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Inhomogeneous Fre´edericksz transition in nematic liquid crystals
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A theoretical and experimental analysis of a spatial instability developing in a homeotropically aligned
nematic liquid crystal film is presented. The explanation for the existence of this instability is supplied through
an amplitude equation. This model, which is valid in the vicinity of the Fre´edericksz transition, assumes a
strong difference between the nematic elastic constants. The first report of such an instability observed in the
conditions accounted for by our model, was provided by Cladis and Torza@J. Appl. Phys.6, 584 ~1975!#. We
repeated these experiments in order to confirm the validity of the model. Although carried out far from the
Fréedericksz transition, these latter show a good qualitative agreement with the theoretical predictions. The
nonlinear analysis allows to understand the dynamical behavior of an interface separating domains of stripes
through the occurrence of a zigzag instability.
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I. INTRODUCTION

Nonequilibrium processes often lead in nature to the f
mation of spatial periodic structures developed from a hom
geneous state through the spontaneous breaking of sym
tries present in the system@1#. In the course of recen
decades, much effort has been devoted to the study of pa
formation~see review@2# and the references therein! arising
in systems, such as chemical@3# or catalytic reaction system
@4#, gas discharge systems@5#, CO2 lasers@6#, and liquid
crystals@7–14#, or else emerging from hydrodynamic@15# or
electroconvective instabilities~see review@16# and the refer-
ences therein!. A unified description for the dynamics of spa
tial periodic structures developed at the onset of bifurcat
is achieved by means of amplitude equations for the crit
modes. Such a description is valid in the case of weak n
linearities and for a slow spatial and temporal modulation
the base pattern@2#. As an example, the Newell-Whitehea
equation @17# describes the dynamics of a stripe patte
formed in a two-dimensional system. It is notable that m
investigations on pattern formation consider tw
dimensional extended isotropic systems. Meantime, few
oretical studies have been performed on anisotropic syste
Nonetheless, some phenomena are intrinsically related to
isotropy as, for instance, the zigzag instability of an interfa
connecting two symmetrical states@18#. Here, one canno
sweep away the anisotropy problem and achieve a pro
description of the system just by rescaling the space coo
nates. Liquid crystals are materials where anisotropy pla
fundamental role as it can, in particular, generate inhomo
neous spatial structures. Thus, a stripe pattern can be
served close to the nematic-smecticA transition @7–9#, in
polymer nematics with planar anchoring conditions@10,11#
or in a nematic liquid crystal film submitted to an electr
magnetic field@12#.

*Permanent address: Departamento de Fı´sica, FCFM, Universidad
de Chile, Casilla 487-3, Santiago, Chile.
1063-651X/2001/65~1!/011708~8!/$20.00 65 0117
r-
-
e-

rn

n
l

n-
f

t

e-
s.
n-
e

er
i-
a

e-
b-

The aim of this paper is to depict the appearance of s
spatial periodic structures in a nematic liquid crystal sam
with homeotropic alignment, under the application of an e
ternal electric field. An amplitude equation, based on
assumption of astrong anisotropy, gives the theoretica
frame to the description of the instability in the vicinity o
the Fréedericksz transition. Previous studies of the station
stripe pattern observed in nematic films have already p
vided a linear stability analysis of the problem, thanks
variational calculations@8,10–14#. Through the use of trial
functions @8# or the resolution of the Euler-Lagrange equ
tions derived from the free energy of the system~Oseen-
Frank energy! @10–14#, one establishes a criterium for th
existence of a stable periodic pattern. However, a nonlin
study is difficult to achieve. The limit that we shall use belo
makes accessible the study of nonlinear behaviors, suc
the evolution of an interface separating two domains
stripes. This analysis is derived from the nonlinear elas
theory of nematic liquid crystals, which is valid here sin
backflow effects are negligeable close enough to the Fre´ed-
ericksz transition. As a consequence of the strong differe
between the elastic constants, nonlinear spatial terms ap
in the amplitude equation even close to the Fre´edericksz
transition. These nonlinearities along with the anisotro
present in the system leads the inhomogeneous instabili

Experimental observations of this spatial instability ha
been carried out far from the Fre´edericksz transition. Thes
experiments, similar to those made by Cladis and Torza@7#,
are in good qualitative agreement with the theoretical
scription developed close to the Fre´edericksz transition.

