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Abstract. Driven damped coupled oscillators exhibit complex spatiotemporal dynamics. An archetype
model is the driven damped sine-Gordon equation, which can describe several physical systems such as
coupled pendula, extended Josephson junction, optical systems and driven magnetic wires. Close to reso-
nance an enveloped model in the form Lugiato-Lefever equation can be derived from the driven damped
sine-Gordon equation. We compare the dynamics obtained from both models. Unexpectedly, qualitatively
similar dynamical behaviors are obtained for both models including homogeneous steady states, localized
structures, and pattern waves. For large forcing, both systems share similar spatiotemporal chaos.

1 Introduction

In their seminal paper, Lugiato and Lefever introduce for
the first time the mean field approach to derive a sim-
ple model to describe the spatiotemporal evolution of the
intracavity field envelope [1]. An early report on trans-
verse patterns, which describes numerical simulations of
self-focusing and filamentation of light beams in bistable
nonlinear media [2,3]. Later on Lugiato and Lefever, have
shown that the existence of transverse patterns does not
require a bistable homogeneous steady state [1]. They
show that the symmetry breaking instability leading to the
spontaneous formation of stationary spatial patterns can
occur in the monostable regime far from any second-order
critical point. More importantly, they have established the
link between the well known symmetry-breaking instabil-
ity in chemical reaction diffusion systems [4–6] and the
transverse pattern in nonlinear optics [1]. This instabil-
ity is often called Turing-Prigogine instability [4,5] that
causes a spontaneous transition from a spatially uniform
state to stationary spatially periodic patterns with an in-
trinsic wavelength. This quantity is determined by dynam-
ical parameters such as kinetic parameters and diffusion
coefficients and not by the system physical dimensions or
geometrical constraints.

� Contribution to the Topical Issue: “Theory and Applica-
tions of the Lugiato-Lefever Equation”, edited by Yanne K.
Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.
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The Lugiato-Lefever equation (LLE) have broad ap-
plicability than passive optical cavities and it is a well-
known paradigm in the study of spatial periodic or lo-
calized patterns. It has been considered for that purpose
in diffractive systems such as liquid crystals, left-handed
materials [7], and photonics coupled waveguides [8]. It has
been also derived for dispersive systems such as nonlin-
ear fiber resonator [9] and whispering-gallery-mode mi-
croresonators leading to optical frequency comb genera-
tion [10–12]. Diffractive and dispersive cavity leading to
three dimensional LLE have been analyzed in [13–15].
The LLE is a cubic nonlinear Schrödinger equation, in-
cluding damping, detuning and driving effect. This am-
plitude equation has been derived in early reports to de-
scribe the plasma driven by an external radio frequency
field [16,17] and the condensate in the presence of an ap-
plied ac field [18]. An analytical study of stability and
bifurcation of the spatially dependent time solution of the
LLE has been performed at the conservative limit [19].

The aim of this paper is to show that the dy-
namics predicted by the Lugiato-Lefever equation could
also be applied to two non-optical systems, namely a
forced dissipative chain of pendula and a driven extended
Josephson junction. Both systems are schematically de-
picted in Figure 1. It is well known that the spatiotem-
poral evolution of these systems is ruled by the driven
dissipative sine-Gordon model. We perform qualitative a
comparison between the Lugiato-Lefever and the driven
dissipative sine-Gordon models. Far from the conserva-
tive limit, a single envelope approximation is no longer
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Fig. 1. Driven damped nonlinear oscillators. (a) Schematic
representation of a driven dissipative chain of pendula. θ is
the angle formed by a pendulum and the vertical axis; f =
γ sin(ωt) accounts for an temporal modulating torque with an
amplitude and frequency γ and ω, respectively. (b) Schematic
representation of an extended Josephson junction, which is
composed of two superconductors separated by an insulating
strip. (c) Spatiotemporal evolution of a driven damped sine-
Gordon equation (1), by ω0 = 1, μ = 0.05, κ = 1, γ = 5.9,
ω = 2.7, dt = 0.05 and dx = 0.65.

governed by the Lugiato-Lefever equation. Unexpectedly,
one observes a qualitatively similar bifurcation diagram
for homogeneous, localized and pattern states, even spa-
tiotemporal chaotic dynamical behaviors. The Lyapunov
spectrum is used to characterize the complex spatiotem-
poral dynamics presented by a driven dissipative sine-
Gordon model.

