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Complex spatiotemporal dynamics have been a subject of
recent experimental investigations in optical frequency
comb microresonators and in driven fiber cavities with
Kerr-type media. We show that this complex behavior
has a spatiotemporal chaotic nature. We determine numeri-
cally the Lyapunov spectra, allowing us to characterize
different dynamical behavior occurring in these simple de-
vices. The Yorke–Kaplan dimension is used as an order
parameter to characterize the bifurcation diagram. We
identify a wide regime of parameters where the system ex-
hibits a coexistence between the spatiotemporal chaos, the
oscillatory localized structure, and the homogeneous steady
state. The destabilization of an oscillatory localized state
through radiation of counter-propagating fronts between
the homogeneous and the spatiotemporal chaotic states
is analyzed. To characterize better the spatiotemporal
chaos, we estimate the front speed as a function of the pump
intensity. © 2017 Optical Society of America

OCIS codes: (070.5753) Resonators; (190.4370) Nonlinear optics, fi-
bers; (190.3100) Instabilities and chaos; (190.5530) Pulse propaga-
tion and temporal solitons.
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Experiments supported by numerical simulations of driven
cavities such as whispering-gallery-mode microresonators lead-
ing to optical frequency comb generation have demonstrated
the existence of complex spatiotemporal dynamics [1].
Similar complex dynamics have been observed in all-fiber
cavities [2–4]. In most of these studies, complex behaviors
are characterized by a power spectrum [1], filtering spatiotem-
poral diagrams [4], embedding dimension, and time series
analysis [2,3]. However, these tools are inadequate to distin-
guish between spatiotemporal chaos, low dimensional chaos,
and turbulence. A classification of these phenomena has been
reported in the literature (see for instance [5–11]). In the case of
spatiotemporal chaos, the Lyapunov spectrum has a continuous

set of positive values. This matches the definition that has been
proposed in [5,7]. In the case of a low dimensional chaos, the
Lyapunov spectrum possesses a discrete set of positive values.
However, the turbulence or weak turbulence is characterized by
a power law cascade of a scalar quantity such as energy and
norm [12]. On the basis of the Lyapunov spectrum, we cannot
conclude that the system develops a turbulence.

In this Letter, we characterize the complex behavior reported
in the paradigmatic Lugiato–Lefever equation (LLE, [13]) that
describes Kerr optical frequency combs and fiber cavities. For
this purpose, we use a rigorous tools of dynamical systems
theory. We show that this complex behavior has a spatiotem-
poral chaotic nature. We estimate the Lyapunov spectra. The
Yorke–Kaplan dimension (DYK) is used as an order parameter
to establish the bifurcation diagram of the spatiotemporal
chaos. In addition, we show that the spatiotemporal chaos,
the oscillatory localized state and the homogeneous steady state
(HSS) can coexist in a finite range of the pumping intensity.
The destabilization of an oscillatory localized state through ra-
diation of counter-propagating fronts between the HSS and the
spatiotemporal chaotic state is also discussed by estimating the
front speed as a function of the pump intensity.

Driven Kerr cavities with a high Fresnel number—assuming
that the cavity is much shorter than the diffraction and the non-
linearity spatial scales—is described in the mean field limit by
the LLE [13]. This equation has been extended to model both
fiber cavities [14,15] and optical frequency comb generation
[16–18], in which the diffraction is replaced by dispersion.
This model reads

∂ψ
∂t

! S − "α# iδ$ψ #
i
2

∂2ψ
∂τ2

# ijψ j2ψ ; (1)

where ψ"t; τ$ is the normalized slowly varying envelope of the
electric field that circulates within the cavity, and S is the am-
plitude of the injected field which is real and constant. The
time variable t corresponds to the slow evolution of ψ over suc-
cessive round-trips. τ accounts for the fast dynamics that de-
scribes how the electric field envelope changes along the
fiber [14–16]. The parameters α and δ are the cavity losses,
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and the cavity detuning, respectively. In addition, Eq. (1) has
been derived in the context of left-handed materials [19].
Note that Eq. (1) has been derived in early reports to describe
the plasma driven by a radio frequency field [20,21] and the
condensate in the presence of an applied ac field [22].

