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Abstract In this paper we study qualitative properties of global minimizers of the
Ginzburg–Landau energy which describes light–matter interaction in the theory of
nematic liquid crystals near the Fréedericksz transition. This model depends on two
parameters: ε > 0 which is small and represents the coherence scale of the system and
a ≥ 0 which represents the intensity of the applied laser light. In particular, we are
interested in the phenomenonof symmetry breaking asa and ε vary.We show thatwhen
a = 0 the global minimizer is radially symmetric and unique and that its symmetry is
instantly broken as a > 0 and then restored for sufficiently large values of a. Symmetry
breaking is associated with the presence of a new type of topological defect which we
named the shadow vortex. The symmetry breaking scenario is a rigorous confirmation
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of experimental and numerical results obtained earlier in Barboza et al. (Phys Rev E
93(5):050201, 2016).
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1 Introduction

In a suitable experimental set-up [5–10] involving a liquid crystal sample, a laser and
a photoconducting cell, one can observe light defects such as kinks, domain walls
and vortices. A concrete example of formation of optical vortices is presented in [7].
To describe this phenomenon starting from the classical Oseen–Frank energy near
the Fréedericksz transition, one can reduce the problem to considering the Ginzburg–
Landau energy as it was explained in [12]. After some transformations involving
scaling to nondimensional variables the latter energy takes form:

E(u) =
ˆ
R2

1

2
|∇u|2 − 1

2ε2
μ(x)|u|2 + 1

4ε2
|u|4 − a

ε
f (x) · u, (1.1)

where u = (u1, u2) ∈ H1(R2,R2) and ε > 0, a ≥ 0 are real parameters. In the
physical context described in [7], the functions μ and f are specific:

μ(x) = e−|x |2 − χ, with some χ ∈ (0, 1), f (x) = −1

2
∇μ(x).

Physically the order parameter u represents the intensity of light induced by the inter-
action between the laser beam of Gaussian profile (given by μ) and the nematic liquid
crystal sample with the photoconducting cell mounted on top of it. This cell gen-
erates electric field whose small, vertical component is described above by f . The
parameter a is nondimensional and characterizes the intensity of the laser beam. The
two-dimensional model (1.1) shows an excellent agreement with experiments per-
formed with physical parameters near the Fréedericksz transition [7].

All our results hold under more general hypothesis on μ and f which we will
state now. We suppose that μ ∈ C∞(R2,R) is radial, i.e. μ(x) = μrad(|x |), with
μrad ∈ C∞(R,R) an even function. We take f = ( f1, f2) ∈ C∞(R2,R2) also to be
radial, i.e. f (x) = frad(|x |) x

|x | , with frad ∈ C∞(R,R) an odd function. In addition,
we assume that
⎧
⎨

⎩

μ ∈ L∞(R2,R), μ′
rad < 0 in (0,∞), and μrad(ρ) = 0 for a unique ρ > 0,

f ∈ L1(R2,R2) ∩ L∞(R2,R2), and frad > 0 on (0,∞).
(1.2)

The Euler–Lagrange equation of E is

ε2�u + μ(x)u − |u|2u + εa f (x) = 0, x ∈ R
2. (1.3)
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We also write its weak formulation:
ˆ
R2

−ε2
∑

j=1,2

∇u j · ∇ψ j + μu · ψ − |u|2u · ψ + εa f · ψ = 0,

∀ψ ∈ H1(R2,R2), (1.4)

where · denotes the inner product in R
2. Note that due to the radial symmetry of μ

and f , the energy (1.1) and Eq. (1.3) are invariant under the transformations v(x) 	→
g−1v(gx), ∀g ∈ O(2).

Our main purpose in this paper is to study qualitative properties of the global
minimizers of E as the parameters a and ε vary. In general, we will assume that ε > 0
is small and a ≥ 0 is bounded uniformly in ε. As we will see critical phenomena such
as symmetry breaking and restoration, which are the focus of this paper, occur along
curves of the form a = a(ε) in the (ε, a) plane.

The energy E belongs to the class of Ginzburg–Landau type functionals that appear,
for example, in the theory of superconductivity or in the theory of Bose–Einstein
condensates (see for instance [1,2,4,15–17,23–27] and the references therein). The
Gross–Pitaevskii energy functional appearing in the latter theory has form

EGP(u) =
ˆ
R2

1

2
|∇u|2 + 1

2ε2
V (x)|u|2 + 1

4ε
|u|4 − Ωx⊥ · (iu,∇u)

subject to ‖u‖L2 = 1,

whereΩ ∈ R is the angular velocity, (iu,∇u) = iu∇ū− i ū∇u and V (x) = x1+�x2
is a harmonic trapping potential (more general nonnegative, smooth V are considered
as well). The relation between EGP and E can be understood if we recast the Gross–
Pitaevskii energy taking into account the mass constraint in the form

EGP(u) =
ˆ
R2

1

2
|∇u|2 + 1

4ε2

[(
|u|2 − a(x)

)2 − (
a−(x)

)2
]2

− Ωx⊥ · (iu,∇u),

(1.5)

where a(x) = a0 − V (x), a0 is determined so that
´
R2 a+ = 1 and a± are the

positive and negative parts of a. The angular velocity has certain threshold values at
which different global minimizers appear. When Ω = O(| ln ε|) is below a certain
critical value Ω1, global minimizers are vortex free [3,16,18], while at some other
critical values Ω2 > Ω1, global minimizers have at least one vortex [16,17], which
looks locally like the radially symmetric degree ± 1 solution to the Ginzburg–Landau
equation (1.9). These localized structures have analogues for the energy functional
E : when a = 0, the global minimizer is a vortex free state, and when a ∼ ε| ln ε|2,
the global minimizer has one vortex that looks like the standard Ginzburg–Landau
vortex [see Fig. 1 (a)]. Possible qualitative difference between the two functionals
is manifested in the intermediate region for the values of a. When a satisfies the
hypothesis of Theorem 1.2 (ii), the global minimizer has a vortex which, however,
cannot be easily associatedwith the standard vortex [seeFig. 1 (c)]. Based onnumerical
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Fig. 1 a The standard vortex described in Theorem 1.2 (iii), b the standard vortex near the boundary of the
set μ > 0 and c the shadow vortex described in Theorem 1.2 (ii) in case a = o(ε| ln ε|). The upper panel
shows the global minimizer v = (v1, v2) as a vector field in R

2. In the lower panel, a radial section of |v|
taken at the angle θ indicated in the upper right corner and compared with the Thomas–Fermi limit

√
μ+.

Numerical simulations were performed after rescaling the original spacial variable x 	→ x/ε

simulations,we conjecture that, rather than coming from the equation (1.9), its rescaled
local profile comes from the generalized second Painlevé equation (1.6). We call this
new type of defect the shadow vortex (the name is inspired from the physical context,
see [12]). Note that the amplitude of the shadow vortex is very small, of order O(ε1/3),
in contrast with the standard vortex whose amplitude is of order O(1). Numerical
simulations show that there exist standard vortex minimizers localized at |x̄ε | = ρ0
strictly between 0 and ρ—this happens when a ∼ ε| ln ε|. Despite the similarities
between our model and the Gross–Pitaevskii functional it is not clear whether the
shadow vortex exists for the Bose–Einstein condensate—proving this is a delicate
matter because, unlike the energy of the standard vortex which is of order | ln ε|, the
energy of the shadow vortex is relatively small.

The symmetry breaking scenario described above can be seen from another angle
since the shadow vortex can be interpreted as a transient vortex state between the
homogenous state and the standard vortex state as a is increasing. In the Ginzburg–
Landau theory of superconductivity, the onset of vortex state is associated with the
hysteresis phenomenon near the lower critical field where the energy of the nonvortex
state (Meissner solution) equals that of the single vortex state [19]. The difference with
the case considered here seems due to the nonsmoothness of the Thomas–Fermi limit
and the mediating effect of the solution of the Painlevé equation—in essence it is a
boundary layer phenomenon. Still, the results of numerical simulations shown in Fig. 1
suggest that the shadow vortex may exist and be locally stable beyond a = o(ε| ln ε|)
and that the critical value of a when the global minimizer becomes the standard vortex
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occurs when its energy and that of the shadow vortex are equal. This would point out
to the presence of hysteresis also in our case.

In Lemma 2.1, we show that under the above assumptions there exists a global
minimizer v of E in H1(R2,R2), namely that E(v) = minH1(R2,R2) E . In addition,
we show that v is a classical solution of (1.3). Some basic properties of the global
minimizers are stated in:

Theorem 1.1 Let vε,a be a global minimizer of E, let a ≥ 0 be bounded (possibly
dependent on ε), let ρ > 0 be the zero of μrad and let μ1 := μ′

rad(ρ) < 0. The
following statements hold:

(i) Let Ω ⊂ D(0; ρ) be an open set such that vε,a �= 0 on Ω , for every ε � 1. Then
|vε,a | → √

μ in C0
loc(Ω).

(ii) For every ξ = ρeiθ , we consider the local coordinates s = (s1, s2) in the basis
(eiθ , ieiθ ), and the rescaled minimizers:

wε,a(s) = 2−1/2(−μ1ε)
−1/3vε,a

(
ξ + ε2/3

s

(−μ1)1/3

)
.

Assuming that limε→0 a(ε) = a0, then as ε → 0 the function wε,a converges
in C2

loc(R
2,R2) up to subsequence, to a function y bounded in [s0,∞) × R for

every s0 ∈ R, which is a minimal solution of

�y(s) − s1y(s) − 2|y(s)|2y(s) − α = 0, ∀s = (s1, s2) ∈ R
2, (1.6)

with α = a0 f (ξ)√
2μ1

∈ R
2.