The paper is organized as follows. After a histori-
cal perspective, we present in Section 2, the derivation
of LLE equation from a forced dissipative sine-Gordon
model. Then in Section 3, we discuss the dynamics of the
LLE versus a forced dissipative chain of pendula includ-
ing localized structures, pattern waves and spatiotemporal
chaos. Finally, in Section 4, we conclude and we provide
some comments.

2 The driven dissipative chain of pendula

2.1 Historical perspective

The main characteristic of an oscillator is to possess an
intrinsic natural frequency. The forcing at this particular
frequency is the natural way to excite an oscillator in an
efficient way. When forcing an oscillator close to its nat-
ural frequency, the oscillator exhibits a large oscillation
amplitude, which can be understood from a balance be-
tween the injection (forcing) and the dissipation of energy
(dissipation). This is a resonance phenomenon [20]. The
resonance phenomenon has been known since the dawn
of modern science by Galileo [21], who was interested in
the understanding of the pendulum dynamics. Depending
on the intensity and the frequency of the forcing this os-
cillator begins to manifest its nonlinear nature, with an

asymmetric amplitude response with respect to the forc-
ing frequency [20]. Likewise, by sufficiently large forcing
intensity the oscillator can exhibit bistability between two
equilibrium oscillations [20]. When increasing the forcing
amplitude, the system may exhibit complex chaotic type
behaviors (see the textbook [22] and reference therein).
The previous scenario changes drastically when one con-
siders a spatial extension of the nonlinear oscillator. In
the latter case one expects the emergence of patterns, lo-
calized solutions, fronts, nonlinear waves, chaos, chimera
states, phase turbulence, spatiotemporal chaos, weak tur-
bulence, among others. Due to the complexity of the non-
linear partial differential equations, only particular models
close to conservative limits have been studied analytically
in detail (cf. Ref. [23] and references therein). A system-
atic study a chain of forced oscillators through amplitude
equations [24]. This type of approach is valid for small am-
plitude that has allowed a unified understanding of sev-
eral phenomena such as pattern formation, localized struc-
tures, phase turbulence, defect turbulence, spatiotemporal
chaos, weak turbulence, among others.

In optics a natural nonlinear extended oscillators are
cavities [1]. Therefore, by means of external electromag-
netic waves with a frequency near to the cavity frequency,
one expects to be able to resonate this optical cavity with
the injection. A simplified amplitude equation that de-
scribes the dynamics of a forced Kerr optical cavities close
to resonance is the Lugiato-Lefever equation [1].

2.2 From driven damped sine-Gordon model
to Lugiato-Lefever equation

Let us consider a driven damped chain of pendula (cf.
Fig. 1a), which is described, in the continuum limit, by a
following forced dissipative sine-Gordon equation

θ̈(z, t) = −ω2
o sin θ − μθ̇ + k∂zzθ + γ sin(ωt), (1)

where θ (z, t) is the angle formed by a pendulum and the
vertical axis in the z-position at time t; ωo is the natural
frequency of the pendulum; μ, k, γ, and ω are the damp-
ing, elastic coupling, amplitude and frequency of the forc-
ing, respectively. For the sake of simplicity, we have chosen
a harmonic external forcing. The model equation (1) takes
into account of the dynamics of a chain of coupled pen-
dula to first neighbors by restitution springs [25], which
are mounted on the horizontal bar that oscillates in a har-
monic way with respect to its azimuthal axis (cf. Fig. 1a).
Hence, the bar induces an oscillatory torque on each
pendulum.

The model equation (1) can be applied to another
physical system, namely an extended Josephson [25,26].
The schematic of this system is depicted in Figure 1b.
In the following we provide the meaning of the variable
and the parameters of the extended Josephson. The vari-
able θ(z, t) in equation (1) accounts for the phase differ-
ence between the wave function of each superconductor.
The parameter ω2

o stands for the superconductor current
in the junction and its value is determined by the par-
ticular characteristics of the junction. The parameter μ
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accounts for the normal current, and the parameter k is
proportional to the square of light speed. The term pro-
portional to γ in equation (1) takes into account of the
alternating current across the junction. Indeed, modifica-
tions of the sine-Gordon equation allows to describe dif-
ferent physical systems such as charge density waves [27],
dislocations in crystal [28], magnetization of driven ferro-
magnetic wires [29], gravity and high-energy [25].