II. INHOMOGENEOUS FRÉ EDERICKSZ TRANSITION
IN LIQUID CRYSTALS

Most liquid crystal materials are formed of anisotropi
shaped organic molecules. This results in the anisotropy
all their physical properties, especially optical properties.
the nematic phase, the configuration of lowest energy
reached when all rodlike molecules are, on average, alig
©2001 The American Physical Society08-1
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along a single direction pointed out by a vectornW , which is
called thedirector ~any description must include the symm

try nW↔2nW ) @19,20#. This direction can be experimentall
specified either by applying an external field, e.g., an elec
or magnetic field, or by imposing some particular bound
conditions~anchoring conditions! at the edges of the con
fined sample. When two of these constraints are compe
the long-range orientational order may be partially d
stroyed. Orientational deformations then appear in the s
tem, which are theoretically described by a vector fie

nW (rW,t). This latter gives the average orientation of the m

ecules inside the fluid particle located inrW at time t. The
competition between two opposite constraints occurs, for
ample, when one tries to lead the reorientation of the m
ecules thanks to an external field in an anchored laye
nematic liquid crystal. For a sufficiently high magnitude
the field, the initial alignment due to the anchoring disa
pears in the bulk. This is the so-called Fre´edericksz transition
@19–21#. The threshold of this transition depends on the
ometry of the setup, that is, on the orientation of the anch
ing direction with respect to the external field. Besides,
chosen geometry determines the kind of uniform elastic
tortion to appear in the medium at the onset of the transit
This distortion is one of the three basic elastic distortio
namely, splay, twist, and bend distortions whose energy
is quantified by the intrinsic parametersK1 , K2, andK3 re-
spectively@19,20#. Due to the nematic anisotropy, theseelas-
tic constantsdiffer from each other, sometimes strong
enough to induce new phenomena, not achieved in isotr
situations. It has long been known that an inhomogene
Fréedericksz transition~IFT! leading to the formation of
stripes in a nematic sample can be observed due to a st
difference between the elastic constants@7,10#. This occurs
in particular with some polymeric liquid crystals like PB
~polybenzyl glutamate! for which the ratioK1 /K2 is of order
15 @10#. In the planar geometry, the nematic layer of th
material undergoes an IFT in place of the usual homo
neous Fre´edericksz transition~HFT!. This new transition is a
second-order transition, whereas the transition from stri
to uniform distortion, which takes place at a higher value
the applied external field, is a first-order transition.

Nevertheless, most thermotropic low-molecular-weig
liquid crystals do not show a strong anisotropy in their ne
atic range@19#. Hence, similar phenomena will be visib
only close to the nematic–smectic-A phase transition, where
the divergence of the bend and twist elastic constants m
possible to get high elastic ratios. The first report, to o
knowledge, of a spatial instability in a homeotropically a
chored layer was provided by Cladis and Torza@7#, who
studied a cyanobiphenyl~8CB! sample submitted to a mag
netic field very close to the Nem/Sm-A transition. There, the
IFT occurs after the HFT and the instability that genera
periodic distortions in the medium from the initial uniform
distortion is second order~supercritical bifurcation!.

Previous theoretical works developed to explain those
perimental observations have proved the possibility of
inhomogeneous instability, minimizing the free ener
thanks to periodic trial functions@8# or expressing the con
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dition on the control parameters that allow periodic functio
to be solution of the Euler-Lagrange equations@10,11,13,14#.
Besides, a quite comprehensive work on magnetically
electrically induced periodic deformations in nematics h
been published by Kini@14#. A review of the different situ-
ations corresponding to different nematic materials and
ferent external fields is provided and a linear analysis is p
formed for each situation.

