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Inhomogeneous Fredericksz transition in nematic liquid crystals
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A theoretical and experimental analysis of a spatial instability developing in a homeotropically aligned
nematic liquid crystal film is presented. The explanation for the existence of this instability is supplied through
an amplitude equation. This model, which is valid in the vicinity of théeBegicksz transition, assumes a
strong difference between the nematic elastic constants. The first report of such an instability observed in the
conditions accounted for by our model, was provided by Cladis and Tdrzsppl. Phys6, 584 (1975]. We
repeated these experiments in order to confirm the validity of the model. Although carried out far from the
Freedericksz transition, these latter show a good qualitative agreement with the theoretical predictions. The
nonlinear analysis allows to understand the dynamical behavior of an interface separating domains of stripes
through the occurrence of a zigzag instability.
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[. INTRODUCTION The aim of this paper is to depict the appearance of such
spatial periodic structures in a nematic liquid crystal sample
Nonequilibrium processes often lead in nature to the forwith homeotropic alignment, under the application of an ex-
mation of spatial periodic structures developed from a homoternal electric field. An amplitude equation, based on the
geneous state through the spontaneous breaking of symmassumption of astrong anisotropy gives the theoretical
tries present in the systerfil]. In the course of recent frame to the description of the instability in the vicinity of
decades, much effort has been devoted to the study of pattet‘he Freedericksz transition. Previous studies of the stationary
formation (see review 2] and the references thergiarising  stripe pattern observed in nematic films have already pro-
in systems, such as chemi¢al or catalytic reaction systems Vided a linear stability analysis of the problem, thanks to
[4], gas discharge systeni§], CO, lasers[6], and liquid Variational calculation$g8,10—14. Through the use of trial
crystals[7—14], or else emerging from hydrodynaniit5] or functions[8] or the resolution of the Euler-Lagrange equa-
electroconvective instabilitiesee review 16] and the refer-  tions derived from the free energy of the syst¢@seen-
ences therein A unified description for the dynamics of spa- Frank energy [10—14, one establishes a criterium for the
tial periodic structures developed at the onset of bifurcatiorexistence of a stable periodic pattern. However, a nonlinear
is achieved by means of amplitude equations for the criticaptudy is difficult to achieve. The limit that we shall use below
modes. Such a description is valid in the case of weak nonnakes accessible the study of nonlinear behaviors, such as
linearities and for a slow spatial and temporal modulation ofthe evolution of an interface separating two domains of
the base patterf2]. As an example, the Newell-Whitehead stripes. This analysis is derived from the nonlinear elastic
equation[17] describes the dynamics of a stripe patterntheory of nematic liquid crystals, which is valid here since
formed in a two-dimensional system. It is notable that mosbackflow effects are negligeable close enough to thed-re
investigations on pattern formation consider two-€ricksz transition. As a consequence of the strong difference
dimensional extended isotropic systems. Meantime, few thebetween the elastic constants, nonlinear spatial terms appear
oretical studies have been performed on anisotropic systemi the amplitude equation even close to the efiericksz
Nonetheless, some phenomena are intrinsically related to afansition. These nonlinearities along with the anisotropy
isotropy as, for instance, the zigzag instability of an interfaceoresent in the system leads the inhomogeneous instability.
Connectmg two Symmetr|ca| Staté$8] Here, one cannot Experimental observations of this spatial instability have
sweep away the anisotropy problem and achieve a propdﬂeen carried out far from the Fadericksz transition. These
description of the system just by rescaling the space coordéXperiments, similar to those made by Cladis and T¢rza
nates. Liquid crystals are materials where anisotropy plays @re in good qualitative agreement with the theoretical de-
fundamental role as it can, in particular, generate inhomogescription developed close to the Brericksz transition.
neous spatial structures. Thus, a stripe pattern can be ob-
served close to the nematic-smecActransition[7-9], in Il. INHOMOGENEOUS FRE EDERICKSZ TRANSITION
polymer nematics with planar anchoring conditidi®,11] IN LIQUID CRYSTALS
or in a nematic liquid crystal film submitted to an electro-
magnetic field 12]. Most liquid crystal materials are formed of anisotropic-
shaped organic molecules. This results in the anisotropy of
all their physical properties, especially optical properties. In
*Permanent address: Departamento &icB] FCFM, Universidad the nematic phase, the configuration of lowest energy is
de Chile, Casilla 487-3, Santiago, Chile. reached when all rodlike molecules are, on average, aligned
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along a single direction pointed out by a vectrwhich is
called thedirector (any description must include the symme-
y