For zero forcing and damping, γ = μ = 0, the
above model describes a Hamiltonian system, that present
time reversal invariance, which is well-known as the sine-
Gordon model. Figure 1 illustrates a schematic represen-
tation of a driven dissipative chain of pendula. When the
dissipation is included, the vertical state θ(z, t) = 0 be-
comes the only stable equilibrium. The forcing induces
oscillations of the vertical state with the forcing frequency.
The amplitude of this oscillation strongly depends on
the detuning between the forcing and natural frequency,
ν ≡ ω − ω0. Figure 1c shows a complex spatiotemporal
evolution of the driven damped sine-Gordon equation. All
numerical simulations were conducted using finite differ-
ences code to first neighbors with the fourth-order Runge-
Kutta algorithm and Neumann boundary conditions. The
spatial and temporal discretization are considered in the
continuous limit.

2.3 Envelop approximation

To figure out the dynamics observed in the driven damped
sine-Gordon equation, we consider the quasi-reversal limit,
that is, the time reversal limit perturbed with small in-
jections and small dissipations of energy [30–32]. In this
limit, model (1) corresponds to a perturbed sine-Gordon
equation with ν ∼ μ ∼ ε, γ ∼ ε3/2, and ε is an arbitrary
small scaling parameter, ε � 1. Considering the following
ansatz

θ =
√

2ε

3ωo
A(x, τ)eiωt +

(
ε

6ω0

)3/2

A3ei3ωt + c.c. + h.o.t,

(2)
where A(x, τ) is the slowly varying envelope of the verti-
cal state, τ ≡ εt and x ≡ √

2εω0/kz are slow variables,
c.c. and h.o.t. denote the complex conjugate and the high
order terms in amplitude A, respectively. Introducing the
above ansatz in equation (1), and matching different or-
ders in ε. After straightforward calculations, at the domi-
nant order in ε, the envelope A obeys the Lugiato-Lefever
equation

∂τA = −(μ̃ + iν)A − i |A|2 A − i∂2
xA − γ̃, (3)

where μ̃ ≡ μ/2, and γ̃ ≡ γ/4
√

2ω/3. Notice that
the terms of above equation are of order ε3/2 and the
higher order terms are at least of order ε5/2. The above
amplitude equation is the paradigmatic one-dimensional
Lugiato-Lefever equation [1] or the driven damped non-
linear Schrödinger equation [16–18]. The correspondence
between the sine-Gordon model and the Lugiato-Lefever
equation was established in reference [33]. The sign of the

Table 1. Sign of diffraction, dispersion and nonlinearity. Pas-
sive cavity [1], diffraction is always positive while nonlinear-
ity can be either positive or negative. Cavity filled with left-
handed materials (LHM), diffraction and nonlinearity can be
either positive or negative [7]. Whispering-gallery-mode mi-
croresonators (WGM) leading to optical frequency comb gen-
eration [10–12]. In the case of the chain of pendula both non-
linearity and dispersion are negative.

Diffraction Dispersion Nonlinearity
Passive cavity + ±

LHM ± ±
Nonlinear Fiber ± +

WGM + ±
Chain of pendula – –

Josephson Junctions – –

second derivative with respect the x coordinate is negative
and the nonlinearity is of the focusing type. Depending
on the context in which the Lugiato-Lefever equation is
derived, the sign of nonlinearity and dispersion or diffrac-
tion can be positive or negative see classification in Ta-
ble 1. In optics the LLE model was derived considering
the mean field limit of driven Kerr cavities with a high
Fresnel number-assuming that the cavity is much shorter
than the diffraction and the nonlinearity spatial scales.

The Lugiato-Lefever equation was relevant to explain
Turing-Prigogine instability [1], pattern formation [1,34],
localized structures [33,35,36], front dynamics [37,38] and
spatiotemporal complex dynamics [39]. More recently, it
has been shown that when taking into account the de-
lay feedback, the LLE admits rogue waves and extreme
events [40,41]. In this issue, some of our authors show that
the formation of rogue waves can occur in the absence of
delay feedback (see the paper by Panajotov et al., in this
special issue). Figure 2 shows the typical bifurcation dia-
gram of the Lugiato-Lefever equation with positive detun-
ing in the bistable regime. The solid and the dashed curve
account for the stable and the unstable uniform state,
respectively. In addition, it is characterized the param-
eter region where localized structures and spatiotemporal
chaos are observed numerically [39].

