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Abstract – Coupled dissipative nonlinear oscillators exhibit complex spatiotemporal dynamics.
Frenkel-Kontorova is a prototype model of coupled nonlinear oscillators, which exhibits coexistence
between stable and unstable state. This model accounts for several physical systems such as the
movement of atoms in condensed matter and magnetic chains, dynamics of coupled pendulums,
and phase dynamics between superconductors. Here, we investigate kinks propagation into an
unstable state in the Frenkel-Kontorova model with dissipation. We show that unlike point-like
particles π-kinks spread in a pulsating manner. Using numerical simulations, we have characterized
the shape of the π-kink oscillation. Different parts of the front propagate with the same mean
speed, oscillating with the same frequency but different amplitude. The asymptotic behavior
of this propagation allows us to determine the minimum mean speed of fronts analytically as a
function of the coupling constant. A generalization of the Peierls-Nabarro potential is introduced
to obtain an effective continuous description of the system. Numerical simulations show quite fair
agreement between the Frenkel-Kontorova model and the proposed continuous description.

Copyright c© EPLA, 2017

Introduction. – Nonlinear oscillators such as the
pendulum have played a primary role in the understand-
ing of complex dynamics since the dawn of modern sci-
ence [1,2]. Even a simple two-oscillators coupled system
shows interesting behavior such as synchronization [3].
A chain of coupled oscillators to nearest neighbors also
can present a rich spatiotemporal dynamics [3–5], such
as phase turbulence [4], synchronization [3], defects tur-
bulence [6], random occurrence of coherence events [7],
defect-mediated turbulence [8], spatiotemporal intermit-
tency [9], quasiperiodicity in extended system [10] and
coexisting of coherent and incoherent behavior, known
as chimera states [11]. A prototype model of coupled
nonlinear oscillators to nearest neighbors is the Frenkel-
Kontorova model [12]. Figure 1 illustrates a chain of cou-
pled pendulums. In the context of condensed matter, it is
the simplest model that describes the dynamics of a chain
of particles interacting with the nearest neighbors un-
der the influence of an external periodic potential [12,13].
It has been used to describe several nonlinear phenomena
such as solitons, kinks, breathers, and glass-like behavior.
Likewise, this model has been used to describe cluster of
atoms in DNA-like chain, spin in magnetic chain, fluxon

in coupled Josephson junctions and plastic deformations
in metals (see textbook [12] and references therein). The
Frenkel-Kontorova model exhibits coexistence between a
stable extended state and an unstable one. The solution
that connects both is called the π-kink [14], which corre-
sponds to a topological particle-type solution. As a mat-
ter of fact, a rich domain dynamics can emerge between
π-kink solutions. In dissipative systems, π-kinks are also
known as front solutions, or wavefronts [15–17], depending
on the physical context where they are considered. Front
dynamics occurs in a variety of systems ranging from bi-
ology to physics [18,19]. Interfaces between metastable
states can also appear in the form of propagating fronts,
leading to a rich spatiotemporal dynamics [20,21]. Most
of the theoretical studies of fronts propagation have been
achieved considering the continuous limit [15,18,21]. At
this limit, the fronts propagate as a rigid solid with a speed
determined by the initial conditions. However, recently, in
coupled micropillar laser with saturable absorber has been
observed the propagation of self-pulsating states [22,23].
Hence, the nonlinear waves propagation in these optical
oscillators is not correctly well contained in the continu-
ous description.
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Fig. 1: (Color online) Frenkel-Kontorova model. (a) Schematic
representation of a chain of dissipative coupled pendulums, a
π-kink solution. (b) Representation of a coupled Josephson
junctions. (c) Instantaneous profile of a π-kink of eq. (1), dots
and solid line represent numerical simulation values of θi and
their interpolated curve, respectively; x0 accounts for the front
position. (d) Temporal evolution of the front position x0(t)
with ω = 1 and µ = 20. The upper (yellow), middle (or-
ange) and lower (blue) lines correspond to different discrete-
ness dx = 1

√
κ, dx = 10, dx = 7, and dx = 3, respectively.

(e) Temporal evolution of the front speed ẋ0(t) with ω = 1 and
µ = 6 . The upper (yellow), middle (orange) and lower (blue)
lines correspond to dx = 5, dx = 2, and dx = 0.1.

