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Coupled nonlinear oscillators can present complex spatiotemporal behaviors. Here, we report the
coexistence of coherent and incoherent domains, called chimera states, in an array of identical Duff-
ing oscillators coupled to their nearest neighbors. The chimera states show a significant variation
of amplitude in the desynchronized domain. These intriguing states are observed in the bistability
region between a homogeneous state and a spatiotemporal chaotic one. These dynamical behaviors
are characterized by their Lyapunov spectra and their global phase coherence order parameter. The
local coupling between oscillators prevents one domain from invading the other one. Depending on
initial conditions, a family of chimera states appear, organized in a snaking-like diagram. Published
by AIP Publishing. https://doi.org/10.1063/1.5025038

Nonlocal coupling oscillators present rich spatiotemporal
dynamics. Depending on the initial conditions, arrays of
these oscillators can show coexistence between a desyn-
chronized and a synchronized domain; these states are
denominated chimera states. These states are found in an
array of oscillators with different coupling schemes. In
this article, we investigate chimera states in an array of
Duffing oscillators locally coupled. The average frequency
characterizes these chimera states, in the desynchronized
domain, and varies from one oscillator to another, while in
the synchronized domain all remain the same. A family of
chimera states with different sizes is observed depending
on the initial conditions. A snaking-like diagram organizes
these states. To characterize the level of synchronization
and the chaotic nature of chimera states, the phase coher-
ence order parameter and the Lyapunov spectrum were
determined.

I. INTRODUCTION

Driven oscillators have been studied since the dawn of
mechanics. During the study of the dynamics of the pendu-
lum, Galileo observed the resonance phenomenon.1 However,
based on a linear forced oscillator, Euler was the first to
explain this phenomenon.2 A nonlinear generalization of this
resonance is possible through the use behavior of the Duffing
oscillator,3 which is nothing but a nonlinear oscillator with lin-
ear dissipation and a harmonic forcing. The Duffing oscillator
is known to exhibit a rich variety of dynamical behavior such
as periodic and chaotic solutions, bistability, and fractal basin
boundaries. When Duffing oscillators are coupled to form an
extended system, the resulting array can exhibit complex spa-
tiotemporal dynamics.4 The study of coupled oscillators is
of great interest owing to their wide applicability in physics,
chemistry, and biology (see Ref. 3 and references therein).
Likewise, coupled oscillators under the influence of injec-
tion and dissipation of energy exhibit a rich spatiotemporal

dynamics. Synchronization, defects and/or phase turbulence,
defect-mediated turbulence, spatiotemporal intermittency, and
coexisting coherent and incoherent states are some of the
observed phenomena.5–7 In the past decade, a phenomenon
that has received a great deal of attention is spatiotempo-
ral patterns in which an array of identical oscillators splits
into two domains: one coherent and phase locked and the
other incoherent and desynchronized.8 This dynamical behav-
ior is referred to as chimera states. The first reports of these
intriguing behavior were conducted on an array of oscil-
lators with weak nonlocal9 and global coupling schemes.10
Chimera states have been studied in a variety of mod-
els such as phase oscillators,11–14 coupled map lattices,15–18
networks,19–21 quantum systems,22 metamaterials,23 neuron
models,24,25 and delayed systems,26,27 and chimera-like states
in social systems have been reported.28 Experimentally,
chimera states have been reported in a chemical system,29
optoelectronic oscillators,30,31 and a mechanical oscillator
network.32 Recently, it has been established that chimera-like
and chimera states can occur in systems with local (nearest
neighbors)33–36 or global coupling.37–39

The aim of this paper is to investigate the formation of
chimera states in an array of Duffing oscillators chain coupled
to their nearest neighbors. In a range of parameters, depend-
ing on the initial condition, this model exhibits a coexistence
between a synchronized domain and a desynchronized one.
The desynchronized domain corresponds to a spatiotempo-
ral chaotic solution. In this region of parameters, we observe
chimera states (see Fig. 1). The local coupling between oscil-
lators is to prevent one state from invading the other one.
This effect is due to the fact that the coupling induces an
effective potential over the dynamics of the interface between
domains, the Peierls-Nabarro potential.45,46 The average fre-
quency in the desynchronized domains varies discontinu-
ously, such as in chimera states with global coupling.37 The
global phase coherence order parameter oscillates, showing a
behavior such as breathing chimera states.42 Depending on the