3 Localized structures and spatiotemporal
chaos

From the envelope equation (3), it is easy to charac-
terize analytically the uniform equilibria. The uniform
steady state response A of equation (3) satisfies γ2 =
[μ2 + (ν − |A|2)]|A|2. for ν <

√
3μ, the steady, uniform

state is a single valued function. For ν >
√

3μ the system
exhibits a bistable behavior with an S-shaped curve (see
Fig. 2a). In contrast, in the driven damped sine-Gordon
equation, the analytical characterization of uniform os-
cillations far from the quasi-reversible limit is a complex
endeavor. Numerically, we have calculated the amplitude
of a uniform oscillation as function of forcing γ and have
compared this oscillation amplitude with the oscillation
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Fig. 2. The Lugiato-Lefever dynamics, equation (3). (a) Rep-
resentative bifurcation diagram of Lugiato-Lefever equation (3)
versus the forcing intensity for positive detuning in the bistable
regime. The solid and the dashed curve account for the stable
and the unstable uniform state. The colored bars account, re-
spectively, for the parameter region where localized structures
and spatiotemporal chaos are observed. (b) Instantaneous pro-
file and spatiotemporal evolution of the amplitude ||A|| for a
localized structures. (c) Instantaneous profile and spatiotem-
poral evolution of Re(A) in the spatiotemporal chaotic regime.

amplitude that one obtains considering a single pendu-
lum, avoiding spatial instabilities of the chain of pendula.
Figure 3a summarizes the comparison between oscillation
amplitude of a single pendulum (solid and dashed curve)
and the numerical values of the amplitude of a uniform
oscillation (triangular symbols). The uniform oscillation
experience a modulation instability. This bifurcation leads
to the formation of standing waves solutions (cf. Fig. 4).

The upper branch of this curve accounts for an uni-
form oscillation with large amplitude. Similar bifurcation
diagram has been obtained theoretically and experimen-
tally in a driven damped array of coupled pendula [42,43].
Notwithstanding, this uniform oscillation is unstable as
result of the Turing-Prigogine instability. Figure 3b dis-
plays the spatiotemporal evolution and a schematic rep-
resentation of a uniform oscillation of the driven damped
sine-Gordon model. Hence, the system exhibits a coexis-
tence between a stable uniform oscillation and an unstable
standing wave (cf. painted area of Fig. 3a).

In the coexistence area, one expects to observe lo-
calized structures [44–51], which correspond to local-
ized waves [52]. In the context of Lugiato-Lefever equa-
tion (3), localized structures have been examined in one
and in two dimensional LLE [33,35,53]. Figure 3d shows
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Fig. 3. Dynamics of the driven dissipative chain of pendula
model equation (1). (a) Bifurcation diagram: the amplitude
of the oscillation versus the forcing intensity γ. The solid and
dashed curves account, respectively, for the stable and unsta-
ble uniform oscillation around the vertical state θ(x, t) = 0.
Triangular symbols corresponds to numerical observations of
equation (1) with ω0 = 1, μ = 0.15, κ = 1, ω = 2.7, dt = 0.05
and dx = 0.5. Hexagonal and square symbols account for the
maximum amplitude of localized structures and amplitude of
the patterns, respectively. The painted area accounts for the co-
existence region. Spatiotemporal evolution and schematic rep-
resentation of an uniform oscillation γ = 0.207 (b), a standing
wave γ = 0.45 (c), and a localized waves γ = 0.3 (d).
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Fig. 4. Spatiotemporal evolution of modulational instability
of a driven damped sine-Gordon equation (1) with ω0 = 1.0,
μ = 0.09, κ = 1.0, γ = 0.8, ω = 2.7,dt = 0.076 and dx = 0.75.