The aim of this letter is to investigate the π-kinks prop-
agation into an unstable state in the Frenkel-Kontorova
model with dissipation as a prototype model of nonlin-
ear waves propagation in discrete media. We show that
unlike point-like particles π-kinks spread in a pulsating
manner. Using numerical simulations, we have character-
ized the shape of the π-kink oscillation. Different parts
of the front propagate with the same mean speed, oscil-
lating with the same frequency but different amplitude.
The asymptotic behavior of this propagation allows us to
determine the minimum mean speed of π-kinks analyt-
ically. To figure out this propagation phenomenon, we
generalize the notion of the Peierls-Nabarro potential to
obtain an effective continuous description of the system.
Numerical simulations show quite fair agreement between
the Frenkel-Kontorova model and the proposed continuous
description.

Model. – Let us consider a chain of dissipative coupled
pendulums, which is described by the damped Frenkel-
Kontorova equation,

θ̈i = ω2 sin θi − µθ̇i + κ (θi+1 − 2θi + θi−1) , (1)

where θi(t) is the angle formed by the pendulum and the
vertical axis in the i-position at time t, θi = 0 (θi = π)
corresponds to the upside-down (upright) position of the
pendulum. We have considered this choice of the ori-
gin of the angle to facilitate the numerical study of π-
kinks. i is the index label the i-th pendulum, ω is the
pendulum natural frequency, µ accounts for the damping
coefficient, and κ stands for the coupled interaction be-
tween adjacent pendulums. Figure 1(a) shows the chain
of dissipative coupled pendulums schematically. Notice
each pendulum is coupled to the nearest neighbors. The
model eq. (1) can be also applied to coupled identical
Josephson junctions [24,25]. A scheme of this system is
depicted in fig. 1(b), where θi(t) accounts for the phase
difference between the wave function of each supercon-
ductors in the i-th junction. The parameter ω2 stands
for the superconductor current in the junctions, and its
value is determined by the particular characteristics of
the junction. The parameter µ accounts for the normal
current and the parameter k accounts for the coupling
between nearest junctions. In the continuous limit, con-
sidering θ(x, t) = limdx→0 θi(t), x = limdx→0 idx, κ → ∞,
and κdx−2 → D (D is a finite constant that accounts for
the diffusion coefficient), eq. (1) becomes in the damped
sine-Gordon equation.

The dissipative model, eq. (1), can be rewritten in the
following manner:

µθ̇i = −δF

δθi
, (2)

where the Lyapunov function F has the form

F [θi, θ̇i] ≡
N

∑

i=0

[

θ̇2
i

2
+ ω2 cos θi + κ

(θi+1 − θi)
2

2

]

. (3)

Hence, the dynamics of eq. (1) is characterized by the
minimization of function F when µ �= 0.

π-kink solutions. – Equation (1) has two extended
equilibria, the upright and the upside-down position of
pendulums. The upright (upside-down) position of pendu-
lums is a stable (unstable) equilibrium. Hence, as a result
of the initial conditions, the chain of dissipative coupled
pendulums can show domains of upright or upside-down
pendulums. A domain wall which connects upright and
upside-down domains corresponds to a π-kink state [14].
Indeed, this front solution is characterized by a jump in π
at the angle. Figure 1(a) illustrates a π-kink solution for
this chain.

Because the upright pendulums are stable the π-kink
solution propagates such that an upside-down pendulum
can rotate to minimize the Lyapunov potential F . Front
position is a fundamental concept in the characterization
of domain walls as particle-type solutions and their respec-
tive dynamics. In the continuous limit, the front position,
x0, corresponds to the spatial location where the front
exhibits its greater spatial variation. In the discrete case,
the front position is defined using its spatial location in the
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Fig. 2: (Color online) π-kink propagation in the Frenkel-
Kontorova model with dissipation, eq. (1). (a) Front minimal
mean speed 〈v〉min as a function of the discreteness parameter
dx = 1/

√
κ. Dots (red) are obtained by means of numerical

simulations of eq. (1) with ω = 1.0 and µ = 2.0. The solid line
is obtained by using formulas (8) and (9). Lyapunov function,
expression (3), vs. front position (b) and vs. time (c) obtained
by numerical simulations of eq. (1) for the same parameters and
dx = 5.0. Inset: Lyapunov function computed in a reference
system moving with the mean speed of front, the co-mobile

system.