1054-1500/2018/28(8)/083126/7/$30.00 28, 083126-1 Published by AIP Publishing.

https://doi.org/10.1063/1.5025038
https://doi.org/10.1063/1.5025038
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5025038&domain=pdf&date_stamp=2018-08-31


083126-2 Clerc et al. Chaos 28, 083126 (2018)

FIG. 1. Chimera state of the Duffing oscillators chain, Eq. (1), by α = 0.4,
γ = 2.75, ω = 0.7, μ = 0.1, κ = 0.42, and N = 300. (a) Spatiotemporal dia-
gram of the coupled Duffing oscillators chain. Each oscillator is depicted
by xn(t). The colors account for the values of the displacement xn(t). (b)
Spatiotemporal evolution of the phase θn(t) = arctan(ẋn/xn). (c) Temporal
average frequency 〈θ̇n〉 = ∫ T

0 θ̇n(t)dt/T . All the previous graphics indicate
the clear separation between synchronized and desynchronized domains in
the coupled Duffing oscillators chain. (d) The phase diagram in the space of
κ and γ parameters.

size of the desynchronized domain, a family of chimera states
appear, organized in a snaking-like diagram. This kind of
structure in the bifurcation diagram resembles the homoclinic-
snaking bifurcation.40,41

II. DUFFING OSCILLATORS CHAIN COUPLED TO
NEAREST NEIGHBORS

Let us introduce a Duffing oscillators chain coupled to
nearest neighbors

ẍn(t) = −xn + αx3n − x5n − μẋn + γ cosωt

+ κ(xn+1 − 2xn + xn−1), (1)

where xn(t) accounts for the displacement of the n-oscillator
with a unitary natural frequency, n = {1, 2, . . . ,N} with N
being the total number of oscillators, the nonlinear terms char-
acterize the stiffness, andμ stands for the damping coefficient.
The term proportional to γ accounts for the external forcing
with amplitude and frequency being γ and ω, respectively.
κ is the coupling parameter. Note that coupling between the
oscillators is modeled by means of a linear spring of elastic
constant κ . Figure 1 shows a typical chimera state founded in
Eq. (1). The color bar depicts the value of each oscillator dis-
placement in a given time. Figure 1(b) depicts the spatiotem-
poral dynamics of the oscillator phase θn ≡ arctan(ẋn/xn). The
spatiotemporal diagram of the oscillator displacement and
phase indicate a clear separation between synchronized and

desynchronized domains. Let us introduce the average fre-
quency 〈θ̇n〉 ≡ 1

T

∫ T
0 θ̇n(t)dt, where T is chosen several times

larger of the forcing period, T � 2π/ω. The phase diagram
in the space of κ and γ parameters is depicted in Fig. 1(d).

III. LOCAL DYNAMICS OF THE DUFFING OSCILLATOR

To figure out the existence of the chimera states in model
Eq. (1), it is necessary to understand the dynamics of an
individual oscillator. Neglecting the effects of coupling, i.e.,
κ = 0 and fixing the value of the nonlinear stiffness and the
dissipation parameters (α = 0.4 and μ = 0.1), we will study
the dynamics of the forced nonlinear oscillator Eq. (1). This
oscillator is called the cubic-quintic Duffing oscillator. Using
as order parameter the maximum value reached by the peri-
odic solution xn(t), defined as Xmax, we obtain numerically
two bifurcation diagrams for this forced nonlinear oscillator.
In the first bifurcation diagram, the control parameter is the
forcing frequency ω [cf. Fig. 2(a)]. In the second one, the
control parameter is the strength of the forcing γ . Figure 2(b)
shows these bifurcation diagrams. The insets account for the
phase portraits of each periodical solution labeled in the bifur-
cation diagrams. To identify all periodic solutions in both
bifurcation diagrams, we have considered 200 different initial