(iii) Assuming that limε→0 a(ε) = a0, then for every r0 > ρ, we have

limε→0
vε,a((r0+tε)eiθ )

ε
= − a0

μrad(r0)
f (r0eiθ ) uniformly when t remains bounded

and θ ∈ R.

Looking at the energy E , it is evident that as ε → 0 the modulus of the global
minimizer |vε,a | should approach a nonnegative root of the polynomial

−μrad(|x |)y + y3 − aε frad(|x |) = 0,

or in other words |vε,a | → √
μ+ as ε → 0 in some, perhaps weak, sense. We observe

for instance that as a corollary of Theorem 1.1 (i) and Theorem 1.2 (ii) below we
obtain when a = o(ε| ln ε|) the convergence |vε,a | → √

μ in C0
loc(D(0; ρ)), thus

Ω = D(0; ρ) in this case. Because of the analogy between the functional E and
the Gross–Pitaevskii functional in theory of Bose–Einstein condensates, we will call√

μ+ the Thomas–Fermi limit of the global minimizers (We will comment more on
this connection later on.) Theorem 1.1 gives account on how nonsmoothness of the
limit of |vε,a | is mediated near the circumference |x | = ρ, where μ changes sign,
through the solution of (1.6). This equation is a natural generalization of the second
Painlevé equation

y′′ − sy − 2y3 − α = 0, s ∈ R. (1.7)
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In [12], we showed that this last equation plays an analogous role in the one-
dimensional, scalar version of the energy E :

E(u,R) =
ˆ
R

ε

2
|ux |2 − 1

2ε
μ(x)u2 + 1

4ε
|u|4 − a f (x)u

where μ and f are scalar functions satisfying similar hypothesis to those we have
described above. In this case, the Thomas–Fermi limit of the global minimizers is
simply

√
μ+(x), which is nondifferentiable at the points x = ±ξ which are the

zeros of the even function μ. Near these two points, a rescaled version of the global
minimizer approaches a solution of (1.7) similarly as it is described in Theorem 1.1
(ii). It is very important to realize that not every solution of (1.7) can serve as the limit,
actually there are only two such solutions: y+ which is positive, decays to 0 at +∞
and grows like

√|s| at −∞ and y− which is sign changing, has similar asymptotic
behaviour at +∞ but y−(s) ∼ −√|s| near −∞. To show existence of y± is quite
nontrivial, and for proofs we refer to [11,14,29]. Moreover, these two solutions are
minimal. To explain what this means, we go back to the present problem since in our
case the limiting solutions of (1.6) are necessarily minimal as well. Let

EPII(u, A) =
ˆ
A

[
1

2
|∇u|2 + 1

2
s1|u|2 + 1

2
|u|4 + α · u

]

.

By definition, a solution of (1.6) is minimal if

EPII(y, suppφ) ≤ EPII(y + φ, suppφ) (1.8)

for all φ ∈ C∞
0 (R2,R2). This notion of minimality is standard for many problems

in which the energy of a localized solution is actually infinite due to noncompactness
of the domain. The minimality of the solution of (1.6) arising from the limit in
Theorem 1.1 (ii) is a direct consequence of the proof in Sect. 3.

Regarding Theorem 1.1 (iii) we note that since the degree of the local limit of
the rescaled global minimizer in |x | > ρ is a function whose topological degree
is 1, one may expect that the zero level set of vε,a is nonempty and that isolated
zeros correspond to topological defects which should locally resemble the well-known
Ginzburg–Landau vortices. We will show that this is partly true as non-standard vor-
tices occur in the physical regime of parameters.

Before stating our second result we introduce the standardGinzburg–Landau vortex
of degree one which is the radially symmetric solution of

�η = (|η|2 − 1)η, η : R2 → R
2, (1.9)

such that η(x) = ηrad(|x |) x
|x | . We say that u is a minimal solution of (1.9) if

EGL(u, suppφ) ≤ EGL(u + φ, suppφ),
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for all φ ∈ C∞
0 (R2,R2), where

EGL(u,Ω) :=
ˆ

Ω

1

2
|∇u|2 + 1

4
(1 − |u|2)

is theGinzburg–Landau energy associatedwith (1.9). It is known [28] that anyminimal
solution of (1.9) is either constant of modulus 1 or has degree ± 1. Mironescu [20]
showed moreover that any minimal solution of (1.9) is either a constant of modulus
1 or (up to orthogonal transformation in the range and translation in the domain) the
radial solution η. We also mention some properties of η:

(i) η′
rad > 0 on (0,∞), ηrad(0) = 0, limr→∞ ηrad(r) = 1,

(ii)
´
R2 |∇η|2 = ∞.

Our next theorem shows existence of topological defects of the global minimizers
of E in several regimes of the parameters (ε, a):

Theorem 1.2 Let vε,a be a global minimizer. Assume that a(ε) > 0, a is bounded and

limε→0 ε1−
3γ
2 ln a = 0 for some γ ∈ [0, 2/3).

(i) For ε � 1, vε,a has at least one zero x̄ε such that

|x̄ε | ≤ ρ + o(εγ ). (1.10)

In addition, any sequence of zeros of vε,a, either satisfies (1.10) or it diverges to
∞.

(ii) For every ρ0 ∈ (0, ρ), there exists b∗ > 0 such that when lim supε→0
a

ε| ln ε| < b∗,
then any limit point l ∈ R

2 of the set of zeros of vε,a satisfies

ρ0 ≤ |l| ≤ ρ. (1.11)

In addition, if a = o(ε| ln ε|), then |l| = ρ.
(iii) On the other hand, for every ρ0 ∈ (0, ρ), there exists b∗ > 0 such that when

lim supε→0
a

ε| ln ε|2 > b∗, the set of zeros of vε,a has a limit point l such that

|l| ≤ ρ0. (1.12)

If vε,a(x̄ε) = 0 and x̄ε → l, then up to a subsequence

lim
ε→0

vε,a(x̄ε + εs) → √
μ(l)(g ◦ η)(

√
μ(l)s),

in C2
loc(R

2), for some g ∈ O(2). In addition, if lim supε→0
a

ε| ln ε|2 = ∞ then
l = 0.

To discuss physical consequences of this theorem we state:

Theorem 1.3 (i) When a = 0, the global minimizer can be written as v(x) =
(vrad(|x |), 0) with vrad ∈ C∞(R) positive. It is unique up to change of v by gv
with g ∈ SO(2).
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(ii) Given ε > 0, there exists A > 0 such that for every a > A, the global minimizer
vε,a is unique and radial, i.e. v(x) = vrad(|x |) x

|x | .

Actually radial minimizers such as in Theorem 1.3 (ii) exist for all (ε, a) with ε >

0 and a ≥ 0 . Indeed, it can be shown that in the class H1
rad(R

2,R2) := {u ∈
H1(R2,R2) : gu(x) = u(gx), ∀g ∈ O(2)} of radial maps (or O(2)-equivariant
maps), there exists u ∈ H1

rad(R
2,R2) such that E(u) = minH1

rad(R
2,R2) E . Existence

of the radialminimizer u follows as in the proof of Lemma2.1, and clearly u is a critical
point of E in the subspace H1

rad(R
2,R2). In view of the radial symmetry of μ and f ,

one can show that the Euler–Lagrange equation (1.4) holds for every φ ∈ H1(R2,R2)

(cf. [21]). As a consequence, u(x) = urad(|x |) x
|x | is a C

∞ classical solution of (1.3).
In addition, proceeding as in the proof of Theorem 1.3, it is easy to see that the radial
minimizer is unique and satisfies urad > 0 on (0,∞) for every ε > 0 and a > 0.

Theorem 1.3 shows that when a = 0 the global minimizer of E inherits the one-
dimensional radial profile of μ. On the other hand, it would be natural to expect that
when a > 0 the forcing term εa f in (1.3) induces a global minimizer v ∈ H1

rad.
Theorem 1.2 shows that this is not the case.

Remark We point out that the hypothesis limε→0 ε1−
3γ
2 ln a = 0 for some γ ∈

[0, 2/3) was assumed in Theorem 1.2 only to ensure the existence of a sequence
of zeros satisfying (1.10). This hypothesis is not needed in the proof of Lemma 3.4
from which the statement (ii) of Theorem 1.2 follows. Therefore, the symmetry of the
global minimizers is not radial as soon as lim supε→0

a
ε| ln ε| < b∗, since this condition

implies that no limit point of the zeros of the global minimizers belongs to the disc
D(0; ρ0) (cf. Lemma 3.4).

Theorem 1.2 (iii) states further increase in the value of a leads to the restoration of
the symmetry at least in the limit ε → 0. Finally, Theorem 1.3 (ii) shows that the
symmetry is completely restored provided that a is large enough.

This paper is organized as follows: in the next section, we establish existence and
basic properties of the global minimizers and in Sect. 3 we prove our theorems.

2 General Results for Minimizers and Solutions

In this section we gather general results for minimizers and solutions that are valid for
any values of the parameters ε > 0 and a ≥ 0. We first prove the existence of global
minimizers.

Lemma 2.1 For every ε > 0 and a ≥ 0, there exists v ∈ H1(R2,R2) such that
E(v) = minH1(R2,R2) E. As a consequence, v is a C∞ classical solution of (1.3), and
moreover v(x) → 0 as |x | → ∞.