The model, Eq. (1), supports stationary localized [23] and
self-pulsating localized [24] structures. In the conservative
limit, "α; S$ → "0; 0$, localized structures have analytical
solutions [25–28]. It has been also shown that, in this limit,
localized structures can exhibit regular time oscillations and dis-
play a complex behavior [25–27]. An example of complex spa-
tiotemporal behavior is plotted in the τ − t map of Fig. 1(a).
The time evolution of the field amplitude that circulates inside
the cavity exhibits large amplitude localized pulses. These
pulses have irregular distribution along the τ coordinate [see
Fig. 1(a)]. The characterization of this behavior can be achieved
by means of Lyapunov exponents, which provide an informa-
tion about the sensitivity of close initial conditions [7]. When
the largest Lyapunov exponent is positive, the system develops
chaos, but not necessarily a spatiotemporal chaos. To distin-
guish between these two complex dynamical behaviors, it is
necessary to compute the Lyapunov spectra composed by a
set of exponents [5–7]. Spatiotemporal chaos has a
Lyapunov spectrum with a continuous set of positive values.
In contrast, chaos possesses a Lyapunov spectrum with a dis-
crete set of positive values. The Lyapunov exponents is denoted
by fλig, where i labels the exponents (i ! 1;…; N ) and λp ≤ λq
(p ≥ q). By using the strategy proposed in [29,30], we compute
numerically the Lyapunov spectrum for largeN . The numerical
simulations are obtained by using periodic boundary condi-
tions that are compatible with both Kerr optical frequency
combs and fiber cavity geometries. Figure 1(b) shows a typical
continuous Lyapunov spectrum. Hence, we infer that the
complex dynamical behavior shown in Fig. 1(a) is a spatiotem-
poral chaos.

The main feature of the Lyapunov spectra is that they are
proportional to the physical system size. This implies that the
upper limit of the strange attractor dimension of spatiotemporal
chaos—the Kaplan–Yorke dimension (DYK)—is an extensive
quantity that increases with the physical system size [6].
This latter quantity provides an information on the level of
the strange attractor complexity and is defined by [31]

DYK ≡ p#
Pp

i!1 λi
λp#1

; (2)

where p is the largest integer that satisfies
Pp

i!1 λi > 0.
Figure 1(c) displays DYK as a function of the number of dis-
cretization points, which shows that this dimension is indeed
an extensive physical quantity as it linearly increases with the
system size. Therefore, as one increases the system size, the
dimension of the strange attractor grows proportionally.

To establish the bifurcation diagram of the spatiotemporal
chaos, we fix the detuning and the dissipation values, and we
numerically estimate DYK by varying the pumping intensity.
The initial condition consists of a single peak localized struc-
ture. The summary of the results is illustrated in Fig. 2. When
increasing the pump intensity, the LLE has a zero Yorke–
Kaplan dimension, i.e., DYK ! 0 until the system reaches
S2 ≡ S2#. For S2 > S2#, the system exhibits a transition toward
a spatiotemporal chaos, i.e., DYK > 0. This behavior lasts for
large pumping intensity values. When decreasing S2, the spa-
tiotemporal chaos persists down to the point S2 ≡ S2−, as shown
in Fig. 2. From this figure, we clearly see a hysteresis loop
involving a spatiotemporal chaos, a pulsating localized struc-
ture, and a HSS in the range S2− < S2 < S2#. The inset in
Fig. 2 shows the continuous Lyapunov spectra for different val-
ues of the pump intensity. Remarkably, the middle panel of the
inset shows two Lyapunov spectra (Γ2 and Γ3) obtained for the
same parameters values indicating the coexistence of two quali-
tatively different dynamical behaviors.

Fig. 1. Spatiotemporal chaos. (a) τ − t map shows a complex
spatiotemporal behavior obtained by numerical simulation of
Eq. (1) with α ! 0.16, δ ! 1, and S2 ! 0.16 with 512 grid points.
(b) Corresponding Lyapunov spectrum, and (c) Yorke–Kaplan dimen-
sion as a function of the system size L is indicated by the diamond red
points. L ! 512Δτ with Δτ is the step-size integration. The linear
growth of DYK dimension is fitted by a slope of 1.73, as shown by
the gray dashed line.

Fig. 2. Bifurcation diagram of spatiotemporal chaos showing the
Yorke–Kaplan dimension, DYK , as a function of the intensity of
pumping obtained by numerical simulations of Eq. (1). The insets
account for the Lyapunov spectra obtained for four values of the
pumping intensity indicated by the symbol Γj (j ! 1; 2; 3; 4).
The parameters are δ ! 1, and α ! 0.16. The grid points is 512. The
spectra are composed of N ! 496 exponents.