FIG. 2. Bifurcation diagram of the Duffing oscillator Eq. (1) with κ = 0,
α = 0.4, and μ = 0.1 considering as a control parameter (a) forcing fre-
quency ω with γ = 2.75 and (b) the strength of the forcing γ with ω = 0.7.
The order parameter Xmax accounts for the maximum value reached by the
periodic oscillation. The solid and dashed curves stand for stable and unsta-
ble solutions, respectively. Insets illustrate the portrait phase of the different
solutions. In the top bifurcation diagram, the system exhibits bistability in
two different regions. The darker (reddish) area, between ω1 = 0.655 and
ω2 = 0.855, accounts for the subcritical bifurcation. The lightest painted area
(greenish) accounts for the pitchfork bifurcation since ω3 = 0.863. In the
bottom bifurcation diagram, only one bistability region is found between
γ1 = 2.730 and γ2 = 3.518. The appearance of this bistability region corre-
sponds to a subcritical bifurcation.
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conditions uniformly distributed on the straight line between
the points (x0, ẋ0) = (2.0, 2.0) and (x1, ẋ1) = (−2.0,−2.0).
Later the trajectories evolve using a fourth-order Runge-Kutta
method with a temporal discretization dt = 0.01. In Fig. 2(a),
for small frequencies, one only observes a single periodic
solution as equilibrium. We call this solution as the local
lower oscillation. This solution has a morphology similar
to that illustrated by the periodic curve labeled by the let-
ter A. Increasing the value of the frequency forcing until
ω1 = 0.639, a second stable periodical solution appears by
a saddle-node bifurcation. We call this solution as the local
upper oscillation. The symbol SN represents the saddle-node
bifurcation. The morphology of the local upper oscillation is
similar to that illustrated by the curve labeled by the letter B.
This two stable periodic solutions coexist until ω2 = 0.704,
where the local lower oscillation disappears by a saddle-node
bifurcation. Hence, in this region of the parameter space;
the system exhibits a subcritical bifurcation. The local upper
oscillation persists until ω3 = 0.863, where two new asym-
metric periodical solutions, C-solution and D-solution, appear
by pitchfork bifurcation. This instability is represented by
P point. Hence, as a function of the forcing frequency, the
Duffing oscillator Eq. (1) exhibits a rich variety of bifurca-
tions allowing the coexistence of different periodic solutions.
In Fig. 2(b), for small values of γ , an only single periodi-
cal solution exists, the local upper oscillation. Increasing the

strength of the forcing and reaching the value γ1 = 1.436,
a second periodical solution arises by saddle-node bifurca-
tion. This solution corresponds to the local lower oscillation.
When γ is larger as γ2 = 3.490, the local lower oscilla-
tion persists, but the local upper oscillation ceases to exist
by a saddle-node bifurcation. The local upper solution and
the local lower solution show a phase portrait similar to the
solutions depicted by the letters E and F, respectively. There-
fore, the system exhibits a subcritical bifurcation. Only one
region of coexistence between periodic solutions is identified
in the bifurcation diagrams previously described. It is in these
regions of coexistence one expects that when one extends the
system spatially complex domains emerge between different
states. For the sake of simplicity of the bifurcation diagram,
the strength of the forcing is chosen as the control parameter
in this study.

IV. CHIMERA STATES IN A DUFFING OSCILLATORS
CHAIN

When the Duffing oscillators are coupled to nearest
neighbors by means of linear springs, depending on the
parameter κ , periodic oscillations can be synchronized or
desynchronized.6 When the strength of the coupling is large,
one expects to observe synchronization of the oscillators
in the chain. Likewise, when the strength of the forcing is