Proof We first show that inf{ E(u) : u ∈ H1(R2,R2) } > −∞. To see this, we
regroup the last three terms in the integral of E(u). Setting Iδ := {x ∈ R

2 : μ(x)+δ >

0}, for δ > 0 sufficiently small such that Iδ is bounded, we have

− 1

2ε2
μ(x)|u|2 + 1

8ε2
|u|4 < 0 ⇐⇒ u2 < 4μ �⇒ x ∈ Iδ,
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thus

− 1

2ε2
μ(x)|u|2 + 1

8ε2
|u|4 ≥ − 2

ε2
‖μ‖2L∞ χδ,

where χδ is the characteristic function of Iδ . On the other hand,

1

8ε2
|u|4 − a

ε
f (x) · u < 0 �⇒ |u|3 ≤ 8aε| f | �⇒ | f u| ≤ (8aε)1/3| f |4/3,

thus

1

8ε2
|u|4 − a

ε
f (x) · u ≥ −81/3a4/3

ε2/3
| f |4/3.

Next, we notice that E(u) ∈ R for every u ∈ H1(R2,R2), thanks to the imbedding
H1(R2) ⊂ L p(R2), for 2 ≤ p < ∞. Now, let m := infH1 E > −∞, and let un be a
sequence such that E(un) → m. Repeating the previous computation, we can bound

ˆ
R2

1

2
|∇un|2 + δ

2ε2
|un|2 = E(un) +

ˆ
R2

1

2ε2
(μ(x) + δ)|un|2 − 1

4ε2
|un|4

+ a

ε
f (x) · un

≤ E(un) + 2

ε2
(‖μ‖L∞ + δ)2|Iδ| + 81/3a4/3

ε2/3

ˆ
R2

| f |4/3.

From this expression it follows that ‖un‖H1(R2,R2) is bounded. As a consequence,
for a subsequence still called un , un ⇀ v weakly in H1, and thanks to a diagonal
argument we also have un → v in L2

loc, and almost everywhere in R
2. Finally, by

lower semicontinuity

ˆ
R2

|∇v|2 ≤ lim inf
n→∞

ˆ
R2

|∇un|2,

and by Fatou’s Lemma we have

ˆ
R2

|v|4 ≤ lim inf
n→∞

ˆ
R2

|un|4, and
ˆ

μ≤0
− 1

2ε2
μ|v|2 ≤ lim inf

n→∞

ˆ
μ≤0

− 1

2ε2
μ|un|2.

To conclude, it is clear that

ˆ
μ>0

− 1

2ε2
μ|v|2 = lim

n→∞

ˆ
μ>0

− 1

2ε2
μ|un|2,

thus m ≤ E(v) ≤ lim infn→∞ E(un) = m. Next, we check that v is bounded. This
follows from the fact that there exists a constant M such that for every x ∈ R

2 and
i = 1, 2 the function
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ui → − 1

2ε2
μ(x)|u|2 + 1

4ε2
|u|4 − a

ε
f (x) · u

is strictly increasing on [M,∞) (resp. strictly decreasing on (∞,−M]) independently
of the other variable u j ( j �= i , j = 1, 2). Thus, if we truncate a map u = (u1, u2)
by setting ũi = min(M,max(ui ,−M)), the truncated map ũ has smaller energy than
u. Clearly the boundedness of v implies by (1.3) the boundedness of �v and ∇v. In
particular, v and |v|4 are uniformly continuous. As a consequence, if |v(xn)| > δ > 0
for a sequence |xn| → ∞, then we would have |v| > δ/2 on a ball B(xn, r) of radius
r independent of n, and also

´
R2 |v|4 = ∞, which is impossible. This proves the

asymptotic convergence of v to 0. ��
In the sequel, we will always denote a global minimizer by v. To study the limit

of solutions as ε → 0, we need to establish uniform bounds in the different regions
considered in Theorem 1.1:

Lemma 2.2 For εa belonging to a bounded interval, let uε,a be a solution of (1.3)
converging to 0 as |x | → ∞. Then, the solutions uε,a and the maps ε∇uε,a are
uniformly bounded.

Proof We drop the indexes and write u := uε,a . Since | f |, μ, and εa are bounded,
the roots of the cubic equation in the variable u1

u31 + (u22 − μ(x))u1 − εa f1(x) = 0

belong to a bounded interval, for all values of x , u2, ε, a. If u1 takes positive values,
then it attains its maximum 0 ≤ maxR2 u1 = u1(x0), at a point x0 ∈ R

2. In view
of (1.3):

0 ≥ ε2�u1(x0) = u31(x0) + (u22(x0) − μ(x0))u1(x0) − εa f1(x0),

thus it follows that u1(x0) is uniformly bounded above. In the same way, we prove
the uniform lower bound for u1 and the uniform bound for u2. The boundedness of
ε∇uε,a follows from (1.3) and the uniform bound of uε,a . ��
Lemma 2.3 For ε � 1 and a belonging to a bounded interval, let uε,a be a solution
of (1.3) converging to 0 as |x | → ∞. Then, there exists a constant K > 0 such that

|uε,a(x)| ≤ K (
√
max(μ(x), 0) + ε1/3), ∀x ∈ R

2. (2.1)

As a consequence, if for every ξ = ρeiθ , we consider the local coordinates s = (s1, s2)

in the basis (eiθ , ieiθ ), then the rescaled maps ũε,a(s) = uε,a(ξ+sε2/3)
ε1/3

are uniformly
bounded on the half-planes [s0,∞) × R, ∀s0 ∈ R.

Proof For the sake of simplicity, we drop the indexes and write u := uε,a . Let us
define the following constants
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• M > 0 is the uniform bound of |uε,a | (cf. Lemma 2.2),
• λ > 0 is such that 3μrad(ρ − h) ≤ 2λh, ∀h ∈ [0, ρ],
• F := supR2 | f |,
• κ > 0 is such that κ3 ≥ 3aF , and κ4 ≥ 6λ.

Next, we construct the following comparison function

χ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

λ
(
ρ − |x | + ε2/3

2

)
for |x | ≤ ρ,

λ
2ε2/3

(|x | − ρ − ε2/3)2 for ρ ≤ |x | ≤ ρ + ε2/3,

0 for |x | ≥ ρ + ε2/3.

(2.2)

One can check thatχ ∈ C1(R2\{0})∩H1(R2) satisfies�χ ≤ 2λ
ε2/3

in H1(R2). Finally,

we define the function ψ := |u|2
2 − χ − κ2ε2/3 and compute:

ε2�ψ = ε2(|∇u|2 + u · �u − �χ)

≥ −μ|u|2 + |u|4 − εa f · u − ε2�χ

≥ −μ|u|2 + |u|4 − εaF |u| − 2ε4/3λ. (2.3)

Now, one can see thatwhen x ∈ Ω := {x ∈ R
2 : ψ(x) > 0}, we have |u|4

3 −μ|u|2 ≥ 0,
since

x ∈ Ω ∩ D(0; ρ) ⇒ |u|4
3

≥ 2λ

3

(
ρ − |x | + ε2/3

2

)
|u|2 ≥ μ|u|2.

On the open set Ω , we also have: |u|4
3 ≥ κ4

3 ε4/3 ≥ 2ε4/3λ, and |u|4
3 ≥ κ3

3 ε|u| ≥
εaF |u|. Thus�ψ ≥ 0 onΩ in the H1 sense. To conclude, we apply Kato’s inequality
that gives: �ψ+ ≥ 0 on R2 in the H1 sense. Since ψ+ is subharmonic with compact
support, we obtain by the maximum principle that ψ+ ≡ 0 or equivalently ψ ≤ 0 on
R
2. The statement of the lemma follows by adjusting the constant K . ��

Lemma 2.4 Assume that a is bounded and let uε,a be solutions of (1.3) uniformly
bounded. Then, the maps uε,a

ε
and ∇uε,a are uniformly bounded on the sets {x : |x | ≥

ρ1} for every ρ1 > ρ.

Proof We consider the sets S := {x : |x | ≥ ρ1} ⊂ S′ := {x : |x | > ρ′
1}, with

ρ < ρ′
1 < ρ1, and define the constants:

• M > 0 which is the uniform bound of |uε,a |,
• μ0 = −μrad(ρ

′
1) > 0,

• f∞ = ‖ f ‖L∞ ,
• a∗ := sup a(ε),
• k = 2a∗ f∞

μ0
> 0.
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Next, we introduce the function ψ(x) = 1
2 (|u|2 − k2ε2) satisfying:

ε2�ψ = ε2�
|u|2
2

≥ |u|4 + μ0|u|2 − εa∗ f∞|u| ,∀x ∈ S′,

≥ μ0ψ, ∀x ∈ S′ such that ψ(x) ≥ 0.

By Kato’s inequality, we have ε2�ψ+ ≥ μ0ψ
+ on S′, in the H1 sense, and utilizing

a standard comparison argument, we deduce that ψ+(x) ≤ M2e− c
ε
d(x,∂S′), ∀x ∈ S,

and ∀ε � 1, where d stands for the Euclidean distance, and c > 0 is a constant. It is
clear that

d(x, ∂S′) > −ε

c
ln

( k2ε2

2M2

)
⇒ M2e− c

ε
d(x,∂S′) <

k2ε2

2
⇒ |u|2 < 2k2ε2.