try n——n) [19,20. This direction can be experimentally
specified either by applying an external field, e.g., an electric
or magnetic field, or by imposing some particular boundary

conditions (anchoring conditiong at the edges of the con- — =

fined sample. When two of these constraints are competing, E

the long-range orientational order may be partially de- FIG. 1. Schematic representation of a nematic layer of liquid
stroyed. Orientational deformations then appear in the syssrystal with homeotropic alignment, submitted to a horizontal elec-
tem, which are theoretically described by a vector fieldtric field.

n(r,t). This latter gives the average orientation of the mol- . . .

. . . > i dition on the control parameters that allow periodic functions
ecules _|r_13|de the fluid particle _Iocated nn_at timet. The to be solution of the Euler-Lagrange equati¢h,11,13,1%
competition between two opposite constraints occurs, for eXgegjges, a quite comprehensive work on magnetically and
ample, when one tries to lead the reorientation of the moly|ecyrically induced periodic deformations in nematics has
ecules_ thgnks to an external fle'ld' in an .anchored' layer ofqan published by Kini14]. A review of the different situ-
nematic liquid crystal. For a sufficiently high magnitude of 4iong corresponding to different nematic materials and dif-

the field, the initial alignment due to the anchoring disap-oent external fields is provided and a linear analysis is per-
pears in the bulk. This is the so-called Edericksz transition formed for each situation.

[19-21]. The threshold of this transition depends on the ge-
ometry of the setup, that is, on the orientation of the anchor-
ing direction with respect to the external field. Besides, the
chosen geometry determines the kind of uniform elastic dis- e consider a thin film of nematic liquid crystal, which is
tortion to appear in the medium at the onset of the transitiongonfined between two glass plates and subjected to strong
This distortion is one of the three basic elastic distortionshomeotropic anchoring conditiorisnolecules are, on aver-
namely, splay, twist, and bend distortions whose energy cog{ge, perpendicular to the glass platdhe nematic sample is

is quantified by the intrinsic parametes, K, andK3z re-  sybmitted to a horizontal electric field, as shown in Fig. 1.
spectively[19,20. Due to the nematic anisotropy, theslas-  \We assume that the dielectric anisotropy constant is positive

tic constantsdiffer from each other, sometimes strongly (¢,>0). Therefore, the interaction with the external electric

enough to induce new phenomena, not achieved in isotropiggq (E=E§<, see Fig. 1favors an alignment of the director

, : - X ) f);arallel to this one. The dynamical equation for the director
Freedericksz transitionIFT) leading to the formation of then read$19,20]

stripes in a nematic sample can be observed due to a strong
difference between the elastic constatslO]. This occurs
in particular with some polymeric liquid crystals like PBG

X

T T
I
[t d
[
L

Ill. THEORETICAL DESCRIPTION

y10n=K3[VZn—n(n-V2n)]+(Kz—K;)

(polybenzyl glutamatefor which the ratiok; /K, is of order X[n(R-V)(V-n)—V(n-V)]+(K,—Kg)
15 [10]. In the planar geometry, the nematic layer of this

material undergoes an IFT in place of the usual homoge- x{2(n-Vxn)[n(n-Vxn)—Vxn]

neous Fredericksz transitioHFT). This new transition is a o S
second-order transition, whereas the transition from stripes +nXV(n-VXn)}+e(n-E)[E—n(n-E)],

to uniform distortion, which takes place at a higher value of
the applied external field, is a first-order transition.