FIG. 3. Duffing oscillators chain Eq. (1).
Bifurcation diagram of the lower (a) and the
upper extended oscillation (b) of the Duffing
oscillator chain coupled to nearest neigh-
bors Eq. (1) with κ = 0.42, α = 0.4, μ =
0.1, and ω = 0.7. Solid and dashed (blue)
curves account for the bifurcation diagram
of one isolated oscillator. Dots account for
the different maximum values, Xmax, exhib-
ited in a given arbitrary oscillator when time
evolves. The shaded area accounts for the
bistability region between a uniform and
chaotic extended oscillation. Spatiotemporal
diagrams of the coherent (c) and incoherent
(d) extended oscillation for γ = 2.75, which
correspond, respectively, to the lower and
the upper branch. The insets correspond to
the global phase coherence order parameter
R(t) as a function of time. (e) Phase por-
trait of an oscillator in the coherent (�0) and
incoherent oscillation (�1).
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decreased, one expects to observe desynchronization of the
oscillators, which is characterized by complex spatiotempo-
ral behaviors. This type of dynamics can be classified into
three types: quasi-periodic, chaotic, or spatiotemporal chaotic.
Figure 3 shows the bifurcation diagram of the lower (a)
and the upper (b) extended oscillations. To obtain the lower
(upper) extended oscillation, we consider as an initial condi-
tion the local lower oscillation (local upper oscillation) for all
the oscillators in model Eq. (1) with a small random pertur-
bation. Figure 3 shows the maximum values, Xmax, of all the
oscillators. Hence, the synchronized lower oscillation appears
by a saddle-node bifurcation. The saddle-node bifurcation is
highlighted by the point SN . By increasing the strength of the
forcing, this periodic homogeneous solution becomes quasi-
periodic. QP designates this bifurcation. Further increasing
the strength of the forcing, this oscillation becomes chaotic by
means of an extended quasi-periodicity route.43 Hence, there
is a narrow region of the parameter space where the lower
extended oscillation is synchronized. A shaded zone empha-
sizes this region between the saddle-node bifurcation and
the quasi-periodic bifurcation. Figure 3(c) depicts the typical
spatiotemporal evolution of this lower extended oscillation in
the synchronized region. To characterize the synchronization,
let us introduce the following global phase coherence order

parameter proposed by Kuramoto:5

R(t) = 1
N

∣
∣
∣
∣
∣

N∑

i=1
eiθi(t)

∣
∣
∣
∣
∣
, (2)

where the phase of each oscillator is defined as before.
When the oscillators are synchronized, this parameter is one
(R = 1); if they are desynchronized, this parameter is less than
one (R < 1). The inset in Fig. 3(c) shows that the oscillators
are permanently synchronized.

Analogously, we have performed a similar analysis for
the upper extended oscillation. Figure 3(b) summarizes the
findings found. For small forcing strength, the upper oscilla-
tion is of the spatiotemporal chaotic nature. The spatiotem-
poral evolution of this oscillation is shown in Fig. 3(d).
The synchronization parameter oscillates in time, showing
moments of synchronization between the oscillators. In our
system, this behavior is permanent. Long numerical simula-
tions have been carried out, and the dynamics of the system
does not change before the critical value γCr . When γ > γCr ,
the spatiotemporal chaos abruptly disappears. This instability
corresponds to an external crisis.44 Figure 3(b) emphasizes the
crisis phenomenon by Cr. Subsequent to this crisis instabil-
ity, the spatiotemporal chaos of upper oscillation is replaced

FIG. 4. Temporal evolution for the
global phase coherence order parame-
ter R(t) and spatiotemporal diagrams for
chimera states of the Duffing oscillators
chain Eq. (1) with κ = 0.42, α = 0.4,
μ = 0.1, and ω = 0.7. (a) Temporal evo-
lution of R(t) and spatiotemporal diagram
of chimera state in a few periods 4π/ω.
Segmented horizontal lines account for
extreme values of R(t) in a period
T0 = 2π/ω. The colors account for the
value of the displacement of the oscilla-
tors xn(t). (b) Temporal evolution of R(t)
and spatiotemporal diagrams of chimera
states with different sizes.
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by the lower extended chaotic oscillation. Figure 3(e) shows
the orbits in the phase portrait obtained when one consid-
ers the evolution of an individual oscillator of the chain for
a synchronized oscillation (�0) and a spatiotemporal chaotic
one (�1).