corresponding continuous limit. In the continuous limit,
the front position θ(x, t), corresponds to a horizontal po-
sition of the pendulum, θ(x0, t) ≡ π/2. More precise, the
front position of the discrete chain of pendulums, x0(t),
is defined by the spatial location of the intersection be-
tween the interpolated curve of θi(t) and the horizontal
pendulum (cf. fig. 1(c)). This position does not generally
coincide with a precise point in the lattice. Figures 1(d)
and (e) show, respectively, front position and speed (ẋ0)
as a function of time for different values of coupling κ ob-
tained from numerical simulations of eq. (1). Numerical
simulations were conducted using finite differences method
with a fourth-order Runge-Kutta algorithm and specular
boundary conditions. As a matter of fact, the speed of
propagation of the π-kink is oscillatory with a well de-
fined average speed, 〈v〉. When decreasing the coupling κ,
〈v〉, amplitude η and frequency Ω of oscillation increases
(cf. fig. 1). The oscillations exhibited by the speed are
non-harmonic. Figure 2(a) shows 〈v〉 as a function of the
discreteness dx ≡ 1/

√
κ. For large discreteness, the speed

increases linearly.

From a numerical π-kink solution of the Frenkel-
Kontorova model with dissipation, eq. (1), we have com-
puted the Lyapunov function F [θ(x, x0(t))] as a function
of x0 or time. Figure 2(b) shows evolution of the Lya-
punov function vs. the front position x0. It is clear that
the Lyapunov function decreases with time in an oscilla-
tory manner (see fig. 2(c)).

Typically, the assumption that the front behaves as a
point-like particle simplifies the analysis by reducing the
whole front dynamics to a single point, the front position
x0(t). That is, the point x0(t) gives all the information

Fig. 3: (Color online) Front propagation into an unstable
state in the Frenkel-Kontorova model with dissipation eq. (1).
(a) Spatiotemporal diagram of π-kink solution of model (1)
with ω = 1.0, µ = 2.0 κ = 0.04. (b) Trajectories of three
different points or cuts: above (upper yellow line), in (mid-
dle red line), and below (lower blue line) the front position.
Inset: illustration of the different cuts under consideration.
(c) Oscillation amplitude η of the front speed in different cuts.

about the dynamics of the whole structure. Surprisingly,
the π-kink behaves as an extended object: each point of
the solution shows an oscillatory dynamics with the same
frequency but different amplitude. Figure 3(a) shows the
spatiotemporal diagram of a π-kink solution. To under-
stand the dynamical structure of the π-kink, we have mon-
itored different cuts or values of the π-kink profile. To each
cut, we can associate a xn position, in analogy to the front
position x0, where n indexes the respective cut. Namely,
the cuts xn are defined by the spatial location of the in-
tersection between the interpolated curve θi(t) and an ar-
bitrary value. This value ranges between the asymptotic
values of the π-kink. Position xn does not necessarily co-
incide with a precise point on the lattice. Note that the
oscillation about the front position x0 is in anti-phase (see
fig. 3). That is, the maximum oscillation of a point to
the left of the front position coincides with the minimum
oscillation of a point to the right. Figure 3(c) displays
the amplitude of oscillation of the front speed, η, for dif-
ferent cuts. From this figure, we conclude that this am-
plitude is minimal at the front position, it increases as
one moves away from the front position x0 and decays to
zero abruptly at the kink tails. In the continuous limit,
the π-kink propagates as a rigid solid with a well-defined
speed. Hence, the observed dynamical behavior for the
π-kink in the damped Frenkel-Kontorova model is a con-
sequence of the discreteness of the system.

π-kink mean speed. – Initial conditions deter-
mine the speed of propagation of a front into unstable
states [18]. When initial conditions are bounded, after
a transient period, two counterpropagative fronts emerge
with a given speed, the minimum speed. When the so-
called linear criterion determines the minimum speed,
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the front is known as pulled. In contrast, in pushed fronts,
the minimum speed is given by a nonlinear criterion [18].