Nevertheless, most thermotropic low-molecular-weightith the conditions
liquid crystals do not show a strong anisotropy in their nem-

D

atic range[19]. Hence, similar phenomena will be visible An=1
only close to the nematic—smec#cphase transition, where ’
the divergence of the bend and twist elastic constants make d
possible to get high elastic ratios. The first report, to our n X,yyzzi_)zzy
knowledge, of a spatial instability in a homeotropically an- 2

chored layer was provided by Cladis and Tofza, who _

studied a cyanobiphenyBCB) sample submitted to a mag- vv.here.Kl, Ky, Ks are.the elastic constants.relat(.ad to the

netic field very close to the Nem/Statransition. There, the distortions of splay, twist, and bend, respectivejy,is the

IFT occurs after the HFT and the instability that generategotational viscositye, is the dielectric anisotropy constant,

periodic distortions in the medium from the initial uniform andd is the thickness of the cell. o

distortion is second ordesupercritical bifurcation For a critical magnitude of the ielefztrlc field, the homeo-
Previous theoretical works developed to explain those extropic state(all molecules verticaln=z) undergoes a sta-

perimental observations have proved the possibility of arionary instability, which is a second-order transition. This

inhomogeneous instability, minimizing the free energyoccurs when the electric field interaction is strong enough,

thanks to periodic trial functiong8] or expressing the con- compared with the elastic interaction, to induce a partial re-
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alignment of the bulk molecules in the direction of the elec-achieve such a description, one must first take into account
tric field so as to decrease the total energy of the system. Thisigher-order terms in the amplitude equation and, then, con-

is the well-known homogeneous Edericksz transitiofl9—  sider that the twist elastic constalit scales like the bifur-

21]. The bifurcation parameter is cation parameter{,~ ¢). ForK, smaller thare, the higher-
I 5 order terms predict forthwith the appearance of a spatial
e=€E°—Ky(m/d)". (20 structure. We shall later consider this limit to outline the

mechanism of the instability. Besides, we shall see that the
Simit K,~ ¢ results in a more complex behavior than the case
K, far larger thane (K{>K,>¢), for which the perturba-
tions in they direction satisfy a simple diffusion equation.
Henceforth the solvability equation reads

When it is positive, the homeotropic state is unstable. Th
linear study of Eq(1) shows that the first Fourier mode of
the x component of the director is unstablen,(
=ucos@@zd), ze[—d/2d/2]). The amplitudeu of this
mode satisfies the following Landau equation:

2

Y10U=EU—bU+ Ko+ Kadyyu 3 U= su—bU3+Kydyu-+Kodyu+ glaxxyw
where b=1(K,—2K;)(7%/d?) +(3/4)e,E?>. Near the 3 5
threshold, one hab~K,#?/2d2. In this configuration, the ik utan2—L s 5
. . L : " 3 U( yu) yyu ( )
Freedericksz transition is a second-order transition. 4 2

The preceding equation describes the appearance and dy- ) )
namics of orientational domains that are formed beyond th&Vith 8= €;E*+Kgm?/d. In the previous equation, we have
Freedericksz instability threshold, due to the twofold degen-used the asymptotic limit~&'2, o,~e, d;~&, di~z, Ky
eracy of the bifurcated staf@2]. Actually, owing to the re- ~Ks~1, andK,~e. Hence, the prevailing terms are of or-
flection symmetry with respect to the plane), that is, to dere®2, while the first corrections are of orde?’ Equation
the plane perpendicular to the electric field, the molecules i5) is variational. This follows from the variational aspect of
the bulk can be tilted in two equivalent directions. The inter-the nematic elasticity model itsdléee Eq.(1)].
faces separating these orientational domains eliminate their The expression of the director, involving lower-order
spatial gradients so as to minimize the free energy of théerms, can be written as
system, and eventually become straight.