the spatiotemporal evolution and a schematic represen-
tation of a localized waves in a driven dissipative chain
of pendula. Experimentally, this type of structure has
been observed in a forced damped array of coupled pen-
dula [42,54]. From the uniform oscillation it is easy to
obtain this localized state by considering a local pertur-
bation. This particle type solutions are the dissipative
counterpart of soliton solutions of the sine-Gordon equa-
tion [19,23]. The localized wave is characterized by a cen-
tral peak accompanied laterally by two depressions in the
amplitude (cf. Fig. 2b). The maximum of the amplitude
of localized wave as function of the forcing intensity γ
is represented by hexagonal symbols in Figure 3a. For
small strength of the forcing γ, these solutions appear by
a saddle-node bifurcation. When increasing the forcing in-
tensity these solutions becomes unstable by a radiation of
complex spatiotemporal state [39,55]. Indeed, the local-
ized waves obtained with the driven damped sine-Gordon
equation and the Lugiato-Lefever model are quite similar.

Outside the coexistence region and large strength of
the forcing γ, one can observe stable standing waves,
which correspond to the counterpart of the pattern state
observed in the Lugiato-Lefever equation. Figure 3c de-
picts the spatiotemporal evolution and a schematic repre-
sentation of a standing wave. These solutions come out
from the unstable uniform oscillation – upper branch
in Figure 3a – as result of the modulational instability.
Namely, from an initial homogeneous oscillation appears
a small spatial modulation that increases systematically
to a finite amplitude. However, this standing wave is un-
stable. It broke its spatial periodicity by several localized
phase singularities, which allows the system to reach the
adequate wavelength of the stable standing wave. Figure 4
illustrates the modulation instability process of a uniform
oscillation. The phase singularities are recognizable by
means of the dislocations observed in the spatiotempo-
ral diagram [56]. In Figure 3a the square symbols stand
for the amplitude of the stable standing waves.

Recently, it has been shown that for sufficiently
large forcing the Lugiato-Lefever equation exhibits
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Fig. 5. Spatiotemporal intermittency of a driven dissipative
chain of pendula equation (1) with ω0 = 1.0, μ = 0.0518,
κ = 1.0, γ = 5.8, ω = 2.7, dt = 0.057 and dx = 0.65. (a) In-
stantaneous profile and (b) spatiotemporal diagram of θ(x, t).

complex dynamical behaviors of spatiotemporal chaotic
nature [39]. Likewise, it is well-known that a forced
single pendulum with sufficient high forcing intensity ex-
hibits chaotic behaviors of intermittent type [22]. There-
fore, one expects that the driven dissipative sine-Gordon
model, equation (1) also exhibits complex spatiotemporal
behaviors. Chaotic behaviors of the driven damped sine-
Gordon model have been extensively studied in the litera-
ture [57–63]. However, most of these studies are performed
at the conservative limit. Likewise, tools used to charac-
terize chaos as modal expansions, Poincaré section, time
series of global quantities, leading Lyapunov exponents,
temporal power spectra, correlation dimension, and dy-
namic structure factor are inadequate to study complex
behaviors such as spatiotemporal chaos. An appropriate
tool to characterize this type of behavior is the Lyapunov
spectrum [64], which we will discuss later. Figure 5 shows
the spatiotemporal evolution of the driven dissipative
sine-Gordon model equation (1) for a large amplitude of
forcing. Thus, one can infer that the chaotic behavior de-
veloped by this system is of a spatiotemporal intermit-
tence type [65]. Because the system exhibits alternation
of regular oscillations and irregular one. Moreover, the
spatiotemporal diagram presents a Sierpinski-type struc-
ture. It is important to note that the spatiotemporal in-
termittency has not been reported in the context of the
dynamics of the Lugiato-Lefever equation. Therefore, this
dynamics is beyond the region of validity of this ampli-
tude equation. For smaller values of the forcing inten-
sity, we observe a complex spatiotemporal behavior more
similar to that observed in the Lugiato-Lefever equation.
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Fig. 6. Spatiotemporal chaos of a driven dissipative chain of
pendula equation (1) with ω0 = 1.0, μ = 0.05, κ = 1.0, γ =
0.27, ω = 2.9, dt = 0.01 and dx = 0.35: (a) θ(x, t), (b) ϕ[θ]
phase and (c) amplitude of the angle θ using Hilbert transform,
respectively. (d) a Lugiato-Lefever equation (3) with μ̃ = 0.16,
ν = 1.0, and γ̃ = 0.1225.