III. THEORETICAL DESCRIPTION

We consider a thin film of nematic liquid crystal, which
confined between two glass plates and subjected to st
homeotropic anchoring conditions~molecules are, on aver
age, perpendicular to the glass plates!. The nematic sample is
submitted to a horizontal electric field, as shown in Fig.
We assume that the dielectric anisotropy constant is pos
(ea.0). Therefore, the interaction with the external elect
field (EW 5Ex̂, see Fig. 1! favors an alignment of the directo
parallel to this one. The dynamical equation for the direc
then reads@19,20#

g1] tnW 5K3@¹2nW 2nW ~nW •¹2nW !#1~K32K1!

3@nW ~nW •¹W !~¹W •nW !2¹W ~nW •¹W !#1~K22K3!

3$2~nW •¹W 3nW !@nW ~nW •¹W 3nW !2¹W 3nW #

1nW 3¹W ~nW •¹W 3nW !%1ea~nW •EW !@EW 2nW ~nW •EW !#,

~1!

with the conditions

nW •nW 51,

nW S x,y,z56
d

2D5 ẑ,

where K1 , K2 , K3 are the elastic constants related to t
distortions of splay, twist, and bend, respectively,g1 is the
rotational viscosity,ea is the dielectric anisotropy constan
andd is the thickness of the cell.

For a critical magnitude of the electric field, the home
tropic state~all molecules vertical,nW 5 ẑ) undergoes a sta
tionary instability, which is a second-order transition. Th
occurs when the electric field interaction is strong enou
compared with the elastic interaction, to induce a partial

FIG. 1. Schematic representation of a nematic layer of liq
crystal with homeotropic alignment, submitted to a horizontal el
tric field.
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INHOMOGENEOUS FRE´EDERICKSZ TRANSITION IN . . . PHYSICAL REVIEW E65 011708
alignment of the bulk molecules in the direction of the ele
tric field so as to decrease the total energy of the system.
is the well-known homogeneous Fre´edericksz transition@19–
21#. The bifurcation parameter is

«[eaE22K3~p/d!2. ~2!

When it is positive, the homeotropic state is unstable. T
linear study of Eq.~1! shows that the first Fourier mode o
the x component of the director is unstable (nx
5u cos(pz/d), zP@2d/2,d/2#). The amplitudeu of this
mode satisfies the following Landau equation:

g1] tu5«u2bu31K1]xxu1K2]yyu ~3!

where b[ 1
2 (K12 3

2 K3)(p2/d2)1(3/4)eaE2. Near the
threshold, one hasb'K1p2/2d2. In this configuration, the
Fréedericksz transition is a second-order transition.

The preceding equation describes the appearance an
namics of orientational domains that are formed beyond
Fréedericksz instability threshold, due to the twofold dege
eracy of the bifurcated state@22#. Actually, owing to the re-
flection symmetry with respect to the plane (x,z), that is, to
the plane perpendicular to the electric field, the molecule
the bulk can be tilted in two equivalent directions. The int
faces separating these orientational domains eliminate
spatial gradients so as to minimize the free energy of
system, and eventually become straight.

The last amplitude equation has been deduced from
solvability condition, by eliminating the dynamics of th
stable modes and considering the asymptotic limitu;«1/2,
]y

2; ]x
2;«, K1;K2;K3;1. This limit means that the liq-

uid crystal under consideration isisotropic, that is, the actua
values of K1 and K2 can be renormalized to 1 (K15K2
51) by scaling the spatial variablesx and y. Recently, in
order to describe the zigzag instability of an Ising wall in
nematic liquid crystal sample, one has already considered
limit of strong anisotropy@18#, where two elastic constant
are larger than the third one (K1 ,K3@K2). It is noteworthy
that this limit does not allow the simultaneous renormali
tion of the diffusion coefficients (K1 /g1 , K2 /g1), since this
would result in the divergence of higher-order terms in
amplitude equation. These higher-order terms have been
ymptotically neglected in Eq.~3!. Therefore, in the limit of
strong anisotropy, one cannot renormalize the preced
equation and a proper description of the system require
anisotropic amplitude equation.