The last amplitude equation has been deduced from a ucos(w—z)
solvability condition, by eliminating the dynamics of the d
stable modes and considering the asymptotic limite*?, Ny )
Jo~ di~e, Ki~Ky~Kz~1. This limit means that the lig- n=|ny | = (ﬁa U+ ﬁ& SU)CO{W_Z) . (6)
uid crystal under considerationisotropic, that is, the actual a v g2 v d
values ofK; and K, can be renormalized to 1KG{=K, Nz u2

=1) by scaling the spatial variablesandy. Recently, in 1— —cog| —
order to describe the zigzag instability of an Ising wall in a
nematic liquid crystal sample, one has already considered t

limit of strong anisotropyf18], where two elastic constants nate, then the director is bidimension@blay-bend distor-

are larger than the third on&(,K3;>K,). It is noteworthy . . .
that this limit does not allow the simultaneous renormaliza-t'on) and lies everywhere in thez plane. Conversely, when

100 f e ifusion oo ., K ), it s 7 1€ paamete depends ot other spatie coordates
would result in the divergence of higher-order terms in the.ons are present in the nematic medigsplay-bend-twigt
amplitude equation. These higher-order terms have been agl- P . splay

For small positives, the system exhibits a second-order

ymptotically neglected in Eq3). Therefore, in the limit of QEnsition, as shown in Fig. 2. Near the threshold, the non-
S

r]‘Fthe order parameten only depends on one spatial coordi-

strong anisotropy, one cannot renormalize the precedin ear antidiffusion termii23..,u) is negligible. However, we
equation and a proper description of the system requires a vy L ’
d prop b y g all see below that, far enough from the édericksz tran-

anisotropic amplitude equation. o ; . A S .
When one studies the situation where the twist elasti¢"o™ this nonlinear term can give rise to a spatial m;tablllty.
order to study the stability of the bifurcated solutions (

constant is much smaller than the two other constant ; . .
=+ /e/b), we shall consider the linear evolution of the sys-

(K1,K3>K,), then, close to the Feglericksz transition, the . ; e X
asymptotic amplitude equation reads tem around these solutions. This evolution is described by

K2

=su—bud+K,d2u. 4 £ 1 3¢
Ndu=eu—bu+Kydu @ Id= =25 L Kedad + — Ixxyyd | K= g 5 Ka [ dyyd,
Above the Fredericksz threshold, the system contains do- (7)
mains that are separated by straight interfaces iry ttheec-
tion (splay-bend wall$23]). whereu(x,y,t)~ = Je/b+ {(Xx,y,t). One can easily see that

The previous equation does not describe the evolution ofvhenK,— 3 (s/b)K;<0, the system presents a spatial insta-
the system under a perturbation in thdirection, since it is  bility in the y direction, that gives rise to the stripe pattern
marginal with respect to this sort of perturbations. In order toexperimentally observed. The effective diffusion is actually
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*
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8b (3 8b /(3 29 ,
©)

The diagram of bifurcation is outlined in Fig. 2: beyond
the second-order HFTe(=0), the system undergoes a spa-
tial instability or IFT, which is also of second-order type. In
the strong anisotropy limitK,,Ks>K5), the germ of this
nonlinear instability lies in the neighborhood of the HFT.
Since the inhomogeneous instability originates from the non-
_ FIG. 2. Diagram of bifurcation. Fas<0 the hpmeo_tropic state |inearities developed beyond the HFSee Eq(5)], the stripe
is stable.e =0 corresponds to the homogeneouseliricksz tran-  nattern can never appear before the uniform state. This result
sition. Fore>0, the homeotropic state is unstablese* is the was already formulated by Allendet al. [8] from a linear
inho_mogen_eou_s Feglericksz transition. Fos>e*, the spatial pe- stability analysis.
riodic solution is stable. The strong anisotropy limit was chosen for the sake of
clarity, because it allows a clear and natural explanation of
the nonlinear origin of the IFT. The same limit has already
'heen used elsewhel&8] to describe the zigzag instability of

negative(antidiffusion, that is, the system focalizes the gra-
dients. Note that the negative part of this diffusion coefficien