Due to the weak nonlinearity of the model, eq. (1),
one expects that the linear criterion dictates the front
speed [18,26]. To compute the minimal front speed, we
consider the following ansatz for the π-kink tail:

θi(t) = π + A0e
(αt−2iβ)

[

1 + fω
κ;i(t)

]

, (4)

where A0 ≪ 1 is a small constant that characterizes the
shape of the front tail, the index i is a positive and large
integer number, α ≡ K〈v〉, β ≡ K/2

√
κ, and K are pa-

rameters. fω
κ;i(t) is a periodic function of frequency ω in

the i-th position of the chain that describes the oscillatory
behavior of the speed. The numerical characterization of
the amplitude of this function, is illustrated in fig. 3(c). In
addition, fω

κ;i(t) → 0 when i → ∞. Introducing the above
ansatz in eq. (1) and taking into account only the linear
leading terms and dividing by the factor A−1

0 e−(αt−2iβ),
we obtain,

θ̈iA
−1
0 e−(αt−2iβ) = α2

[

1 + fω
κ;i

]

+ 2αḟω
κ;i + f̈ω

κ;i

= ω2
[

1 + fω
κ;i

]

− µ
[

α
[

1 + fω
κ;i

]

+ ḟω
κ;i(t)

]

+4κ sinh2(β) + κ
(

e−2iβfω
κ;i+1 − 2fω

κ;i + e2iβfω
κ;i−1

)

. (5)

Integrating this expression in a normalized period T =
2π/ω, introducing the notation

〈g(t)〉 ≡ ω

2π

∫ 2π/ω

0

g(t)dt, (6)

and using the fact that 〈fω
κ;i(t)〉 = 〈ḟω

κ;i(t)〉 = 〈f̈ω
κ;i(t)〉 = 0,

after straightforward calculations, we obtain α2 = ω2 −
µα + 4κ sinh2(β). Substituting the definition of α, the
mean speed reads

〈v〉 = − µ

K
+

1

K

√

µ2 + ω2 +
K2

β2
sinh2(β), (7)

and replacing K = 2β
√

κ,

〈v〉 = − µ

2β
√

κ
+

1

2β

√

κ (µ2 + ω2) + 4 sinh2(β). (8)

The above expression accounts for the front mean speed
as a function of the steepness (β). In order to deduce
the minimal mean front speed 〈v〉min, we differentiate the
above speed with respect to β and we get

ω2
(

µ2 + ω2
)

κ2 + 16 sinh2 β [sinhβ − β cosh β]
2

=

−4
[(

µ2 + 2ω2
)

sinh2 β −
(

µ2 + ω2
)

β sinh 2β
]

κ. (9)

This expression gives us a relation between the critical
steepness βc and the coupling parameter κ or discretiza-
tion parameter dx ≡ 1/

√
κ. An explicit expression βc(dx)

cannot be derived. Using expression (9) in formula (8), we
obtain 〈v〉min for the damped Frenkel-Kontorova model,

eq. (1). Note that this analytical result has a quite fair
agreement with the numerical simulations as it is shown in
fig. 2(a). Therefore, the asymptotic procedure is a suitable
method to characterize the mean properties of front prop-
agation, that is, the linear criterion determines the mini-
mum mean speed of propagation of the π-kink solutions.

Effective continuous description. – Due to the
complexity of discrete nature of the system under study,
to obtain analytical results is a daunting task. Unlike
continuous homogeneous systems, fronts in periodic
media are characterized by a pulsating behavior as they
propagate [27–30]. To figure out the oscillatory behavior
of π-kinks, we consider an effective continuous equation
with spatial periodic coefficients that accounts for the
dynamics of the coupled system, analogously to the strat-
egy proposed in ref. [27]. The benefit of this approach is
that analytical calculations are accessible, which allows
developing an intuitive understanding of the phenomenon.

Let us consider the continuos variable θ(x, t), which sat-
isfies a modified sine-Gordon equation

µ∂tθ = −δF
δθ

, (10)

where the Lyapunov functional has the form

F =

∫
[

1

2
(∂tθ)

2 + ω2 cos θ + (∂xθ)2
(

D

2
+ Γdx(x)

)]

dx,

(11)
Γdx(x) is a spatial periodic function with dx period, i.e.