When one studies the situation where the twist ela
constant is much smaller than the two other consta
(K1 ,K3@K2), then, close to the Fre´edericksz transition, the
asymptotic amplitude equation reads

g1] tu5«u2bu31K1]x
2u. ~4!

Above the Fre´edericksz threshold, the system contains d
mains that are separated by straight interfaces in they direc-
tion ~splay-bend walls@23#!.

The previous equation does not describe the evolution
the system under a perturbation in they direction, since it is
marginal with respect to this sort of perturbations. In orde
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achieve such a description, one must first take into acco
higher-order terms in the amplitude equation and, then, c
sider that the twist elastic constantK2 scales like the bifur-
cation parameter (K2;«). ForK2 smaller than«, the higher-
order terms predict forthwith the appearance of a spa
structure. We shall later consider this limit to outline th
mechanism of the instability. Besides, we shall see that
limit K2;« results in a more complex behavior than the ca
K2 far larger than« (K1@K2@«), for which the perturba-
tions in they direction satisfy a simple diffusion equation
Henceforth the solvability equation reads

] tu5«u2bu31K1]xxu1K2]yyu1
K1

2

a
]xxyyu

1
3

4
K3Fu~]yu!22

u2

2
]yyuG ~5!

with a[eaE21K3p2/d2. In the previous equation, we hav
used the asymptotic limitu;«1/2, ] t;«, ]y

2;«, ]x
2;«, K1

;K3;1, andK2;«. Hence, the prevailing terms are of o
der«3/2, while the first corrections are of order«5/2. Equation
~5! is variational. This follows from the variational aspect
the nematic elasticity model itself@see Eq.~1!#.

The expression of the director, involving lower-ord
terms, can be written as

nW 5S nx

ny

nz

D 5S u cosS pz

d D
S K1

a
]xyu1

K1
2

a2
]xy3uD cosS pz

d D
12

u2

2
cos2S pz

d D D . ~6!

If the order parameteru only depends on one spatial coord
nate, then the director is bidimensional~splay-bend distor-
tion! and lies everywhere in thexz plane. Conversely, when
the order parameter depends on the other spatial coordin
the director becomes tridimensional and all kinds of dist
tions are present in the nematic medium~splay-bend-twist!.

For small positive«, the system exhibits a second-ord
transition, as shown in Fig. 2. Near the threshold, the n
linear antidiffusion term (u2]yyu) is negligible. However, we
shall see below that, far enough from the Fre´edericksz tran-
sition, this nonlinear term can give rise to a spatial instabil
In order to study the stability of the bifurcated solutionsu
56A«/b), we shall consider the linear evolution of the sy
tem around these solutions. This evolution is described b

] tz522
«

b
z1K1]xxz1

K1
2

a
]xxyyz1S K22

3

8

«

b
K3D ]yyz,

~7!

whereu(x,y,t)'6A«/b1z(x,y,t). One can easily see tha
whenK22 3

8 («/b)K3,0, the system presents a spatial ins
bility in the y direction, that gives rise to the stripe patte
experimentally observed. The effective diffusion is actua
8-3
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CORINNE CHEVALLARD AND MARCEL G. CLERC PHYSICAL REVIEW E65 011708
negative~antidiffusion!, that is, the system focalizes the gr
dients. Note that the negative part of this diffusion coefficie
comes from the nonlinear term@(u2/2)]yyu# of Eq. ~5!. In
order to saturate this instability at short wavelengths, o
must include, in the nonlinear elastic theory, higher-or
terms that are quartic spatial terms, such as those include
Ref. @24# to study polymeric liquid crystals. These ext
terms give rise to additional terms in the solvability equat
~5!, which now reads