: 2
comes from the nonlinear terfifu®/2)d,yu] of Eq. (5). In 5 splay-bend interface between two homogeneous distorted

order to saturate this instability at short wavelengths, ong,maing peyond the HFT. The reported interfacial dynamics
must include, in the nonlinear elastic theory, higher-order,

. . ) will similarly affect the interface separating two domains of
terms that are quartic spatial terms, such as those included y P g

Lo ripes, since the equation that describes this dynamics is
Ref. [24] to study polymeric liquid crystals. These extra actually identical to Eq(5) except for the termu?/2)a,.u,
terms give rise to additional terms in the solvability equation, i1 is neglected, and for the spatial derivatiﬁ)@yZu
(5), which now reads ' y4t

which is added in order to saturate the instability at short
wavelengths. Nevertheless, this limit efrong anisotropy
does not account fully for the conditions of our experiments.
Indeed, these have been performed close to the Ner®Sm-
, transition characterized by the divergence of the bend and
twist elastic constants. Figure 3 shows the evolution curves
(8)  of the 8OCB elastic constants close to the Nem/Srman-
sition. These curves correspond to the parametrization used
whereJ, J; are positive, of the same order of magnitude asby Allender et al. [8] to compare their experimental results
the elastic constantk; (J~J;~K;), and the term with their theoretical prediction&he authors have consid-
—Jdyyyyu corresponds to a term of hyperdiffusion. ered the experimental curves given in R&b]). From them,
Considering these new terms, one can demonstrate thaine can see that the bend constant diverges much earlier than
close to the homogeneous Edericksz transition, the system the twist constant when one approaches the NemASnan-
undergoes a spatial instability whose bifurcation parameter isition. Therefore, the use of the limit,<K;, seems quite

JU=eU— DU+ K1+ Kydy U—Jdyyu
2
1
43
a 1

2

, Uu
+ u(ayu) —?ayyu

3
Iyxy Tt 1 Kj

4.0x10°
——K, (splay)
. —o—K, (twist)
3.0x10” —o—K, (bend)

FIG. 3. Evolution curves of the 80OCB elastic
2.0x10° - constants in the vicinity of the Nem/S#h-tran-
sition. These curves correspond to the parametri-
zation, achieved by Allendest al. [8] and to the
experimental results given by Madhusudana and

Elastic constants K, (in dynes)

1.0x10° - Pratibha[25].
0.0 T T T T T T T T T
1.0x10° 2.0x10° 4.0x10° 6.0x10° 8.0x10° 1.0x107
t= (T-TC)IT .
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pertinent to describe the experimental situation. One can alst L~ 2mm

justify the use of the limik,<K;. On the contrary, the limit . = = .
K,~K appears quite unrealistic. In order to outline the be- | — I

havior of the system close to this divergence, one should® "™ ' "; '; B } } |

rather consider that the bend and twist elastic constants scal
like as a power function ofe (K;~1, K,~&l % Kj;
~¢g~ % a>0). The parametera must be chosen between
zero and 1 (8<a<1), in order to satisfy the divergence of

the bend elastic constant while keeping the twist elastic con- @
stant small. We have denominated extreamésotropy limit
the case oK;>K>K,. This limit is fulfilled by the condi-
tions of the experimenté&cf. Fig. 3. Considering this new

FIG. 4. Experimental setup.