Therefore, there exists ε0 such that

|uε,a(x)|
ε

≤ √
2k, ∀ε < ε0, ∀x ∈ S. (2.4)

The boundedness of ∇uε,a follows from (1.3) and the uniform bound (2.4). ��

3 Proof of Theorems 1.1, 1.2 and 1.3

Proof of Theorem 1.1 (i) Suppose by contradiction that |v| does not converge uni-
formly to

√
μ on a closed set F ⊂ Ω . Then, there exist a sequence εn → 0 and a

sequence {xn} ⊂ F such that

either |vεn (xn)| ≥ √
μ(xn) + δ or |vεn (xn)| ≤ √

μ(xn) − δ, for some δ > 0. (3.1)

In addition, we may assume that up to a subsequence limn→∞ xn = x0 ∈ F . Next,
we consider the rescaled maps ṽn(s) = vεn (xn + εns) that satisfy

�ṽ(s) + μ(xn + εns)ṽ(s) − |ṽ(s)|2ṽ(s) + εna f (xn + εns) = 0, ∀s ∈ R
2. (3.2)

In view of the Lemma 2.2 and (3.2), ṽn and its first derivatives are uniformly bounded
for ε � 1. Moreover, by differentiating (3.2), one also obtains the boundedness of the
second derivatives of ṽn on compact sets. Thus, we can apply the theorem of Ascoli
via a diagonal argument and show that for a subsequence still called ṽn , ṽn converges
in C2

loc(R
2,R2) to a map Ṽ , that we are now going to determine. For this purpose, we

introduce the rescaled energy

Ẽ(ũ) =
ˆ
R2

(1

2
|∇ũ(s)|2 − 1

2
μ(xn + εns)|ũ(s)|2 + 1

4
|ũ(s)|4

− εna f (xn + εns) · ũ(s)
)
ds = E(u),
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where we have set ũ(s) = uεn (xn + εns), i.e. uεn (x) = ũ
( x−xn

εn

)
. Let ξ̃ be a test

function with support in the compact set K . We have Ẽ(ṽn + ξ̃ , K ) ≥ Ẽ(ṽn, K ), and
at the limit G0(Ṽ + ξ̃ , K ) ≥ G0(Ṽ , K ), where

G0(ψ, K ) =
ˆ
K

[
1

2
|∇ψ |2 − 1

2
μ(x0)|ψ |2 + 1

4
|ψ |4

]

,

or equivalently G(Ṽ + ξ̃ , K ) ≥ G(Ṽ , K ), where

G(ψ, K ) =
ˆ
K

[
1

2
|∇ψ |2 − 1

2
μ(x0)|ψ |2 + 1

4
|ψ |4 + (μ(x0))2

4

]

=
ˆ
K

[
1

2
|∇ψ |2 + 1

4
(|ψ |2 − μ(x0))

2
]

. (3.3)

Thus, we deduce that Ṽ is a bounded minimal solution of the P.D.E. associated with
the functional (3.3):

�Ṽ (s) + (μ(x0) − |Ṽ (s)|2)Ṽ (s) = 0. (3.4)

If Ṽ is a constant of modulus
√

μ(x0), then we have limn→∞ |vεn (xn)| = √
μ(x0)

which is excluded by (3.1). Therefore, we obtain (up to orthogonal transformation in
the range) Ṽ (s) = √

μ(x0) η(
√

μ(x0)(s− s0)), where η(s) = ηrad(|s|) s
|s| is the radial

solution to the Ginzburg–Landau equation (1.9), and s0 ∈ R
2. In particular, the degree

of Ṽ on ∂D(0; 2|s0|) is ± 1, and by the C1
loc(R

2,R2) convergence, we deduce that for
εn � 1 the degree of ṽn is still ± 1 on ∂D(0; 2|s0|). This implies that vn has a zero in
D(xn; 2εn|s0|) for εn � 1, which contradicts the fact that vε �= 0 on Ω for ε � 1. ��
Proof Theorem 1.1 (ii) For every ξ = ρeiθ , we consider the local coordinates s =
(s1, s2) in the basis (eiθ , ieiθ ), andwe rescale the global minimizers v as in Lemma 2.3

by setting ṽε,a(s) = vε,a(ξ+sε2/3)
ε1/3

. Clearly �v(s) = ε�v(ξ + sε2/3), thus,

�ṽ(s) + μ(ξ + sε2/3)

ε2/3
ṽ(s) − |ṽ2(s)|ṽ(s) + a f (ξ + sε2/3) = 0, ∀s ∈ R

2.

Writing μ(ξ + h) = μ1h1 + h · A(h), with μ1 := μ′
rad(ρ) < 0, A ∈ C∞(R2,R2),

and A(0) = 0, we obtain

�ṽ(s) + (μ1s1 + A(sε2/3) · s)ṽ(s) − |ṽ2(s)|ṽ(s) + a f (ξ + sε2/3) = 0, ∀s ∈ R
2.

(3.5)

Next, we define the rescaled energy by

Ẽ(ũ) =
ˆ
R

(1

2
|∇ũ(s)|2 − μ(ξ + sε2/3)

2ε2/3
ũ2(s) + 1

4
|ũ|4(s) − a f (ξ + sε2/3) · ũ(s)

)
ds.

(3.6)
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With this definition Ẽ(ũ) = 1
ε2/3

E(u). From Lemma 2.3 and (3.5), it follows that �ṽ

and also∇ṽ are uniformly bounded on compact sets.Moreover, by differentiating (3.5)
we also obtain the boundedness of the second derivatives of ṽ. Thanks to these uniform
bounds, we can apply the theorem of Ascoli via a diagonal argument to obtain the
convergence of ṽ inC2

loc(R
2,R2) (up to a subsequence) to aminimal solution [cf. (1.8)]

Ṽ of the P.D.E.

�Ṽ (s) + μ1s1Ṽ (s) − |Ṽ |2(s)Ṽ (s) + a0 f (ξ) = 0,∀s ∈ R
2, with a0 := lim

ε→0
a(ε),

(3.7)

which is associated with the functional

Ẽ0(φ, J ) =
ˆ
J

(1

2
|∇φ(s)|2 − μ1

2
s1|φ|2(s) + 1

4
|φ|4(s) − a0 f (ξ) · φ(s)

)
ds.

(3.8)

Setting y(s) := 1√
2(−μ1)1/3

Ṽ
( s

(−μ1)1/3

)
, (3.7) reduces to (1.6) with α = a0 f (ξ)√

2μ1
, and y

is still a minimal solution of (1.6). In addition, by Lemma 2.1, Ṽ and y are bounded
in the half-planes [s0,∞) × R, ∀s0 ∈ R. ��
Proof of Theorem 1.1 (iii) For every x0 = r0eiθ0 fixed, with r0 > ρ, we consider
the local coordinates s = (s1, s2) in the basis (eiθ0 , ieiθ0), and the rescaled maps
ṽε,a(s) = vε,a(x0+εs)

ε
, satisfying

�ṽ(s) + μ(x0 + εs)ṽ(s) − ε2|ṽ(s)|2ṽ(s) + a f (x0 + εs) = 0, ∀s ∈ R
2. (3.9)

In view of the bound (2.4) provided by Lemma 2.3 and (3.9), we can see that the first
derivatives of ṽε,a are uniformly bounded on compact sets for ε � 1. Moreover, by
differentiating (3.9), one can also obtain the boundedness of the second derivatives of
ṽ on compact sets. As a consequence, we conclude that limε→0,a→a0 ṽε,a(s) = Ṽ (s)
in C2

loc, where Ṽ (s) ≡ − a0
μrad(r0)

f (r0eiθ0) is the unique bounded solution of

�Ṽ (s) + μ(x0)Ṽ (s) + a0 f (x0) = 0, ∀s ∈ R
2. (3.10)

Indeed, consider a smooth and bounded solution u : R2 → R
2 of�u = ∇W (u)where

the potential W : R2 → R is smooth and strictly convex. Then, we have �(W (u)) =
|∇W (u)|2 + ∑2

i=1 D
2W (u)(uxi , uxi ) ≥ 0, and since W (u) is bounded we deduce

that W (u) is constant. Therefore, u ≡ u0 where u0 ∈ R
2 is such that ∇W (u0) = 0.

Finally, the uniform convergence limε→0,a→a0
uε,a((r0+tε)eiθ )

ε
= − a0

μrad(r0)
f (r0eiθ ),

when t remains bounded and θ ∈ R, follows from the invariance of equation (1.3)
under the transformations u(x) 	→ g−1u(gx), ∀g ∈ SO(2). ��
Proof of Theorem 1.2 (i) The proof follows from the next lemma which applies in the
more general case of uniformly bounded solutions: ��
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Lemma 3.1 Consider the annulus A = {ρ+τεγ ≤ |x | ≤ ρ1}withρ1 > ρ, τ > 0 and

γ ∈ [0, 2/3) fixed. Assume that a(ε) > 0 and limε→0 ε1−
3γ
2 ln(a) = 0, and let uε,a

be solutions of (1.3) uniformly bounded. Then, there exists ε0 such that uε,a(x) �= 0,
∀x ∈ A, ∀ε < ε0. In addition,

• limε→0
uε,a(x)
|uε,a(x)| = x

|x | , uniformly on A,
• when ε � 1, the solution uε,a has at least one zero x̄ε in the open disc |x | <

ρ + τεγ .

Proof We examine the sign of the projections uν(x) = −(u(x) · ν), where ν =
(cos θ0, sin θ0) is a unit vector. Consider for every δ > 0 the set

Sδ :=
{
x = reiθ : ρ + τεγ ≤ r ≤ ρ1, −π

2
+ δ + θ0 ≤ θ ≤ π

2
− δ + θ0

}
,

which is contained in the domain

S′
δ :=

{

x = reiθ : ρ + τ

2
εγ < r < ρ2, −π

2
+ δ

2
+ θ0 < θ <

π

2
− δ

2
+ θ0

}

,

with ρ1 < ρ2. In view of (1.2), let 0 < fδ := cos(π−δ
2 )minr∈[ρ,ρ2] frad(r) ≤

infx∈S′
δ
( f (x) · ν), and notice that

ε2�uν ≥ (|u|2 − μ)uν + εa fδ, ∀x ∈ S′
δ.