] tu5«u2bu31K1]xxu1K2]yyu2J]yyyyu

1S K1
2

a
1J1D ]xxyyu1

3

4
K3Fu~]yu!22

u2

2
]yyuG ,

~8!

whereJ, J1 are positive, of the same order of magnitude
the elastic constantK1 (J;J1;K1), and the term
2J]yyyyu corresponds to a term of hyperdiffusion.

Considering these new terms, one can demonstrate
close to the homogeneous Fre´edericksz transition, the system
undergoes a spatial instability whose bifurcation paramete

FIG. 2. Diagram of bifurcation. For«,0 the homeotropic state
is stable.«50 corresponds to the homogeneous Fre´edericksz tran-
sition. For «.0, the homeotropic state is unstable.«5«* is the
inhomogeneous Fre´edericksz transition. For«.«* , the spatial pe-
riodic solution is stable.
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K3K218JD6

8b

9
AS 3

2
K3K218JD 2

2
9

4
K2

2.

~9!

The diagram of bifurcation is outlined in Fig. 2: beyon
the second-order HFT («50), the system undergoes a sp
tial instability or IFT, which is also of second-order type.
the strong anisotropy limit (K1 ,K3@K2), the germ of this
nonlinear instability lies in the neighborhood of the HF
Since the inhomogeneous instability originates from the n
linearities developed beyond the HFT@see Eq.~5!#, the stripe
pattern can never appear before the uniform state. This re
was already formulated by Allenderet al. @8# from a linear
stability analysis.

The strong anisotropy limit was chosen for the sake
clarity, because it allows a clear and natural explanation
the nonlinear origin of the IFT. The same limit has alrea
been used elsewhere@18# to describe the zigzag instability o
a splay-bend interface between two homogeneous disto
domains beyond the HFT. The reported interfacial dynam
will similarly affect the interface separating two domains
stripes, since the equation that describes this dynamic
actually identical to Eq.~5! except for the term (u2/2)]yyu,
which is neglected, and for the spatial derivative]x2y4u,
which is added in order to saturate the instability at sh
wavelengths. Nevertheless, this limit ofstrong anisotropy
does not account fully for the conditions of our experimen
Indeed, these have been performed close to the Nem/SA
transition characterized by the divergence of the bend
twist elastic constants. Figure 3 shows the evolution cur
of the 8OCB elastic constants close to the Nem/Sm-A tran-
sition. These curves correspond to the parametrization u
by Allender et al. @8# to compare their experimental resul
with their theoretical predictions~the authors have consid
ered the experimental curves given in Ref.@25#!. From them,
one can see that the bend constant diverges much earlier
the twist constant when one approaches the Nem/Sm-A tran-
sition. Therefore, the use of the limitK2!K3, seems quite
c

tri-

nd
FIG. 3. Evolution curves of the 8OCB elasti
constants in the vicinity of the Nem/Sm-A tran-
sition. These curves correspond to the parame
zation, achieved by Allenderet al. @8# and to the
experimental results given by Madhusudana a
Pratibha@25#.
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INHOMOGENEOUS FRE´EDERICKSZ TRANSITION IN . . . PHYSICAL REVIEW E65 011708
pertinent to describe the experimental situation. One can
justify the use of the limitK2!K1. On the contrary, the limit
K1;K3 appears quite unrealistic. In order to outline the b
havior of the system close to this divergence, one sho
rather consider that the bend and twist elastic constants s
like as a power function of« (K1;1, K2;«12a, K3
;«2a, a.0). The parametersa must be chosen betwee
zero and 1 (0,a,1), in order to satisfy the divergence o
the bend elastic constant while keeping the twist elastic c
stant small. We have denominated extremeanisotropy limit
the case ofK3@K1@K2. This limit is fulfilled by the condi-
tions of the experiments~cf. Fig. 3!. Considering this new
limit, the amplitude equation now reads

] tu5«u2bu31K1]xxu1K2]yyu

1
3

4
K3Fu~]yu!22

u2

2
]yyuG1h.o.t. ~10!