limit, the amplitude equation now reads two parallel glass plates separated by two mylar spacers,
3 which determine the thickness of the cell~100xm—see
diu=eu—bu +Kydxu+Kadyu Fig. 4). The glass surfaces have been coated with lecithin in
3 U2 order to provide a homeotropic anchoriignolecules per-
+ ZK3 u(ayu)z— ?ayyu +h.o.t. (10 pendicular to the platesBesides, the lower glass plate is
covered with a transparent conductive oxide, except for a

The first three terms on the right-hand side are, once agaiﬁr,‘in channel(2 mm width in the middle of the plgte. This
dominant. They are of order32, while the corrections are allows to apply a voltage difference to the opposite conduc-
of orders52~ . Hence both Iim’its strong and extreme an- tive areas and, hence to induce a horizontal electric {séd
isotropy limits, lead, close to the 1erelericksz transition, to Fig. 1). The sample is thus su_b]ected t.o a sinusoidal voltage
similar equations. They both account for the appearance CQrop VpeakTopeaic 200 V. with a high frequency f(

an inhomogeneous spatial structure in thdirection and a :10kkHZ)' Al Iex_p_enmer_wtal observ:tltr)]ns wEre achlevelzdd
zigzag instability of the interface between these states. Hergba'? S to a polarizing microscope. A three charge-couple
evice camera placed on the top of the microscope allows to

it is important to emphasize that, although this extreme an- )
isotropy limit can be fully justified by the behavior of the record Images. . .

elastic constants near the nematic/smegtiransition, the The dielectric constant of the BOCB s positive, £8.7
dependence of these constants with respect to the bifurcati(ﬁ”f,T: 69.8°C[27]), so that the elec'grlc Interaction favo_r s an
parameter has no physical meaning. It is just a mathematic& ignment of the molecules in the field direction. In this ge-

artifact that enables to correctly describe the dynamics clos@Metry, usually denominatetiend geometrythe orienta-
to the Ffedericksz transition. tional deformations that appear beyond theeericksz in-

One could eventually study the limits>K;~K,. With stability are bend distortions along the vertical direction.

this limit, one still finds the appearance of a spatial instability'g‘_bove :jh's threhshold, one ezj(pects a sfar;]qple in al uniform
since its origin lies in the nonlinear diffusion term distorted state that corresponds to one of the equivalent states

(u2/2)¢9yyu [see Eq.(8)], which is governed by the bend +elb. Actua}lly, as shqwn in Fig. ®), the; HFT leads hgre
elastic constant and is, therefore, still present in the amplit® the formation of an interface separating two domains of

tude equation. However, the spatial structure is now isotroQPp‘)Site orientational bend distortions._ This is not a su_rprise
pic, that is, the system exhibits stripes whose orientation de3NC€ We know that such an interface is also the solution of
pends on the initial conditions. From this, one can concludéd- (4) for the unstable mode amplitude. However, one must
that the driving effect of the spatial instability is the bend Underline that, in our situation, such a solution is forced by
deformation, but the reason for a privileged direction of theth® curvature of the electric flux linesee Fig. 4. Even

stripes is the anisotropy between the twist and splay deforg’ma”’_ th_is one int_roduces a small vertical component in_the
mations. electric field that lifts the degeneracy of the HFT by favoring

one of the two homogeneous bifurcated states. Since this
vertical component gets reversed across the sample, this re-
sults in two opposite domains whose interface is located at
the position of null electric field gradient. This interface is

The experiments have been carried out beyond the HFTgalled the splay-bend Ising wdl23], in view of the elastic
since in the vicinity of this transition any experimental im- distortions surrounding the interface.
perfection is significant. Nevertheless a good qualitative In the main part of its nematic range, the 80OCB com-
agreement with the preceding theoretical description was nggound  shows a weak elastic anisotropyK;
ticed. Figure 5 shows the inhomogeneous solution observed 6,7x10 12N, K,~3,4x10 2 N, andK;~8x10 12 N
experimentally. at T=69.8°C [25], so that K,/K;~0.51 and K3/K;

In the experiments we used a cyanobiphenyl compounds=1.19. Thus, the IFT is not expected to occur, which is
namely, the octyloxycyanobipheng8OCB) whose nematic experimentally confirmed. However, the evolution curves of
range lies in the temperature interval 67 °C—80[26] and the 80OCB elastic constants provided by the literat{see,
ends at low temperatures by a nematic-sme&tiphase tran- for example[25]) indicate that a strong increase in this an-
sition. The cell that contains the nematic sample is made afotropy occurs at the Nem/Sk-transition (see, also Fig.