Next, we define:

• M > 0 which is the uniform bound of |uε,a |,
• μ0 > 0 such that 2μ0h ≤ −μrad(ρ + h), for h ∈ [0, 1],
• μ∞ = supR2(−μ) > 0,
• kε = a fδ

M2+μ∞ > 0,

and the function ψ(x) = uν + kεε. One can check that when x ∈ Ω := {x ∈ S′
δ :

ψ(x) > 0}, we have ε2�ψ ≥ τεγ μ0ψ onΩ . To extend the previous inequality to the
domain S′

δ , we apply Kato’s inequality that gives: ε
2−γ �ψ+ ≥ τμ0ψ

+ on S′
δ , in the

H1 sense. Now, since in γ ∈ [0, 2/3), we can see that ∀x ∈ Sδ: d(x, ∂S′
δ) ≥ κεγ �

ε1−
γ
2 for some constant κ > 0, where d stands for the Euclidean distance, and utilizing

a standard comparison argument, we deduce that ψ+(x) ≤ (M + kεε)e
− c

ε
1− γ

2
d(x,∂S′

δ)

,

∀x ∈ Sδ , ∀ε � 1, where c > 0 is a constant. Finally, in view of limε→0 ε1−
3γ
2 ln(a) =

0 and γ ∈ [0, 2/3), there exists εδ (independent of θ0) such that

∀ε < εδ, ∀x ∈ Sδ : d(x, ∂S′
δ) > −ε1−

γ
2

c
ln

( kεε

M + kεε

)
⇒ ψ+(x)

≤ (M + kεε)e
− c

ε
1− γ

2
d(x,∂S′

δ)

< kεε. (3.11)

From this it follows uν(x) < 0 hence u(x) · ν > 0
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To conclude, we notice that every x = reiθ ∈ A belongs to the intersection of the
sets Sδ corresponding to the angles θ0 ∈ [θ − π

2 + δ, θ + π
2 − δ]. As a consequence,

∀x = reiθ ∈ A,∀ε < εδ ,∀θ0 ∈ [θ− π
2 +δ, θ+ π

2 −δ], we have u(x)·(cos θ0, sin θ0) >

0, and in particular

• u(x) �= 0,
• u(x) = |u(x)|ei(φ+θ), with φ ∈ (−δ, δ).

Since for every δ > 0 arbitrary small, we can find an εδ > 0 such that
∣
∣
∣
u(x)
|u(x)| − x

|x |
∣
∣
∣ ≤

|eiφ − 1| holds ∀x ∈ A, ∀ε < εδ , with φ ∈ (−δ, δ), it follows that limε→0
uε,a(x)
|uε,a(x)| =

x
|x | , uniformly on A. In addition, for ε < εδ (with δ small), the winding number of u
on the circle |x | = ρ + τεγ is one. Thus by degree theory, the solution u has at least
one zero in the open disc |x | < ρ + τεγ . ��

Theorem 1.2 (ii) The minimum of the energy defined in (1.1) is nonpositive and tends
to −∞ as ε → 0. Since we are interested in the behaviour of the minimizers as
ε → 0, it is useful to define a renormalized energy, which is obtained by adding
to (1.1) a suitable term so that the result is tightly bounded from above. We define the
renormalized energy as

E(u) := E(u) +
ˆ

|x |<ρ

μ2

4ε2
=
ˆ
R2

1

2
|∇u|2

+
ˆ

|x |<ρ

(|u|2 − μ)2

4ε2
+
ˆ

|x |>ρ

|u|2(|u|2 − 2μ)

4ε2
− a

ε

ˆ
R2

f · u, (3.12)

and claim the bound: ��

Lemma 3.2

E(vε,a) ≤ π |μ1|ρ
6

| ln ε| + O(1) for ε � 1 and arbitrary a, (3.13)

where μ1 = μ′
rad(ρ).

Proof Let us consider the C1 piecewise map ψ = (ψ1, ψ2):

ψ1(x) =

⎧
⎪⎨

⎪⎩

√
μ(x) for |x | ≤ ρ − ε2/3

kεε
−1/3(ρ − |x |) for ρ − ε2/3 ≤ |x | ≤ ρ

0 for |x | ≥ ρ

, ψ2(x) = 0,

with kε defined by kεε
1/3 = √

μrad(ρ − ε2/3) �⇒ kε = O(1). Since ψ ∈
H1(R2,R2), it is clear that E(v) ≤ E(ψ). We check that E(ψ) = π |μ1|ρ

6 | ln ε|+O(1),
since it is the sum of the following integrals:
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ˆ
ρ−ε2/3<|x |<ρ

(|ψ |2 − μ)2

4ε2
= O(1),

ˆ
|x |>ρ−ε2/3

1

2
|∇ψ1|2 = O(1),

ˆ
|x |≤ρ−ε2/3

1

2

|μ′
rad(|x |)|2
4μ

= |μ1|
8

ˆ
|x |≤ρ−ε2/3

1

ρ − |x |
+O(1) = π |μ1|ρ

6
| ln ε| + O(1).

��

We also compute a lower bound of the renormalized energy when a
ε| ln ε| is bounded:

Lemma 3.3 Assuming that a
ε| ln ε| is bounded, then for every ρ0 < ρ:

lim inf
ε→0

1

| ln ε|
ˆ

ρ0≤|x |≤ρ

1

2
|∇vε |2 ≥ π |μ1|ρ

6
, (3.14)

where μ1 = μ′
rad(ρ).

Proof Let γ ∈ (0, 2/3) and Ωε = {x : ρ0 ≤ |x | ≤ ρ − εγ }. The upper bound (3.13)
implies that

ˆ
Ωε

(|vε |2 − μ)2 = O(ε2| ln ε|). (3.15)

On the other hand, we also have

ˆ
Ωε

1

(|vε | + √
μ)2

≤
ˆ

Ωε

1

μ
= O(| ln ε|). (3.16)

Combining (3.15) with (3.16), and setting σ := |vε |, we obtain
ˆ

Ωε

|σ − √
μ| = O(ε| ln ε|). (3.17)

At this stage, we compute a lower bound of the difference

ˆ
Ωε

|∇σ |2 −
ˆ

Ωε

|∇√
μ|2 =

ˆ
Ωε

|∇(σ − √
μ)|2 + 2

ˆ
Ωε

∇(σ − √
μ)∇√

μ

≥ 2
ˆ

Ωε

(−�
√

μ)(σ − √
μ)

+ μ′
rad(ρ − εγ )√
μrad(ρ − εγ )

ˆ
|x |=ρ−εγ

(σ − √
μ) + O(1).
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In view of (3.17), we have
´
Ωε

(−�
√

μ)(σ −√
μ) = O(ε1−

3γ
2 | ln ε|) (since |�√

μ| =
O(ε− 3γ

2 ) on Ωε), while
´
|x |=ρ−εγ (σ − √

μ) = O(ε
γ
2 ) by Lemma 2.3. Therefore,

ˆ
ρ0≤|x |≤ρ

|∇vε |2 ≥
ˆ

Ωε

|∇vε |2 ≥
ˆ

Ωε

|∇σ |2 ≥
ˆ

Ωε

|∇√
μ|2 + O(1)

= π |μ1|ργ

2
| ln ε| + O(1), (3.18)

and lim infε→0
1

| ln ε|
´
ρ0≤|x |≤ρ

1
2 |∇vε |2 ≥ π |μ1|ργ

4 . Finally, letting γ → 2
3 we

deduce (3.14). ��
Now, we are going to establish

Lemma 3.4 For every ρ0 ∈ (0, ρ), there exists b∗ > 0 such that when
lim supε→0

a
ε| ln ε| < b∗ the set of zeros of the global minimizers cannot have a limit

point l ∈ D(0; ρ0).

The proof of Lemma 3.4 proceeds by contradiction. Let {x̄ε} be a sequence of zeros
of vε,a . Assuming that x̄ε converges (up to a subsequence) to a point x0 ∈ D(0; ρ0),
with ρ0 < ρ, we will obtain the bound

lim inf
ε→0

1

| ln ε|
ˆ
D(0;ρ0)

[1

2
|∇vε |2 + (|vε |2 − μ)2

4ε2

]
≥ λ > 0, (3.19)

which combined with (3.14), gives for b � 1 a lower bound of the renormalized
energy bigger than the upper bound (3.13). The limit in (3.19) will follow from

Lemma 3.5 Let 0 < ρ0 < ρ, and a(ε) ≤ b0ε| ln ε| for some b0 > 0. Then, there
exist constants λ > 0 and C > 0, such that for every disc D(x0; r0) ⊂ D(0; ρ0) with
r0 ∈ [ε, | ln ε|−1/2], the condition

ˆ
∂D(x0;r0)

1

2
|∇vε |2 +

ˆ
∂D(x0;r0)

(|vε |2 − μ)2

4ε2
≤ λ

r0
(3.20)

implies the bound

E(vε, D(x0; r0)) ≤ C. (3.21)

Proof Let λ be such that

√
μrad(ρ0) −

√
2λ

πμrad(ρ0)
− √

4πλ = 1

2

√
μrad(ρ0). (3.22)

We first utilize inequality (3.20) to bound vε in modulus and argument on ∂D(x0; r0).
From

 
∂D(x0;r0)

∣
∣|vε |2 − μ

∣
∣2 ≤ 2ε2λ

πr20
≤ 2λ

π
,
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it follows that there exists θ0 ∈ R such that
∣
∣|vε(x0+r0eiθ0)|2−μ(x0+r0eiθ0)

∣
∣2 ≤ 2λ

π
.