1064 Vol. 42, No. 6 / March 15 2017 / Optics Letters Letter



In what follows, we establish a bifurcation diagram showing
a coexistence between the spatiotemporal chaos, the oscillatory
localized structure, and the HSS. In order to show different
operating regimes, the total intracavity field amplitude ‖ψ‖ ≡R
jψ"t; τ$j2dτ as a function of the pumping intensity is shown

in the bifurcation diagram Fig. 3. The upper (lower) HSS
branch indicated by a dashed (solid) gray line is modulationally
unstable (stable) [13]. For small pumping intensity, the system
has a stationary stable localized state in the range S2LS < S2 <
S2PS (see Fig. 3). When increasing the pumping intensity,
the localized state becomes self-pulsating in the range
S2PS ≤ S2 < S2#. When further increasing S2, the system exhib-
its spatiotemporal chaos. When decreasing S2, the spatiotem-
poral chaos persists down to S2−. As in the bifurcation diagram
of DYK (see Fig. 2), the system presents an hysteresis loop
involving three different robust states: HSS, pulsating localized
structures, and spatiotemporal chaos.

It is well known that model (1) exhibits radiation from a
localized state of two counter-propagating fronts between
the homogeneous and the complex spatiotemporal states
[32]. An example of this behavior is depicted in the τ − t
map shown in Fig. 4(a). To characterize this transition, we es-
timate numerically the front speed. Figure 4(b) shows the front
speed as a function of the pump intensity in the vicinity of the
instability associated with localized states. Right and left fronts
propagate with almost the same speed. As the pumping inten-
sity is increased, the front speed continues to increase until the
system reaches the lower limit point of bistable HSSs. Similar
behavior has been reported in pattern forming systems where
the front propagates between a HSS and a periodic pattern
[33–35], between either of the two HSSs [36,37], or even
between a HSS and the spatiotemporal intermittency [38].

From a practical point of view, a driven ring cavity made with
an optical fiber could support a spatiotemporal regime. However,
by using a constant injected beam, i.e., cw operation, it is hard to
reach the high-intensity regime where we can observe the spatio-
temporal chaos and its coexistence with a homogeneous back-
ground. To overcome this limitation, it is necessary to drive
the cavity by synchronously pumping with a pulsed laser. The
time-of-flight of the light pulses in the cavity should be adjusted
to the laser repetition time. All experiments using this simple
device with a pulse laser have shown evidence of complex spatio-
temporal behaviors [2–4,39]. Therefore, the phenomenon
described in this Letter should be observed experimentally.

In conclusion, by using rigorous tools of dynamical system
theory, such as Lyapunov spectra, we have quantitatively shown
that the complex behavior observed experimentally in the Kerr
optical frequency combs [1] and in the fiber cavity [2–4] is of a
spatiotemporal chaos nature. We have also shown that the
Yorke–Kaplan dimension can be considered as a good order
parameter to characterize the bifurcation diagram associated
with spatiotemporal chaos. Finally, we have identified different
operating regimes, in particular the coexistence between spatio-
temporal chaos, the self-pulsating localized structure, and the
homogeneous steady state. The observed complex states are ex-
ponentially sensitive to the initial conditions, exhibit complex
spatiotemporal chaos, and have exponential power spectrum.
Hence, this behavior is not of a turbulent nature. Therefore,
our finding is important for the analysis, or classification of
the various complex spatiotemporal behaviors observed in
practical dissipative systems.

Fig. 3. Bifurcation diagram of model Eq. (1). The total intracavity
intensity ‖ψ‖ versus the pump intensity S2 with δ ! 1, and
α ! 0.16. The continuous and dashed thick gray lines point out
the stable and unstable HSS, respectively. The continuous blue lines
indicate the extrema of the total intracavity intensity ‖ψ‖ of localized
states. The cloud of blue scattered points accounts for the spatiotem-
poral chaotic state. Note that the horizontal graduation unit is equal to
0.05.

Fig. 4. Front radiation from an oscillating unstable localized state.
(a) Spatiotemporal evolution of oscillatory localized structures ob-
tained from the numerical simulation of Eq. (1). The parameters
are S2 ! 0.1225, δ ! 1, and α ! 0.16. The dashed lines mark a sep-
aration between the chaotic and the homogeneous background. From
these lines, one can determine the front speed. (b) Front speed V as a
function of the pump intensity obtained for δ ! 1 and α ! 0.16.
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