IV. EXPERIMENTS CLOSE TO THE NEMATIC /SM-A
TRANSITION
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FIG. 5. Experimental pictures of the nematic
sample between crossed polarizers. The tempera-
ture is gradually decreased fra@ to (f) in order
to get closer and closer to the Nem/2utransi-
tion.

3). Close enough to this transition, the bend and twist conbifurcated states. Numerical simulations of E&) are in
stants diverge whereas the splay one remains unchangeagreement with the experimental observations. In particular,
This divergence, which is a pretransitional effect, expressesne can observe the zigzag instability of an interface sepa-
that bend and twist deformations are forbidden in smectigating two inhomogeneous states.

layers, since they are too costly in energy. Yet, the diver- If one further decreases the temperature, one can see do-
gence of the bend elastic constant occurs quite before th@ains of stripes develop on both sides of the interfi@ee
twist one. For instance Kz /K4)i—=10-5~82(K»/K1)i=10-5,  Fig. 5(c)]. These domains first grow in the central part of the
wheret=(T—T.)/T. is the bifurcation parameter arfiq. is  sample, because the temperature there is slightly lower than
the temperature of the Nem/Sfn- transition, while in the surrounding regions. Microscopy observations using
(K3/K1)i=10-2~3.8(K,/K1)(=10-2. Since in the geometry crossed polarizers indicate that the stripes introduce a peri-
of our experiment, the distortion that appears above the HFBdic distortion of splay in thay plane[see Fig. )], as well

is mainly a bend distortion, one must expect some big qualias probable twist distortions in the vertical direction. The
tative changes due to the proximity of the Nem/8ntran-  wavelength of the stripes is about 2in. For lower tempera-
sition. tures, the domains grow and eventually fill the sanjplig.

In the experiments, the temperature was gradually de5(d)]. Further cooling finally leads to the transition toward
creased in order to get closer and closer to the NemASm-the smecticA phase, which starts at the core of the splay-
transition. Far enough from the Nem/Shiransition, one bend wall, where molecules are vertical. The wall opens up
observes the HFT with one of its topological defect, that isto let the smectic phase spread over the sample.
the splay-bend Ising walkee Fig. $a)]. Later on, this inter- At an even lower temperature, one can see \tiigule
face undergoes an instability and becomes a facetedda® texture[7] [see Fig. &)] and eventually théhoneycomb tex-
Fig. 5(b)]. As shown in Ref[18], the equation5) provides
an explanation for the zigzag instability of an interface that
connects the two homogeneous bifurcated states of the HFT
(0<e<e*). One must underline that this interface instabil-
ity expresses the appearance of an intrinsic length in the
system, according to the terminology of Turif@8]. This
instability always precedes the inhomogeneous instability,
for large wavelengths, and occurs because the interface is
marginal with respect to any spatial perturbation alongxthe
axis, as long as the system is invariant by translation in that
direction[30]. The interface between the two periodic states
of the IFT (¢>¢*) follows the same zigzag dynamics, as
actually observed experimentallgee Fig. &d)] and numeri-
cally (see Fig. 6. This dynamics is described by an order
parameter that satisfies a one-dimensional Cahn-Hilliard
equation. The domains dacets(zig and zag exhibit a con-
servative coarsening dynamics characterized by a law of in-
teraction between the domains, which is an exponential func-
tion of the distancd29]. In Ref.[18] the term uzayyu is
neglected, since it does not play any role in the zigzag insta- FIG. 6. Numerical simulation of Eq@8) with £¢=0.80, a=b
bility of an Ising wall, which connects the two homogeneous=1, K,=2.00,K,=0.17,K;=3.5,J=0.11, andJ, = 1.
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ture ([7], not shown. In Ref.[7] these textures are observed 3H2 3