Thus,

∣
∣
∣|vε(x0 + r0e

iθ0)| −
√

μ(x0 + r0eiθ0)
∣
∣
∣ ≤

√
2λ

πμ(x0 + r0eiθ0)
≤

√
2λ

πμrad(ρ0)
.

On the other hand, the condition

1

2r0

ˆ 2π

0

∣
∣
∣
∂vε

∂θ
(x0 + r0e

iθ )

∣
∣
∣
2
dθ ≤

ˆ
∂D(x0;r0)

1

2
|∇vε |2 ≤ λ

r0
,

implies that
´ 2π
0

∣
∣ ∂vε

∂θ
(x0+r0eiθ )

∣
∣dθ ≤ √

4πλ, and |vε(x0+r0eiθ2)−vε(x0+r0eiθ1)| ≤√
4πλ, for θ2 ∈ [θ1, θ1 + 2π ].
In view of (3.22), we deduce that vε(x0+r0eiθ ) = σ(θ)ei(φ(θ−θ0)+φ0), with σ(θ) ≥

σ0 := 1
2

√
μrad(ρ0), φ(0) = 0, and |φ| ≤ π

6 . Indeed, we check that

σ(θ) ≥ σ(θ0) − |σ(θ0) − σ(θ)| ≥
√

μ(x0 + r0eiθ0) −
√

2λ

πμrad(ρ0)

−√
4πλ ≥ σ0, ∀θ ∈ [θ0, θ0 + 2π ],

| sin(φ(θ − θ0))| ≤
√
4πλ

σ(θ0)
≤

√
4πλ

√
μrad(ρ0) −

√
2λ

πμrad(ρ0)

=
√
4πλ

√
2λ

πμrad(ρ0)
+ 2

√
4πλ

≤ 1

2
, ∀θ ∈ [θ0, θ0 + 2π ].

Next, we define the comparison map

u(x0 + reiθ ) =
( r

r0
[σ(θ) − μ1/2(x0 + r0e

iθ )] + μ1/2(x0 + reiθ )
)
e
i
(

r
r0

φ(θ−θ0)+φ0

)

,

∀r ∈ [0, r0],∀θ ∈ R. (3.23)

It is clear that u is continuous on D(x0; r0), and that u ≡ v on ∂D(x0; r0).We are going
to check that u ∈ H1(D(x0; r0),R2), since actually

´
D(x0;r0) |∇u|2 ≤ C , where C is

a positive constant depending only on μ, f , b0, ρ0 and the uniform bound provided
by Lemma 2.2. In what follows, it will be convenient to denote by C such a constant
that may vary from line to line. Indeed, we have

∣
∣
∣
∂u(x0 + reiθ )

∂r

∣
∣
∣
2 =

∣
∣
∣
σ(θ) − μ1/2(x0 + r0eiθ )

r0
+ ∂μ1/2(x0 + reiθ )

∂r

∣
∣
∣
2

+φ2(θ − θ0)

r20

∣
∣
∣
r

r0
[σ(θ) − μ1/2(x0 + r0e

iθ )] + μ1/2(x0 + reiθ )
∣
∣
∣
2
,
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1

r2

∣
∣
∣
∂u(x0 + reiθ )

∂θ

∣
∣
∣
2 =

∣
∣
∣
1

r0

[
σ ′(θ) − ∂μ1/2(x0 + r0eiθ )

∂θ

]
+ 1

r

∂μ1/2(x0 + reiθ )

∂θ

∣
∣
∣
2

+|φ′(θ − θ0)|2
r20

∣
∣
∣
r

r0
[σ(θ) − μ1/2(x0 + r0e

iθ )] + μ1/2(x0 + reiθ )
∣
∣
∣
2
.

Hence
´
D(x0;r0)

∣
∣ ∂u(x0+reiθ )

∂r

∣
∣2 ≤ C . To obtain the bound

´
D(x0;r0)

1
r2

∣
∣ ∂u(x0+reiθ )

∂θ

∣
∣2 ≤

C , we utilize (3.20) that gives
´ 2π
0 |σ ′(θ)|2dθ ≤ 2λ and

´ 2π
0 |φ′(θ − θ0)|2dθ ≤ 2λ

σ 2
0
.

Finally, from (3.23) we can see that

∣
∣|u(x0 + reiθ )| − μ1/2(x0 + reiθ )

∣
∣ ≤ |σ(θ) − μ1/2(x0 + r0e

iθ )|,
∣
∣|u(x0 + reiθ )|2 − μ(x0 + reiθ )

∣
∣ ≤ |σ 2(θ) − μ(x0 + r0e

iθ )

|
∣
∣|u(x0 + reiθ )| + μ1/2(x0 + reiθ )

∣
∣

|σ(θ) + μ1/2(x0 + r0eiθ )| ,

∣
∣|u(x0 + reiθ )|2 − μ(x0 + reiθ )

∣
∣2 ≤ C

∣
∣|vε(x0 + r0e

iθ )|2 − μ(x0 + reiθ )
∣
∣2,

and since
´ 2π
0

(|vε(x0+r0eiθ )|2−μ(x0+reiθ ))2

4ε2
≤ λ

r20
by (3.20), we deduce that

´
D(x0;r0)

(|u|2−μ)2

4ε2
≤ C . On the other hand, it is obvious that − a

ε

´
D(x0;r0) f · u ≤ C ;

thus, we obtain by minimality of vε :

E(vε, D(x0; r0)) ≤ E(u, D(x0; r0)) ≤ C,

which completes the proof. ��
Proof of Lemma 3.4 Weassume that sup a

ε| ln ε| ≤ b0,whereb0 is an arbitrary constant.
Suppose by contradiction that x̄ε converges (up to a subsequence) to a point x0 ∈
D(0; ρ0) (withρ0 < ρ), and consider the rescaledmaps ṽε(s) = vε(x̄ε+εs) satisfying

�ṽ(s) + μ(x̄ε + εs)ṽ(s) − |ṽ(s)|2ṽ(s) + εa f (x̄ε + εs) = 0, ∀s ∈ R
2. (3.24)

In view of the Lemma 2.2 and (3.24), the first derivatives of ṽε are uniformly bounded
for ε � 1. Moreover, by differentiating (3.24), one also obtains the boundedness of
the second derivatives of ṽ on compact sets. Thus, we can apply the theorem of Ascoli
via a diagonal argument and show that for a subsequence still called ṽε , ṽε converges
in C2

loc(R
2,R2) to a map Ṽ , that we are now going to determine. For this purpose, we

introduce the rescaled energy

Ẽ(ũ) =
ˆ
R2

(1

2
|∇ũ(s)|2 − 1

2
μ(x̄ε + sε)|ũ(s)|2 + 1

4
|ũ(s)|4 − εa f (x̄ε + sε) · ũ(s)

)
ds

= E(u),

where we have set ũ(s) = uε(x̄ε + sε), i.e. uε(x) = ũ
( x−x̄ε

ε

)
. Let ξ̃ be a test function

with support in the compact set K . We have Ẽ(ṽε + ξ̃ , K ) ≥ Ẽ(ṽε, K ), and at the
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limit G0(Ṽ + ξ̃ , K ) ≥ G0(Ṽ , K ), where

G0(ψ, K ) =
ˆ
K

[
1

2
|∇ψ |2 − 1

2
μ(x0)|ψ |2 + 1

4
|ψ |4

]

,

or equivalently G(Ṽ + ξ̃ , K ) ≥ G(Ṽ , K ), where

G(ψ, K ) =
ˆ
K

[
1

2
|∇ψ |2 − 1

2
μ(x0)|ψ |2 + 1

4
|ψ |4 + (μ(x0))2

4

]

=
ˆ
K

[
1

2
|∇ψ |2 + 1

4
(|ψ |2 − μ(x0))

2
]

. (3.25)

Thus, we deduce that Ṽ is a bounded minimal solution of the P.D.E. associated with
the functional (3.25):

�Ṽ (s) + (μ(x0) − |Ṽ (s)|2)Ṽ (s) = 0, (3.26)

and since Ṽ (0) = 0, we obtain (up to orthogonal transformation in the range) Ṽ (s) =√
μ(x0) η(

√
μ(x0)s), where η(s) = ηrad(|s|) s

|s| is the radial solution to the Ginzburg–
Landau equation (1.9). It is known that

´
R2 |∇η|2 = ∞. Therefore, if q > 1 is such

that

3C < μrad(ρ0)

ˆ
D(0;q√

μrad(ρ0))

|∇η|2 ≤ μ(x0)
ˆ
D(0;q√

μ(x0))
|∇η|2 =

ˆ
D(0;q)

|∇ Ṽ |2,

where C is the constant given in Lemma 3.5, then for ε ≤ ε0 small enough, we have
3C
2 < 1

2

´
D(x̄ε ;qε)

|∇vε |2. In addition, by taking δ > 0 sufficiently small, we can ensure

that E(vε, D(x̄ε; r)) > C , for every r ∈ [qε, δ| ln ε|−1/2], and every ε ≤ ε0. Next,
applying Lemma 3.5, we obtain for r ∈ [qε, δ| ln ε|−1/2] and ε ≤ ε0 the inequality:

ˆ
∂D(x̄ε ;r)

1

2
|∇vε |2 +

ˆ
∂D(x̄ε ;r)

(|vε |2 − μ)2

4ε2
>

λ

r
. (3.27)

Finally, an integration of (3.27) gives

ˆ
D(x̄ε ;δ)

1

2
|∇vε |2 +

ˆ
D(x̄ε ;δ)

(|vε |2 − μ)2

4ε2
≥
ˆ δ| ln ε|−1/2

qε

λ

r
dr ≥ λ| ln ε|

− λ

2
ln(| ln ε|) + O(1),
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from which (3.19) follows. Combining (3.14) with (3.19), we obtain

lim inf
ε→0

1

| ln ε|E(vε) ≥ π |μ1|ρ
6

+ λ + lim inf
ε→0

(
− a

ε| ln ε|
ˆ
R2

f · vε

)

≥ π |μ1|ρ
6

+ λ − M‖ f ‖L1 lim sup
ε→0

a

ε| ln ε| ,

with M ≥ ‖vε‖L∞ (cf. Lemma 2.2). Then, we can see that the upper bound (3.13) is
violated when lim supε→0

a
ε| ln ε| < b∗ := min

(
λ

M‖ f ‖L1 , b0
)
. Therefore, the conver-

gence of x̄ε to a point x0 such that |x0| < ρ0 is excluded provided lim supε→0
a

ε| ln ε| <

b∗. ��
To complete the proof, we utilize part (i) of Theorem 1.2 and deduce that any limit
point l ∈ R

2 of the set of zeros of the global minimizers satisfies (1.11). When
a = o(ε| ln ε|), it is immediate that |l| = ρ.

Theorem 1.2 (iii) In the set Ωv := {x ∈ R
2 : v(x) �= 0}, we consider the polar form

of v:

v(x) = |v(x)| v(x)

|v(x)| =: σ(x)n(x), where σ(x) := |v(x)|, n(x) := v(x)

|v(x)| .
(3.28)

Setting

F(x) =
{
0 when v(x) = 0,

|∇σ(x)|2 + σ 2(x)|∇n(x)|2, when v(x) �= 0,
(3.29)

we get (cf. [13])

ˆ
R2

|∇v(x)|2dx =
ˆ
R2

F(x)dx =
ˆ

Ωv

(|∇σ(x)|2 + σ 2(x)|∇n(x)|2)dx . (3.30)

The next Lemma which is based on the previous decomposition provides some infor-
mation on the direction of the vector field v: ��
Lemma 3.6 Assuming that a is bounded and ρ1 > ρ, there exists a constant K , such
that

ˆ
Ωv∩{|x |≤ρ1}

(1

2
σ 2|∇n|2 + a

ε
| f |σ

[
1 − x

|x | · n
])

≤ K | ln ε| for ε � 1. (3.31)

Proof We define the constants:

• M > 0 which is the uniform bound of |vε,a |,
• ρ2 = ρ1 + 1.
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Next writing x = reiθ , we consider the comparison map

ψ(reiθ ) =

⎧
⎪⎨

⎪⎩

r
ε
σ (εeiθ )eiθ for r ∈ [0, ε],

σ (x)eiθ for r ∈ [ε, ρ1],
r−ρ1
ρ2−ρ1

v(x) + ρ2−r
ρ2−ρ1

σ(x)eiθ for r ∈ [ρ1, ρ2].

It is clear that ψ ∈ H1(D(0; ρ2),R
2) and that ψ ≡ v for |x | = ρ2, thus

E(v, D(0; ρ2)) − E(ψ, D(0; ρ2)) ≤ 0. (3.32)

Since ε∇v is uniformly bounded on R
2 (cf. Lemma 2.2), and v

ε
as well as ∇v are

uniformly bounded on {|x | ≥ ρ1} (cf. Lemma 2.4), one can check that

E(v, D(0; ε)) − E(ψ, D(0; ε)) ≤ K ,

E(v, {ρ1 ≤ |x | ≤ ρ2}) − E(ψ, {ρ1 ≤ |x | ≤ ρ2})) ≤ K ,

where K is a constant depending only on μ, f , ρ1 and the previous uniform bounds,
that may vary from line to line. Therefore,

ˆ
Ωv∩{ε≤|x |≤ρ1}

(1

2
(|∇v|2 − |∇ψ |2) + a

ε
(| f |σ − f · v)

)
≤ K , (3.33)

and since (|∇v(x)|2 − |∇ψ(x)|2) = σ 2(x)|∇n(x)|2 − σ 2(x)
|x |2 holds for x ∈ Ωv ∩ {ε ≤

|x | ≤ ρ1}, we deduce that
ˆ

Ωv∩{ε≤|x |≤ρ1}

(1

2
σ 2|∇n|2 + a

ε
(| f |σ − f · v)

)

≤ πM2(| ln ε| + ln ρ1) + K for ε � 1. (3.34)

Finally, (3.31) follows by combining (3.34) with

ˆ
Ωv∩{|x |≤ε}

(1

2
σ 2|∇n|2 + a

ε
(| f |σ − f · v)

)
≤ K , (3.35)

and adjusting the constant K . ��

Now, we prove

Lemma 3.7 For every ρ0 ∈ (0, ρ), there exists b∗ > 0 such that when a is bounded
and lim supε→0

a
ε| ln ε|2 > b∗, the zeros of the global minimizers have a limit point

l such that |l| ≤ ρ0. In particular, the condition lim supε→0
a

ε| ln ε|2 = ∞ with a
bounded, implies the existence of a zero x̄ε → 0.
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Proof Assume by contradiction that the zeros of the globalminimizers vε have no limit
point such that |l| ≤ ρ0. As a consequence, there exists ε0 > 0 such that ∀ε < ε0,
∀x ∈ D(0; ρ0): vε(x) �= 0. Moreover, proceeding as in the proof of Theorem 1.1 (i),
we can see that |vε | converges uniformly on D(0; ρ0) to

√
μ, as ε → 0. Thus, for

ε � 1, we have

min
D(0;ρ0)

σ 2
ε ≥ 1

2
μrad(ρ0),

and from (3.31) we deduce that

ˆ
|x |≤ρ0

|∇n|2 ≤ K1| ln ε|, a

ε

ˆ
ρ0/2≤|x |≤ρ0

[
1 − x

|x | · n
]

≤ K2| ln ε| for ε � 1,

(3.36)

where Ki (i = 1, 2) are constants. At this stage, we notice that since for every ε < ε0,
vε does not vanish on D(0; ρ0), the degree of vε on the circles |x | = r , with r ∈ (0, ρ0],
is zero. In particular, we can write n(reiθ ) = eiφr (θ), where φr : R → R is a 2π -
periodic smooth function, for every r ∈ (0, ρ0]. Now, we define the measurable sets

• F :=
{
x : ρ0

2 ≤ |x | ≤ ρ0,
x
|x | · n ≤ 1

2

}
= {

x = reiθ : ρ0
2 ≤ r ≤ ρ0, φr (θ)−

θ /∈ (−π/3, π/3) mod 2π},
• Fr := {θ ∈ [0, 2π ] : φr (θ) − θ /∈ (−π/3, π/3) mod 2π},
• R :=

{

r ∈ [ρ0/2, ρ0] : L1(Fr ) < 16ε
aρ2

0
K2| ln ε|

}

,

• Rc :=
{

r ∈ [ρ0/2, ρ0] : L1(Fr ) ≥ 16ε
aρ2

0
K2| ln ε|

}

= [ρ0/2, ρ0]\R,

where Ln denotes the n-dimensional Lebesgue measure. It follows from these defini-
tions and (3.36) that

4

ρ0
K2| ln ε|L1(Rc) ≤ aρ0

4ε

ˆ ρ0

ρ0/2
L1(Fr )dr ≤ a

2ε
L2(F) ≤ K2| ln ε|, for ε � 1,

(3.37)

thus L1(R) ≥ ρ0
4 . Moreover, since φr is periodic, for every r ∈ [ρ0/2, ρ0] there

exist θ1(r) ∈ R and θ2(r) ∈ (θ1(r), θ1(r) + 2π), such that φr (θ1(r)) − θ1(r) = 5π
3 ,

φr (θ2(r))−θ2(r) = π
3 , andφr (θ)−θ ∈ (π

3 , 5π
3 ) for θ ∈ (θ1(r), θ2(r)). Bydefinition of

Fr , we also have θ2(r)−θ1(r) ≤ L1(Fr ). Next, using the Cauchy–Schwarz inequality
we obtain

(4π)2

32
=

(ˆ θ2(r)

θ1(r)
(φ′

r (θ) − 1)dθ

)2

≤ (θ2(r) − θ1(r))
ˆ θ2(r)

θ1(r)
|φ′

r (θ) − 1|2dθ.