Γdx(x + dx) = Γdx(x). This function accounts for the
discreteness effect. The last term of the free energy is a
generalization of the Peierls-Nabarro potential. This ef-
fective potential has been used to explain the dynamics
of defects position such as dislocations in condensed mat-
ter physics or dynamics of the position of kink or fronts
(see [12] and reference therein). The effective continuous
equation of the damped Frenkel-Kontorova model for the
field θ(x, t) reads

∂ttθ = ω2 sin θ − µ∂tθ + (D + 2Γdx)∂xxθ + 2Γ′
dx∂xθ. (12)

This model corresponds to a sine-Gordon model with a
linear damping, inhomogeneous diffusion and drift force.
D accounts for the diffusion coefficient. Numerical sim-
ulations with a harmonic potential Γdx display π-kink
solutions. These numerical simulations have been con-
ducted with a discretized Laplacian and gradient of θ to
nearest neighbors considering a small discretization pa-
rameter. Figure 4 shows the profile of π-kink solution of
eq. (12), propagating into an unstable state. The effective
force, f ≡ 2Γdx(x)∂xxθ + 2Γ′

dx(x)∂xθ and the amplitude
speed (η) are also depicted. From this figure, we infer
that the effective force f has higher amplitude oscillations
about the region where the larger spatial variation of the
π-kink takes place. Note that spatiotemporal diagrams of
the effective continuous model, eq. (12), and the damped
Frenkel-Kontorova model, eq. (1), possess similar qualita-
tive dynamical behaviors. Moreover, we observe that the
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Fig. 4: (Color online) π-kink propagation in the effective
damped Frenkel-Kontorova model, eq. (12) with a harmonic
generalized Peierls-Nabarro potential, Γdx(x) = A cos(2πx/dx)
with ω = 1.0, D = 2.17, µ = 2.0, A = 0.03, and dx = 5.0.
The numerical discretization parameter of the finite differ-
ences method is 0.1. (a) π-kink solution and effective force
f ≡ 2Γdx(x)∂xxθ + 2Γ′

dx(x)∂xθ. (b) Spatiotemporal diagram
of π-kink propagation with same parameters but A = 1.0.
(c) Temporal evolution of the π-kink speed v. (d) Oscillation
amplitude of the π-kink speed, η, in different cuts.

structure of the oscillation amplitude of the speed is simi-
lar to that seen in the discrete case (cf. figs. 3(c) and 4(d)).

In the continuous limit dx → 0, the effective force
must be suppressed, Γdx(x) → 0. Hence, the last two
terms of eq. (12) are of perturbative nature. Under this
assumption, analytical results are attainable. The damped
sine-Gordon model, eq. (12) with Γdx = 0, has π-kink
solutions of the form θπ(x − vt − p), where p is a con-
stant that accounts for the front position and v the front
speed. Analytical expressions of these solutions are un-
known. Proposing the following ansatz for large values of
the coupling

θ(x, t) = θπ (x − vt − p(t)) + w(x − vt − p), (13)

where the front position is promoted to a temporal func-
tion p(t) and w is a small corrective function of the order
of the perturbative force. Introducing the above ansatz in
eq. (12) and linearizing in w, after straightforward calcu-
lations, we obtain

Lw = p̈(t)∂ξθπ − (2v∂ξξθπ − µ∂ξθπ) ṗ(t)

−2Γdx(x)∂ξξθπ + 2Γ′
dx(x)∂ξθπ, (14)

where L ≡ −(D − v2)∂ξξ − µv∂ξ − ω2 cos θπ is a linear
operator and ξ = x − vt − p is the coordinate in the co-
mobile system. Considering the inner product 〈f |g〉 ≡
∫ L

−L
f(ξ)g(ξ)dξ, where 2L is the system size. To solve

linear eq. (14), we apply the Fredholm alternative or the
solvability condition [15], and obtain at dominate order

ṗ(t) = 2
〈Γdx(ξ + vt + p)∂ξξθπ|ψ〉

µ〈∂ξθπ|ψ〉
+ 2

〈Γ′
dx∂ξθπ|ψ〉

µ〈∂ξθπ|ψ〉
, (15)

.

Fig. 5: (Color online) π-kink speed ṗ vs. time obtained from
model, eq. (1). Dots correspond to numerical values of the
π-kink speed, eq. (1), with ω = 1, µ = 2.0, and κ = 0.04.
The continuous line stands for the fitting curve of the π-kink
speed using formula (18), with a = 0.631, b = 0.680, c = 3.0,
d = 0.550, and g = 0.358.

Fig. 6: (Color online) Fronts propagation into an unstable state
in the noisy Frenkel-Kontorova model with dissipation. The
system is perturbed with the same initial condition and with
different noise levels intensity (a) η = 10−5, (b) η = 10−10, and
(c) η = 10−20.

where ψ(ξ) is an element of kernel of L adjoint, L† ≡
−(D − v2)∂ξξ + µv∂ξ − ω2 cos θπ, i.e., L†ψ = 0. The
ψ function is unknown analytically. However, it diverges
exponentially with the same exponent as θπ(ξ) converges
to its equilibrium. Therefore the above integrals diverge
proportional to L, however the ratio is well defined because
〈∂ξθπ|ψ〉 ∼ L.