beyond the threshold of the Nem/Sinphase. They corre- U= puu— Tu3+ K3Vfu—Z(K3— Kz)uzﬂyyu
spond to a metastable state that keeps the memory of the

very distorted state of the nematic phase after the transition. 3 3

In our experimentgsee Fig. &)] two fronts propagate in + Z(Kz—Kl)UzﬂxxU+ Z(ZKz—Ks)U(ﬁxU)Z
opposite directions in order to replace this corrugated struc-
ture by the smectié phase. 3

+Z(K1—K2+ K3)u(ayu)2+h.o.t. (11
V. CONCLUSION

We have theoretically described the growth of a spatiaVVher_e:“:[XaHz_Kl(”/d)z]* Viza,xx+ dyy, andH is the
instability in a thin layer of nematic liquid crystal under ho- @amplitude of the vertical magnetic field. _
meotropic anchoring. Close to the "Boericksz transition, The above equation is again asymptotically described by
the existence of this instability has been inferred from arthe isotropic Landau equation. The prevailing terms are ac-
amplitude equation, assuming a strong or extreme elastic afually the first three terms on the right-hand side. Then, one
isotropy limit, that is, a large difference between the elasticcannot predict the appearance of the inhomogeneous insta-
constants. The strong anisotropy limit mimics a situationPility close to the Fredericksz transition since the system is
where the twist elastic constant is much smaller than thdSotropic near this transition. Nevertheless, the nonlinear cor-
other ones K;,K3>K,), whereas the extreme anisotropy rections give a clue to a po$S|bIe nonlmee}r instability far
limit stands forKs>K,>K,. Although this instability has ©€nough from the HFT. Experimentally, the inhomogeneous
been experimentally observed far from thédetericksz tran-  transition occurs from the undistorted state and is a second-
sition, a good qualitative agreement between theory and e)grder transitior{ 10], Wh'c.h cannot be Ju§t|f|ed by the above
periments was noticed. Th&trong and extreme anisotropy model.'One way to proyldg an explana'tlon would be t(.) con-
limits allow a nonlinear analysis and, therefore, the compre-Slder hlg_her-order spatial I|_near terms like tho_se usele4)
hension of nonlinear behaviors, such as those presented i describe the strong orientational correlation due to the

the interface between two inhomogeneous domains. : t(la:rconnect|y|ty of p(IJIyme.rhchalnsb.ll i d sub
A spatial instability similar to the one studied here was or nematic samples with an oblique alignment and sub-

observed in polymeric liquid crystal samples under planarmittecj .to a magnetic fie!d n.ormallt'o the anchoring direction,.
anchoring[10]. The appearance of this instability was char-the existence of a spatial instability has_ also_ been theoreti-
acterized experimentally as well as theoreticfll®,11]. The cally pointed out(see _Ref[13]). The elats_tlc anisotropy was
theoretical predictions are based on variational calculation§hOWn to be responsible for the instability.

on the Frank-Oseen free energy, and require an expression of
the director field that takes into account the spatial symmetry
breaking. From our point of view, the appearance of this The authors would like to thank P. Coullet and J.-M. Gilli
instability is once again related to a nonlinear instability.for fruitful discussions. The simulation software used for all
This can be emphasized by considering the first unstabléhe numerical simulations presented here was developed at
Fourier mode in this geometrjn,=u cos(@zd)], which, the laboratory INLN in France. M.G.C. thanks the support of
close to the Fredericksz transition, satisfies the following Programa de inseraiode cienfiicos Chilenos of Fundacio
equation: Andes.
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