123



J Nonlinear Sci (2018) 28:1079–1107 1103

As a consequence,

(4π)2

32L1(Fr )
≤ (4π)2

32(θ2(r) − θ1(r))
≤
ˆ θ2(r)

θ1(r)
|φ′

r (θ) − 1|2dθ ⇒ (4π)2

32L1(Fr )
− 8π

3

≤
ˆ θ2(r)

θ1(r)
|φ′

r (θ)|2dθ,

and

K1| ln ε| ≥
ˆ

ρ0/2≤|x |≤ρ0

|∇n|2 ≥
ˆ ρ0

ρ0/2

dr

r

ˆ 2π

0
|nθ (r, θ)|2dθ

=
ˆ ρ0

ρ0/2

dr

r

ˆ 2π

0
|φ′

r (θ)|2dθ

≥ 1

ρ0

ˆ
R

(4π)2dr

32L1(Fr )
− 4π

3
≥ (πρ0)

2a

62K2ε| ln ε| − 4π

3
. (3.38)

Now, we can see that (3.38) is violated when lim supε→0
a

ε| ln ε|2 > 62K1K2
(πρ0)2

=: b∗.
Therefore, we have proved the existence of a limit point l ∈ D(0; ρ0) provided
lim supε→0

a
ε| ln ε|2 > b∗ (with a bounded). The previous argument also establishes

the existence of a sequence x̄ε → 0 when lim supε→0
a

ε| ln ε|2 = ∞ with a bounded. ��
Finally, if vε,a(x̄ε) = 0 and x̄ε → l, we consider the rescaledmaps ṽε(s) = vε(x̄ε+εs)
and proceeding as in the proof of Theorem 1.1 (i) we obtain up to subsequence

lim
ε→0

vε,a(x̄ε + εs) → √
μ(l)(g ◦ η)(

√
μ(l)s),

in C2
loc(R

2), for some g ∈ O(2).

Proof of Theorem 1.3 (i)We first notice that v �≡ 0 for ε � 1. Indeed, by choosing a
test function of the form ψ = (

√
μrad, 0)χ

(
ρ−r
ε2/3

)
, with χ a cut-off function supported

in the left half line, one can see that

E(ψ) ≤ − 1

4ε2

ˆ ρ

0
μ2
rad(r) rdr + O(| ln ε|) < 0, ε � 1.

Let x0 ∈ R
2 be such that v(x0) �= 0. Without loss of generality, we may assume that

v(x0) = (v1(x0), 0) is contained in the open right half-plane P = {x1 > 0}. Next,
consider ṽ = (|v1|, v2) which is another global minimizer and thus another solution.
Clearly, in a sufficiently small disc D ⊂ P centred at v(x0) we have v1 = |v1| > 0,
and as a consequence of the unique continuation principle (cf. [22]), we deduce that
v ≡ ṽ onR2 ⇒ v(R2) ⊂ P . Since the same conclusion holds for any open half-plane
containing v(x0), we also obtain v(R2) ⊂ {λv(x0) : λ ≥ 0}. As a consequence, we
have v = (v1, 0)with v1 ≥ 0, and ε2�v1+μv1−v31 = 0. By the maximum principle,
it follows that v1 > 0 since v1 �≡ 0.
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Now to prove that v1 is radial consider the reflection with respect to the line x1 = 0.
We can check that E(v, {x1 > 0}) = E(v, {x1 < 0}), since otherwise by even
reflection we can construct a map in H1 with energy smaller than v. Thus, the map
ṽ(x) = v(|x1|, x2) is also a minimizer, and since ṽ = v on {x1 > 0}, it follows by
unique continuation that ṽ ≡ v on R

2. Repeating the same argument for any line of
reflection, we deduce that v1 is radial. To complete the proof, it remains to show the
uniqueness of v up to rotations. Let ṽ = (ṽ1, 0) be another global minimizer with
ṽ1 > 0 and ṽ1 �≡ v1. Putting ψ = v in (1.4):

ˆ
R2

−ε2|∇v|2 + μ|v|2 − |v|4 = 0 ⇒ E(v) = −
ˆ
R2

1

4ε2
|v|4, (3.39)

we obtain an alternative expression of the energy that holds for every solution of (1.3)
belonging to H1. In particular, this formula implies that v1 and ṽ1 intersect for |x | =
r > 0. However, setting

w(x) =
{

v(x) for |x | ≤ r

ṽ(x) for |x | ≥ r,

we can see that w is another global minimizer, and again by the unique continuation
principle, we have w ≡ v ≡ ṽ. ��
Proof of Theorem 1.3 (ii)We need first to establish the three Lemmas below. ��
Lemma 3.8 If u is a solution of (1.3) belonging to H1(R2,R2), then for every ψ ∈
H1(R2,R2), we have

E(u + ψ) − E(u) =
ˆ
R2

(1

2
|∇ψ |2 + (|u|2 − μ)

2ε2
|ψ |2 + (|ψ |2 + 2(u · ψ))2

4ε2

)
.

(3.40)

Proof The Euler–Lagrange equation (1.4) gives

ˆ
R2

( ∑

j=1,2

∇ψ j · ∇u j

)
=
ˆ
R2

( μ

ε2
ψ · u − |u|2ψ · u

ε2
+ a

ε
f · ψ

)
. (3.41)

On the other hand, we have the identity

ˆ
R2

(1

2
|∇ψ + ∇u|2 + 1

2
|∇u|2 −

∑

j=1,2

(∇ψ j + ∇u j ) · ∇u j

)
=
ˆ
R2

1

2
|∇ψ |2.

(3.42)

Adding (3.41) and (3.42), we obtain

ˆ
R2

1

2

(
|∇(ψ + u)|2 − |∇u|2

)

=
ˆ
R2

(1

2
|∇ψ |2 + μ

ε2
ψ · u − |u|2ψ · u

ε2
+ a

ε
f · ψ

)
=: B, (3.43)
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and thus

E(u + ψ) − E(u) = B +
ˆ
R2

(
− μ

2ε2
(|u + ψ |2 − |u|2)

+ 1

4ε2
(|u + ψ |4 − |u|4) − a

ε
f · ψ

)

=
ˆ
R2

(1

2
|∇ψ |2 + (|u|2 − μ)

2ε2
|ψ |2 + (|ψ |2 + 2(u · ψ))2

4ε2

)
.

��
Lemma 3.9 For every a > 0, let μa : R2 → R be a measurable function satisfying
μa ≤ μ, and lima→∞ μa = −∞ a.e., then given ε > 0 there exists A > 0 such that
for every a > A we have

ˆ
R2

μa |ψ |2 < ε2
ˆ
R2

|∇ψ |2, ∀ψ ∈ H1(R2,R2), ψ �= 0. (3.44)

Proof By homogeneity, it is sufficient to prove (3.44) for ‖ψ‖H1 = 1. Suppose by
contradiction that (3.44) does not hold. Then, there exist a constantC0 > 0, a sequence
an → ∞, and a sequence ψn ∈ H1(R2,R2), with ‖ψn‖H1 = 1, such that

ˆ
R2

μan |ψn|2 ≥ C0

ˆ
R2

|∇ψn|2. (3.45)

Since ‖ψn‖H1 is bounded, we can extract a subsequence, still called ψn , such that
ψn ⇀ � weakly in H1, and ψn → � in L2

loc. Writing

C0

ˆ
R2

|∇ψn|2 ≤
ˆ
R2

μan |ψn|2 ≤
ˆ
Iδ
max(μan , 0)|ψn|2,

where Iδ := {x ∈ R
2 : μ(x) > −δ} and δ > 0 is small, we see that

limn→∞
´
R2 |∇ψn|2 = 0. This implies by lower semicontinuity that

´
R2 |∇�|2 ≤

lim inf
´
R2 |∇ψn|2 = 0, hence � ≡ 0. In addition, we have limn→∞

´
R2 |ψn|2 = 1,

limn→∞
´
Iδ

|ψn|2 = 0, and limn→∞
´
R2\Iδ |ψn|2 = 1. As a consequence,ˆ

R2
μan |ψn|2 ≤ ‖μ‖L∞

ˆ
Iδ

|ψn|2 − δ

ˆ
R2\Iδ

|ψn|2,

and taking the limit we find that
´
R2 μan |ψn|2 ≤ − δ

2 , for n big enough, which contra-
dicts (3.45). ��
Lemma 3.10 For ε > 0 and x0 ∈ R

2 fixed, the global minimizers satisfy

lim
a→∞ a−1/3vε,a(x0 + a−1/3s) = ε1/3 f (x0)

| f (x0)|2/3 , (3.46)

for the C2
loc(R

2,R2) convergence.
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Proof We consider the rescaled maps ṽ(s) = a−1/3v(x0 + a−1/3s), satisfying

ε2�ṽ(s)+a−2/3μ(x0 + a−1/3s)ṽ(s)−|ṽ|2(s)ṽ(s)+ε f (x0 + a−1/3s)=0, ∀s∈R
2.

(3.47)

Repeating the arguments in the proof of Lemma 2.2, one can see that when ε is
fixed and 1

a remains bounded, the maps ṽε,a are uniformly bounded up to the second
derivatives. Therefore, proceeding as in the proof of Theorem 1.1 (i) and (ii), we
deduce the convergence of ṽ as a → ∞ to the unique bounded solution of

ε2�Ṽ (s) − |Ṽ (s)|2Ṽ (s) + ε f (x0) = 0, ∀s ∈ R
2, (3.48)

which is the constant Ṽ ≡ ε1/3 f (x0)
| f (x0)|2/3 . ��

Let ε > 0 be fixed and let μa := μ − |v|2, where v := vε,α is a global minimizer. By
Lemma 3.10, we know that for every x �= 0, μa(x) converges pointwise to −∞, as
a → ∞. Thus, by (3.44), there exists A > 0, such that for every a > A we have

ˆ
R2

(1

2
|∇ψ |2 + (|v|2 − μ)

2ε2
|ψ |2

)
> 0, ∀ψ ∈ H1(R2,R2), ψ �= 0,

and also E(v+ψ) > E(v) in view of (3.40). In particular, it follows that when a > A,
the global minimizer is unique and radial, since v ≡ g−1vg, ∀g ∈ O(2).
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