrrL 2Y5
kTP =3 —_— I -1
L] 2D
13)
The wavelength is 27/kyp. The above equation has two solutions, which we denote by (krp,brp1) and (krp,,brp,). The thresholds associated with the
Turing-Prigogine instability are solutions of

3 2
5[ x brp (—bp e P |5
by (—brp)—1]e% e = 3(%) [X—E re (1=brp e ] _(23

z 2 L: a4

The results of the linear stability analysis are summarized in Fig. 9. As the aridity level u increases, the vegetation evolves toward extinction. For
0 < A <1, the decrease of the phytomass density is monotonous. The bare state density is reached at the switching point u = 1, where the plant
distribution state is destabilized through the Turing-Prigogine instability (Turing, 1952; Prigogine and Lefever, 1968). In the range brp; < b < brpa,
the uniform phytomass state is unstable. The corresponding levels of the aridity i, are obtained from the homogeneous steady states Eq. (8) (see
Fig. 9).

D4~

P2

Mrpr  Brp2 krps krpi

Fig. 9. Stability diagrams. (a) Uniform stationary distributions of the biomass density b;, and their stability with respect to homogeneous and inhomogeneous perturbations are plotted as
a function of the aridity parameter p. Stable states are indicated by solid line, and unstable ones are represented by dotted lines. (b) The marginal stability curve in the (b;-k) plane. The
domain of instability for is represented by a blue shaded area delimited by red solid line. Parameter are ¥y = 2, x, =1, Lc = 4,and D = 1
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When increasing the stress or aridity, the wavelength of the corresponding pattern increases, and simultaneously the morphology of the vege-
tation pattern changes, this is related to the observations made in Mozambique and Zambia, where an increase in the system wavelength is directly
correlated with an increase in the size of the vegetation patches. The generic sequence of spatially periodic states obtained for increasing aridity is:
spots of lower density forming an hexagonal lattice, alternating stripes of higher and lower density, and spots of higher density forming an hexagonal
lattice (Lejeune and Tlidi, 1999; Lejeune et al., 2004). This behavior has been also found for other mathematical models that include water transport
by underground diffusion and/or above ground run-off (von Hardenberg et al., 2001; Rietkerk and Van de Koppel, 2008; Sherratt, 2013; Gowda

et al., 2014).

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the online version, athttp://dx.doi.org/10.1016/j.ecolind.2018.02.009.
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