The first three terms on the right-hand side are, once ag
dominant. They are of order«3/2, while the corrections are
of order «5/22a. Hence both limits, strong and extreme a
isotropy limits, lead, close to the Fre´edericksz transition, to
similar equations. They both account for the appearanc
an inhomogeneous spatial structure in they direction and a
zigzag instability of the interface between these states. H
it is important to emphasize that, although this extreme
isotropy limit can be fully justified by the behavior of th
elastic constants near the nematic/smectic-A transition, the
dependence of these constants with respect to the bifurca
parameter has no physical meaning. It is just a mathema
artifact that enables to correctly describe the dynamics c
to the Fréedericksz transition.

One could eventually study the limitK3@K1;K2. With
this limit, one still finds the appearance of a spatial instabi
since its origin lies in the nonlinear diffusion term
(u2/2)]yyu @see Eq.~8!#, which is governed by the ben
elastic constant and is, therefore, still present in the am
tude equation. However, the spatial structure is now iso
pic, that is, the system exhibits stripes whose orientation
pends on the initial conditions. From this, one can conclu
that the driving effect of the spatial instability is the be
deformation, but the reason for a privileged direction of t
stripes is the anisotropy between the twist and splay de
mations.

IV. EXPERIMENTS CLOSE TO THE NEMATIC ÕSM-A
TRANSITION

The experiments have been carried out beyond the H
since in the vicinity of this transition any experimental im
perfection is significant. Nevertheless a good qualitat
agreement with the preceding theoretical description was
ticed. Figure 5 shows the inhomogeneous solution obse
experimentally.

In the experiments we used a cyanobiphenyl compou
namely, the octyloxycyanobiphenyl~8OCB! whose nematic
range lies in the temperature interval 67 °C–80 °C@26# and
ends at low temperatures by a nematic-smecticA phase tran-
sition. The cell that contains the nematic sample is made
01170
so

-
ld
ale

n-

in,

of

re
-

ion
al

se

y

li-
-

e-
e

e
r-

T,

e
o-
ed

d,

of

two parallel glass plates separated by two mylar spac
which determine the thickness of the cell (d;100mm—see
Fig. 4!. The glass surfaces have been coated with lecithin
order to provide a homeotropic anchoring~molecules per-
pendicular to the plates!. Besides, the lower glass plate
covered with a transparent conductive oxide, except fo
thin channel~2 mm width! in the middle of the plate. This
allows to apply a voltage difference to the opposite cond
tive areas and, hence to induce a horizontal electric field~see
Fig. 1!. The sample is thus subjected to a sinusoidal volta
drop VPeakToPeak5200 V with a high frequency (f
510 kHz). All experimental observations were achiev
thanks to a polarizing microscope. A three charge-coup
device camera placed on the top of the microscope allow
record images.

The dielectric constant of the 8OCB is positive (ea58.7
at T569.8 °C@27#!, so that the electric interaction favors a
alignment of the molecules in the field direction. In this g
ometry, usually denominatedbend geometry, the orienta-
tional deformations that appear beyond the Fre´edericksz in-
stability are bend distortions along the vertical directio
Above this threshold, one expects a sample in a unifo
distorted state that corresponds to one of the equivalent s
6A«/b. Actually, as shown in Fig. 5~a!, the HFT leads here
to the formation of an interface separating two domains
opposite orientational bend distortions. This is not a surp
since we know that such an interface is also the solution
Eq. ~4! for the unstable mode amplitude. However, one m
underline that, in our situation, such a solution is forced
the curvature of the electric flux lines~see Fig. 4!. Even
small, this one introduces a small vertical component in
electric field that lifts the degeneracy of the HFT by favori
one of the two homogeneous bifurcated states. Since
vertical component gets reversed across the sample, thi
sults in two opposite domains whose interface is located
the position of null electric field gradient. This interface
called the splay-bend Ising wall@23#, in view of the elastic
distortions surrounding the interface.