From the bifurcation diagrams of the upper and the lower
extended oscillation, we can infer that the Duffing oscillators
chain, Eq. (1), has a bistability region between a chaotic oscil-
lation state (upper extended oscillation) and a synchronized
uniform oscillation (lower extended oscillation). The shadow
zone in Fig. 3(a) illustrates this bistability region. Hence, in
this region, one expects to observe chimera states, since the
coupling prevents the most favorable state and invades the
less favorable one.34 The coupling induces a periodic poten-
tial over the dynamics of the interface between domains.
This periodic potential is well known as the Peierls-Nabarro
potential.45,46 This potential prevents the interface propaga-
tion. The typical chimera state found in the Duffing oscillators
chain coupled to nearest neighbors model Eq. (1) is shown
in Fig. 1. The synchronized (desynchronized) domain corre-
sponds to an oscillation close to the lower (upper) extended
oscillation. To obtain a chimera state, one must consider
an initial condition that connects spatially the lower and
the upper extended oscillation with a small random pertur-
bation. Coexistence between a complex localized dynamics
and periodical behavior is observed. Figure 1(b) shows the
spatiotemporal evolution of the phase in the chimera state.
The synchronized domain shows a homogeneous behavior in
space and periodical behavior in time. The desynchronized
domain shows a complex spatiotemporal behavior. The coex-
istence of coherent and incoherent states is the main charac-
teristic of the chimera states. The rigorous characterization of
the incoherent dynamical behavior will be discussed later. The
average frequency 〈θ̇n〉 was measured for each oscillator and
is shown in Fig. 1(c). Note that, in the synchronized domain,
〈θ̇n〉 is equal; however, in the desynchronized domain, a dis-
continuous variation is observed. This feature resembles the

case of chimera states with global coupling,37 where the aver-
age frequency has a similar shape as shown in Fig. 1(c).
However, in the case of chimera states in phase-oscillators
with a nonlocal coupling scheme, the average frequency
changes smoothly in the desynchronized domain.8,9 The tran-
sition between a discontinuous and continuous variation of
average frequency in the desynchronized domain is still an
open question. To characterize the complexity of chimera
solutions, Fig. 4 shows the temporal evolution of the global
phase coherence order parameter R(t) for chimera states. Dur-
ing a period of forcing, the global phase coherence order
parameter exhibits complex fluctuations [cf. Fig. 4(a)], show-
ing a behavior known as breathing chimera states.42 Hence, in
certain moments, the chimera state alternates between being
more or less coherent.

A rigorous way of characterizing the complexity
of chimera states is through the use of the Lyapunov
spectrum.34,35 This spectrum provides information about
permanent dynamic with exponential sensitivity to initial
conditions.47 When the largest Lyapunov exponent is nega-
tive, the system has a stationary equilibrium, such as uniform
or pattern states. This scenario changes when the largest
Lyapunov exponent is positive, the system exhibits chaotic
dynamics but not necessarily spatiotemporal chaos. Spa-
tiotemporal chaos has a Lyapunov spectrum with a continuous
set of positive values. In opposition, low dimensional chaos
possesses a Lyapunov spectrum with a discrete set of posi-
tive values. λi accounts for the Lyapunov exponents, where
i indexes the variables of the system (i = 1, . . . , 2N). The
Lyapunov exponents are sorted in a decreasing manner.47
Using the strategy proposed in Ref. 48, we have computed the
Lyapunov spectrum numerically for different chimera states.
Figure 5(a) shows the Lyapunov spectra for different states of
Eq. (1). Note that the spectrum of the synchronized oscilla-
tion is flat for the dominant Lyapunov exponents. From this
figure, we can conclude that the larger the chimera state, the
larger the number of Lyapunov positive exponents. That is,

FIG. 5. Family of chimera solutions of the Duffing oscillators chain Eq. (1) with α = 2.0, γ = 7.85, μ = 0.05, ω = 0.985, and κ = 0.39. (a) Lyapunov spectra
of different chimera states. (b) Stroboscopic spatiotemporal diagram of different chimera-like states using as observation period T0 = 2π/ω. R accounts for the
averaging synchronization order parameter formula (2) with T = 200 T0.