Figure 6 depicts the dynamics observed in this regime.
In addition, Figure 6a show the spatiotemporal evolution
of the angle θ(x, t). In order to characterize this complex
spatiotemporal dynamics, we have computed the Hilbert
transform [66]. From this transformation one can extract
the amplitude, ||C||=amplitude[θ(x, t)], and the phase
ϕ(x, t) of the oscillatory field θ(x, t). Figures 6b and 6c
depict the respective phase and amplitude of the oscilla-
tory field. The amplitude ||C|| is characterized by present
complex filament structure, which is the typical signa-
ture of the spatiotemporal chaotic regime. Figure 6d show
the spatiotemporal evolution of the field amplitude of the
Lugiato-Lefever equation. Therefore both systems exhibit
similar qualitative dynamical behaviors, even though the
amplitude equation (3) is far from the parameter region
where it is valid as an approximation of the driven dissi-
pative chain of pendula.

The characterization of complex dynamical behav-
ior can be achieved by means of Lyapunov exponents,
which provide an information about permanent dynamic
with sensitivity of close initial conditions [64]. When the
largest Lyapunov exponent is positive, the system devel-
ops a chaos but not necessarily a spatiotemporal chaos.
To distinguish between these dynamical behaviors, it is
necessary to determine the Lyapunov spectrum consti-
tutes by the set of exponents. Spatiotemporal chaos has
a Lyapunov spectrum with a continuous set of positive
values. In contrast, chaos possesses a Lyapunov spectrum

Fig. 7. Lyapunov spectra of a driven dissipative chain of pen-
dula, equation (1), with ω0 = 1.0, κ = 1.0, μ = 0.05 and
ω = 2.9 and different intensities forcing γ. λi account for the
different Lyapunov exponents, i indexes the different expo-
nents, and N is the total number of considered pendula.

with a discrete set of positive values. The analytical com-
putation of Lyapunov exponents is a complex endeavor
and in practice inaccessible, then the logical strategy is
a numerical derivation of the exponents. To study nu-
merically the Lyapunov exponents is necessary to dis-
cretize equation (1) [67]. Let N be the number of dis-
cretization points. We have computed numerically the
Lyapunov spectrum of the driven damped sine-Gordon
equation (1). Figure 7 shows the typical Lyapunov spec-
tra of equation (1). λi account for the different Lyapunov
exponents, i = {0, 1, . . . , N} indexes the exponents with
λp ≥ λq (p > q), and N is the total number of considered
pendula. Therefore, we conclude that complex dynamical
present by the driven dissipative chain of pendula is of
spatiotemporal chaotic nature. It is worthy to note that a
similar Lyapunov spectra is presented by Lugiato-Lefever
equation [39].

4 Conclusions and comments

We have considered a mechanical system, namely a driven
dissipative chain of pendula far from the conservative
limit, and an extended Josephson junction. Both de-
vices are described by the forced dissipative sine-Gordon
model. From this equation, we have summarized the
derivation of the Lugiato-Lefever equation. The LLE has
been obtained in the time reversal limit perturbed with
small injections and small dissipations of energy. We
have qualitatively compared the dynamics obtained from
the Lugiato-Lefever model with a forced dissipative sine-
Gordon model. We have observed qualitatively similar bi-
furcation diagram for homogeneous, localized and pattern
states. Unexpectedly, even the spatiotemporal chaotic dy-
namics are similar from both systems. Based on Lyapunov
spectrum, we have established the spatiotemporal chaotic
nature of the complex dynamics exhibited by a driven
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dissipative chain of pendula and by an extended Josephson
junction.

Time-periodically driven dynamical systems are a con-
text where the qualitative understanding of the dynam-
ics is still precarious. Few analytical results are accessible
in general. The amplitude equations have been a system-
atic strategy to study this type of systems. Nonetheless,
this type of analysis is only valid in narrow regions of the
parameter space. Moreover, the predicted dynamics can
qualitatively be observed far from the region of validity
of envelope model equation such as the Lugiato-Lefever
equation. This allows developing an intuition of the com-
plex dynamics observed by time-periodically driven dy-
namical systems. Likewise, due to the advances of the
amplitude equation in the context of optics, particularly
the Lugiato-Lefever equation, it is possible to transfer
knowledge from one research area to another toward a
cross-fertilization between mechanical systems, extended
Josephson junction, and both temporal and spatial non-
linear optical resonator.
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27. L.P. Gor’kov, G. Grüner, Charge density waves in solids
(Elsevier, 2012), Vol. 25