In the main part of its nematic range, the 8OCB co
pound shows a weak elastic anisotropy:K1
;6,7310212N, K2;3,4310212 N, and K3;8310212 N
at T569.8 °C @25#, so that K2 /K1'0.51 and K3 /K1
'1.19. Thus, the IFT is not expected to occur, which
experimentally confirmed. However, the evolution curves
the 8OCB elastic constants provided by the literature~see,
for example@25#! indicate that a strong increase in this a
isotropy occurs at the Nem/Sm-A transition ~see, also Fig.

FIG. 4. Experimental setup.
8-5
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FIG. 5. Experimental pictures of the nemat
sample between crossed polarizers. The tempe
ture is gradually decreased from~a! to ~f! in order
to get closer and closer to the Nem/Sm-A transi-
tion.
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3!. Close enough to this transition, the bend and twist c
stants diverge whereas the splay one remains unchan
This divergence, which is a pretransitional effect, expres
that bend and twist deformations are forbidden in sme
layers, since they are too costly in energy. Yet, the div
gence of the bend elastic constant occurs quite before
twist one. For instance, (K3 /K1) t51025'82(K2 /K1) t51025,
wheret5(T2Tc)/Tc is the bifurcation parameter andTc is
the temperature of the Nem/Sm-A transition, while
(K3 /K1) t51022'3.8(K2 /K1) t51022. Since in the geometry
of our experiment, the distortion that appears above the H
is mainly a bend distortion, one must expect some big qu
tative changes due to the proximity of the Nem/Sm-A tran-
sition.

In the experiments, the temperature was gradually
creased in order to get closer and closer to the Nem/SmA
transition. Far enough from the Nem/Sm-A transition, one
observes the HFT with one of its topological defect, tha
the splay-bend Ising wall@see Fig. 5~a!#. Later on, this inter-
face undergoes an instability and becomes a faceted line@see
Fig. 5~b!#. As shown in Ref.@18#, the equation~5! provides
an explanation for the zigzag instability of an interface th
connects the two homogeneous bifurcated states of the
(0,«,«* ). One must underline that this interface instab
ity expresses the appearance of an intrinsic length in
system, according to the terminology of Turing@28#. This
instability always precedes the inhomogeneous instabi
for large wavelengths, and occurs because the interfac
marginal with respect to any spatial perturbation along thx
axis, as long as the system is invariant by translation in
direction@30#. The interface between the two periodic sta
of the IFT («.«* ) follows the same zigzag dynamics, a
actually observed experimentally@see Fig. 5~d!# and numeri-
cally ~see Fig. 6!. This dynamics is described by an ord
parameter that satisfies a one-dimensional Cahn-Hill
equation. The domains orfacets~zig and zag! exhibit a con-
servative coarsening dynamics characterized by a law o
teraction between the domains, which is an exponential fu
tion of the distance@29#. In Ref. @18# the termu2]yyu is
neglected, since it does not play any role in the zigzag in
bility of an Ising wall, which connects the two homogeneo
01170
-
ed.
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s

bifurcated states. Numerical simulations of Eq.~8! are in
agreement with the experimental observations. In particu
one can observe the zigzag instability of an interface se
rating two inhomogeneous states.