083126-6 Clerc et al. Chaos 28, 083126 (2018)

the dynamics exhibited by the chimera state are wider and
more complex. Likewise, we note that the largest Lyapunov
exponent of each spectrum is of the same order. Figure 5(b)
shows the spatiotemporal stroboscopic diagram for chimera
states of different sizes. These diagrams correspond to a gen-
eralization of the Poincaré maps, and the profile of the system
was captured for each period of forcing T0 = 2π/ω. Notice
that the complexity of the dynamics grows with the size of the
chimera state. Since the forcing frequency ω is close to the
natural frequency of the nonlinear oscillator ω0 = 1, the oscil-
latory behavior of the synchronized domain can be ignored
through the use of stroboscopic analysis [cf. Fig. 5(b)]. In this
region of parameters, the bistability region operates for higher
gamma values. For the value of the parameters in Fig. 5, the
same kind of periodical solutions as Fig. 2 is founded.

V. MULTISTABILITY AND BIFURCATION DIAGRAM OF
CHIMERA STATES

Due to the pinning effect generated by the local coupling
between the oscillators,45 one expects to observe a family
of chimeras. Consequently, our chimeras present a snaking-
like bifurcation diagram,40,41 that is, these states appear and
disappear by a sequence of saddle-node bifurcations, which
occur all around a given value of the nonlinearity parameter

in both extremes of the coexistence region. Hence, in a range
of parameters, one observes the coexistence of chimera solu-
tions. To characterize this bifurcation diagram, we introduce
the halfway area of chimera states, A(t∗) ≡ ∑

i xi(t∗). This
area is calculated at the moment that the incoherent state
presents its greatest amplitude t = t∗ in a period of forcing.
Introducing the area of chimera state

A ≡
M∑

i=1
A(t∗i )/M (3)

which correspond to the average of the halfway area after
a large number of period (M � 1). The area of chimera
state A is used as an order parameter. Figure 6 shows the
average area A as a function of the strength of the forc-
ing γ . Note that the chimera states are in a range bounded
between two amplitudes {γ−, γ+}. Outside this region, for
the smaller (greater) strengths of the forcing, the incoher-
ent (coherent) state invades the coherent (incoherent) one.
Hence, a completely extended state is observed in this region.
Namely, the upper and lower branches of the snaking-like
bifurcation diagram correspond to the entire incoherent and
coherent domains, respectively. Multistability of chimera
states has been reported in coupled oscillators,34 coupled
waveguides,35 and superconducting quantum interference
device oscillators.36 Also, we can measure the global phase

FIG. 6. Snaking-like bifurcation diagram of chimera states of the Duffing oscillators chain Eq. (1) with κ = 0.42, α = 0.4, μ = 0.1, and ω = 0.7. Area of
chimera states A, formula (3), as a function of the strength of the forcing γ . The triangular symbols (�) account for the value of the area of the chimera-like
state obtained numerically. The insets illustrate the state at a given time.



083126-7 Clerc et al. Chaos 28, 083126 (2018)

coherence order parameter R(t) for the family of chimera solu-
tions with different sizes. We found that as the chimera is
larger, the fluctuation range of R(t) is more significant but still
oscillates in a complex manner, as illustrated in Fig. 4(b).

VI. CONCLUSION

In conclusion, we have shown the coexistence of coher-
ent and incoherent states, chimera states, in a simple Duffing
oscillators chain coupled to nearest neighbors. These intrigu-
ing states are observed in the bistability region between a
uniform oscillation and a spatiotemporal chaotic state. To
characterize the chimera states rigorously, we have computed
their Lyapunov spectra. Depending on initial conditions, a
family of chimera states can appear and disappear, follow-
ing a snaking-like bifurcation diagram. Increasing the strength
of the forcing, the coherent domains (synchronized oscilla-
tion) become unstable, and a spatiotemporal chaotic behav-
ior emerges. Then, in this region of parameters, the system
exhibits the coexistence of two incoherent states. The study
of these states is in progress.

The Duffing oscillator is a paradigmatic model of
the forced nonlinear oscillators. Hence, one expects that
forced and coupled oscillators in several physical sys-
tems should exhibit chimera states. Recently, the Duffing
model has been used to describe nano-electromechanical49
and nano-electromechanical oscillators.50 Coupled nano-
electromechanical membranes could be an ideal system to
study chimeric states.
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