To understand the dynamics described by the above
equation, we shall consider, for simplicity, Γdx(x) =
γ(x) ≡ A cos(2πx/dx). Replacing this expression in
eq. (15) and after straightforward calculations, we obtain

ṗ(t) =
√

K2
1 + K2

2 cos

(

2π

dx
(p + vt) + φ0

)

, (16)

with

K1 = A

〈

cos
(

2πξ
dx

)

∂ξξθπ − 2πξ
dx sin

(

2πξ
dx

)

∂ξθπ|ψ
〉

µ〈∂ξθπ|ψ〉
,
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K2 = −A

〈

sin
(

2πξ
dx

)

∂ξξθπ + 2πξ
dx cos

(

2πξ
dx

)

∂ξθπ|ψ
〉

µ〈∂ξθπ|ψ(ξ)〉 ,

tan(φ0) =
K1

K2
. (17)

Equation (16) can be rewritten in the following form:

ṗ =
a

1 + d cos(bt + c)
+ g, (18)

where a, b, c, d, and g are complicated functions of
parameters µ, A, and dx. Therefore, the kink position
propagates in an oscillatory manner, that is, consistent
with numerical observation. Figure 5 compares the nu-
merical π-kink speed of model (1) with the fitting curve
formula (18). The analytical result is in a good agree-
ment with the observed dynamics. Hence, the dynamics
of model (1) can be understood using a continuous model
with an effective potential, eq. (12).

Conclusions and remarks. – We have studied
kink propagation into an unstable state in the Frenkel-
Kontorova model with dissipation, which is a prototype
model of nonlinear waves propagation in discrete me-
dia. We reveal that π-kink propagation occurs in an
oscillatory manner. Different parts of the π-kink oscil-
late with the same frequency but different amplitude.
However, the whole structure possesses the same aver-
age speed. The amplitude of the oscillation is minimal
at the front position, increases as one moves away from
the front position and decays to zero abruptly in the
tails. The asymptotic behavior of this propagation allows
us to determine the minimum mean speed analytically. To
describe this latter phenomenon, we generalize the notion
of the Peierls-Nabarro potential, which makes it possible
to have an effective continuous description of the system.
Numerical simulations show quite fair agreement between
the Frenkel-Kontorova model and the effective continuous
system. Fronts in coupled oscillators have also been stud-
ied in the context of the discrete nonlinear Schrödinger
equation with internal losses [19]. In the studied parame-
ter region, of small loss, the coefficient of dispersion is of
order one. On the other hand, when the dispersion is not
considered, the losses are of order one or greater. In both
cases, shock waves propagate with constant speed, and
no oscillatory behavior is observed, being well-described
by the continuous limit. Considering weak diffusion and
dispersion shock waves should propagate with oscillatory
velocity and exhibit an internal dynamics as it is observed
in π-kink propagation in discrete media.

Stochastic equations give a more realistic description
of macroscopic systems. The inherent fluctuations are
responsible for triggering the blow-up of unstable states,
giving rise to fronts propagation and domain walls. The
creation of domain walls can inhibit the observation of
fronts. Figure 6 shows a front propagation into an unsta-
ble state in the stochastic dissipative Frenkel-Kontorova
model. We consider an additive white-noise term with

intensity η. Linearizing around the unstable state, one
can estimate the propagation period of the front as τ =
− log(η)/λ with λ = [−µ+

√

µ2 + 4ω2]/2, where the initial
condition is considered of the order of the noise intensity.
Namely, as a result of fluctuations, the front can only prop-
agate for a short period τ proportional to the logarithmic
of noise intensity (see fig. 6).

Further understanding of the propagation of nonlin-
ear waves in optically coupled oscillators may allow novel
and fresh ways of manipulating light at micrometrical
scales [23]. π-kinks propagation in two dimensions is af-
fected by the curvature of the interface, which can increase
or decrease the speed of the propagating interface. Studies
of fronts propagation into unstable states in these contexts
are in progress.
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[30] Haudin F., Eĺıas R. G., Rojas R. G., Bortolozzo

U., Clerc M. G. and Residori S., Phys. Rev. E, 81

(2010) 056203.

40003-p7