If one further decreases the temperature, one can see
mains of stripes develop on both sides of the interface@see
Fig. 5~c!#. These domains first grow in the central part of t
sample, because the temperature there is slightly lower
in the surrounding regions. Microscopy observations us
crossed polarizers indicate that the stripes introduce a p
odic distortion of splay in thexy plane@see Fig. 5~f!#, as well
as probable twist distortions in the vertical direction. T
wavelength of the stripes is about 20mm. For lower tempera-
tures, the domains grow and eventually fill the sample@Fig.
5~d!#. Further cooling finally leads to the transition towa
the smectic-A phase, which starts at the core of the spla
bend wall, where molecules are vertical. The wall opens
to let the smectic phase spread over the sample.

At an even lower temperature, one can see thevirgule
texture@7# @see Fig. 5~f!# and eventually thehoneycomb tex-

FIG. 6. Numerical simulation of Eq.~8! with «50.80, a5b
51, K152.00, K250.17, K353.5, J50.11, andJ151.
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ture ~@7#, not shown!. In Ref. @7# these textures are observe
beyond the threshold of the Nem/Sm-A phase. They corre
spond to a metastable state that keeps the memory o
very distorted state of the nematic phase after the transit
In our experiments@see Fig. 5~f!# two fronts propagate in
opposite directions in order to replace this corrugated st
ture by the smecticA phase.

V. CONCLUSION

We have theoretically described the growth of a spa
instability in a thin layer of nematic liquid crystal under h
meotropic anchoring. Close to the Fre´edericksz transition,
the existence of this instability has been inferred from
amplitude equation, assuming a strong or extreme elastic
isotropy limit, that is, a large difference between the elas
constants. The strong anisotropy limit mimics a situat
where the twist elastic constant is much smaller than
other ones (K1 ,K3@K2), whereas the extreme anisotrop
limit stands forK3@K1@K2. Although this instability has
been experimentally observed far from the Fre´edericksz tran-
sition, a good qualitative agreement between theory and
periments was noticed. Thestrong and extreme anisotropy
limits allow a nonlinear analysis and, therefore, the comp
hension of nonlinear behaviors, such as those presente
the interface between two inhomogeneous domains.

A spatial instability similar to the one studied here w
observed in polymeric liquid crystal samples under pla
anchoring@10#. The appearance of this instability was cha
acterized experimentally as well as theoretically@10,11#. The
theoretical predictions are based on variational calculati
on the Frank-Oseen free energy, and require an expressi
the director field that takes into account the spatial symm
breaking. From our point of view, the appearance of t
instability is once again related to a nonlinear instabil
This can be emphasized by considering the first unsta
Fourier mode in this geometry@nz5u cos(pz/d)#, which,
close to the Fre´edericksz transition, satisfies the followin
equation:
hy
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] tu5mu2
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4
u31K3¹'

2 u2
3

4
~K32K2!u2]yyu

1
3

4
~K22K1!u2]xxu1

3

4
~2K22K3!u~]xu!2

1
3

4
~K12K21K3!u~]yu!21h.o.t. ~11!

wherem5@xaH22K1(p/d)2#, ¹'
2 []xx1]yy , andH is the

amplitude of the vertical magnetic field.
The above equation is again asymptotically described

the isotropic Landau equation. The prevailing terms are
tually the first three terms on the right-hand side. Then, o
cannot predict the appearance of the inhomogeneous in
bility close to the Fre´edericksz transition since the system
isotropic near this transition. Nevertheless, the nonlinear c
rections give a clue to a possible nonlinear instability
enough from the HFT. Experimentally, the inhomogeneo
transition occurs from the undistorted state and is a seco
order transition@10#, which cannot be justified by the abov
model. One way to provide an explanation would be to co
sider higher-order spatial linear terms like those used in@24#
to describe the strong orientational correlation due to
interconnectivity of polymer chains.

For nematic samples with an oblique alignment and s
mitted to a magnetic field normal to the anchoring directio
the existence of a spatial instability has also been theo
cally pointed out~see Ref.@13#!. The elastic anisotropy wa
shown to be responsible for the instability.
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