28. O.M. Braun, Y. Kivshar, The Frenkel-Kontorova model:
concepts, methods, and applications (Springer Science &
Business Media, 2013)

29. E. Berrios-Caro, M.G. Clerc, A.O. Leon, Phys. Rev. E 94,
052217 (2016)

30. M. Clerc, P. Coullet, E. Tirapegui, Phys. Rev. Lett. 83,
3820 (1999)

31. M. Clerc, P. Coullet, E. Tirapegui, Opt. Commun. 167,
159 (1999)

32. M. Clerc, P. Coullet, E. Tirapegui, Int. J. Bifurc. Chaos
11, 591 (2001)

33. I.V. Barashenkov, Y.S. Smirnov, Phys. Rev. E 54, 5707
(1996)

34. M. Tlidi, R. Lefever, P. Mandel, Quant. Semiclass. Opt.:
J. Eur. Opt. Soc. B 8, 931 (1996)

35. A.J. Scroggie, W.J. Firth, G.S. McDonald, M. Tlidi,
R. Lefever, L.A. Lugiato, Chaos Solitons Fract. 4, 1323
(1994)

36. I.V. Barashenkov, Y.S. Smirnov, N.V. Alexeeva, Phys.
Rev. E 57, 2350 (1998)

37. S. Coen, M. Tlidi, P. Emplit, M. Haelterman, Phys. Rev.
Lett. 83, 2328 (1999)

38. S. Coulibaly, M. Taki, M. Tlidi, Opt. Express 22, 483
(2014)

http://www.epj.org


Page 8 of 8 Eur. Phys. J. D (2017) 71: 172

39. Z. Liu, M. Ouali, S. Coulibaly, M. Clerc, M. Taki, M. Tlidi,
Opt. Lett. 42, 1063 (2017)

40. N. Akhmediev, B. Kibler, F. Baronio, M. Beli, W.P.
Zhong, Y. Zhang, W. Chang, J.M. Soto-Crespo, P. Vouzas,
P. Grelu et al., J. Opt. 18, 063001 (2016)

41. M. Tlidi, K. Panajotov, Chaos: Interdiscip. J. Nonlinear
Sci. 27, 013119 (2017)

42. F. Palmero, J. Han, L.Q. English, T. Alexander,
P. Kevrekidis, Phys. Lett. A 380, 402 (2016)

43. Y. Xu, T.J. Alexander, H. Sidhu, P.G. Kevrekidis, Phys.
Rev. E 90, 042921 (2014)

44. M. Tlidi, M. Taki, T. Kolokolnikov, Chaos: Interdiscip. J.
Nonlinear Sci. 17, 037101 (2007)

45. O. Descalzi, M.G. Clerc, S. Residori, G. Assanto, Localized
states in physics: solitons and patterns (Springer-Verlag
Berlin Heidelberg, 2011)

46. H.G. Purwins, H. Bdeker, S. Amiranashvili, Adv. Phys.
59, 485 (2010)

47. M. Tlidi, K. Staliunas, K. Panajotov, A.G. Vladimirov,
M.G. Clerc, Phil. Trans. R. Soc. Lond. A: Math. Phys.
Eng. Sci. (2014)

48. L. Lugiato, P. Franco, M. Brambilla, Nonlinear Optical
Systems (Cambridge University Press, 2015)

49. D. Mihalache, Rom. Rep. Phys. 67, 1383 (2015)
50. Y. He, X. Zhu, D. Mihalache, Rom. J. Phys. 61, 595 (2016)
51. D. Mihalache, Rom. Rep. Phys. 69, 403 (2017)
52. M.G. Clerc, S. Coulibaly, D. Laroze, EPL 97, 30006 (2012)
53. I. Barashenkov, E. Zemlyanaya, Phys. D: Nonlinear

Phenom. 132, 363 (1999)

54. J. Cuevas, L.Q. English, P.G. Kevrekidis, M. Anderson,
Phys. Rev. Lett. 102, 224101 (2009)

55. F. Leo, L. Gelens, P. Emplit, M. Haelterman, S. Coen,
Opt. Express 21, 9180 (2013)

56. M.G. Clerc, C. Falcón, M.A. Garćıa-Ñustes, V. Odent,
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