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Nonvariational mechanism of front propagation: Theory and experiments
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Multistable systems exhibit a rich front dynamics between equilibria. In one-dimensional scalar gradient
systems, the spread of the fronts is proportional to the energy difference between equilibria. Fronts spreading
proportionally to the energetic difference between equilibria is a characteristic of one-dimensional scalar gradient
systems. Based on a simple nonvariational bistable model, we show analytically and numerically that the
direction and speed of front propagation is led by nonvariational dynamics. We provide experimental evidence
of nonvariational front propagation between different molecular orientations in a quasi-one-dimensional liquid-
crystal light valve subjected to optical feedback. Free diffraction length allows us to control the variational or
nonvariational nature of this system. Numerical simulations of the phenomenological model have quite good
agreement with experimental observations.
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The coexistence between different equilibria is a charac-
teristic property of nonequilibrium systems [1–3]. Inhomoge-
neous initial conditions caused by, e.g., inherent fluctuations
of macroscopic systems, generate spatial domains which are
separated by domain walls. These interfaces are known as front
interfaces, domain walls, or wave fronts [3,4]. Interfaces be-
tween these metastable states appear in the form of propagating
fronts and give rise to rich spatiotemporal dynamics [5]. Front
dynamics has been observed in several contexts, such as walls
separating magnetic domains, liquid-crystal phases, fluidized
granular states, chemical reactions, and solidification and com-
bustion processes, to mention a few. Indeed, front solutions
are robust phenomena ranging from chemistry and biology to
physics. Moreover, these propagative fronts can be regarded
as particle-type solutions, i.e., they can be characterized by a
set of continuous parameters such as position, core width, and
so forth. Front propagation depends on the nature of the states
that are being connected. For example, in the case of a front
connecting a stable and an unstable state, its speed is not unique
but is determined by the initial conditions [6]. This scenario
changes for a front connecting two stable uniform states. For
variational or gradient systems, the most stable state invades
the other one, in order to minimize its nonequilibrium energy
or Lyapunov functional [7]. Likewise, there is only one point
in the parameter space for which the front is motionless, the
Maxwell’s point.

Due to a time-scale separation of the microscopic variables,
the dynamics of macroscopic systems is described by a
small number of variables (coarse-graining process), which
generally satisfy nonvariational or nongradient equations
[2–4]. In this framework, walls connecting two equivalent
vectorial fields through spontaneous symmetry breaking can
spread according to a given chirality of the vector field [8].
This mechanism, the nonvariational Ising-Bloch transition, is
well known [9]. A deeper understanding of front propagation in
macroscopic systems out of equilibrium will open the possibil-
ities for applications in nonequilibrium crystal growth, opera-
tion of nonequilibrium magnetic and optical memories, control
of nonequilibrium chemical reactions, to mention a few.

The aim of this Rapid Communication is to show that front
solutions in scalar field models generically propagate based

on two mechanisms: (i) the energy difference between states,
and (ii) nonvariational effects. Considering a simple nonvari-
ational bistable model, we show analytically and numerically
that front propagation is led by nonvariational dynamics.
A quasi-one-dimensional liquid-crystal light valve (LCLV)
experiment with optical feedback allows us to evidence
nonvariational front propagation between different molecular
orientations. Free diffraction lengths allow us to control the
variational or nonvariational nature of this optical system. A
phenomenological model for small free diffraction lengths is
derived. Numerical simulations of this model have quite good
agreement with experimental observations.

Simple bistable model. Let us consider a bistable model

∂tu = η + μu − u3 + ∂xxu + ε[c(∂xu)2 + bu∂xxu]

= −δF

δu
+ εFNV , (1)

where the scalar field u(x,t) is an order parameter that
accounts for an imperfect pitchfork bifurcation [4], μ is a
bifurcation parameter, η stands for the asymmetry between
the equilibria, ε is an small parameter, ε � 1, that controls the
nonvariational force FNM ≡ c(∂xu)2 + bu∂xxu, {c,b} account
for, respectively, nonlinear convective and diffusive terms, and
the functional

F ≡
∫

dx

[
V (u) + (∂xu)2

2

]
, (2)

where V (u) ≡ −ηu − μu2/2 + u4/4 is a potential. Notice the
above model is invariant under spatial reflection symmetry
(x → −x). Moreover, model (1) is variational when b = 2c.

For ε = 0, the above model (1) becomes a variational one.
This model has two stable equilibria for η small and positive
μ, u = ±√

μ + O(η), represented by {A,B}. Figure 1 depicts
the potential V (u) for different values of η. A nontrivial
solution of this variational model is front waves, uF (x −
vt) ≈ ±√

μ tanh [
√

μ/2(x − vt)] + O(η), that connect these
two equilibria [7]. The middle and lower panels of Fig. 1
show the profiles of the front solutions and their respective
spatiotemporal evolutions. Notice that fronts propagate at a
constant speed. The location and the region of the space where
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FIG. 1. Front propagation in the bistable variational model Eq. (1)
with ε = 0. The upper panels represent the potential V (u) for different
values of η, (a) η = 0.2, (b) η = 0, and (c) η = −0.2, with μ = 1.0.
The middle and lower panels illustrate the front profiles and their
respective spatiotemporal evolutions for (d), (f) μ = 1.0, η = 0.3,
and (e), (g) η = −0.3.

the front has a greater variation is known as the front position
and core, respectively. In the pioneering work of Pomeau [7],
it was shown that the front speed v is (η � 1)

v = vV ≡ V (A) − V (B)∫ ∞
−∞(∂xuF )2dx

≈ 3
√

2

2μ
η. (3)

Hence, the front speed is proportional to the energy difference
between the equilibria and the front core shape (denominator).
Indeed, the most energetically favorable state invades the
least favorable one (cf. Fig. 1). Likewise, when both states
have the same energy, η = 0, the front is motionless, which
corresponds to Maxwell’s point. Therefore, for variational
systems the mechanism of front propagation is the energy
difference between the connected equilibria.

In the case where nonvariational terms are considered,
ε �= 0, the above scenario changes drastically. To figure out
these changes, we consider model Eq. (1) at Maxwell’s point
and the nonvariational terms as perturbative, ε � 1. Then,
in this limit we can use the following ansatz for the front
solution, u(x,t) = uF (x − vt) + w(x − vt,v), where w is a
small adjustment function, which is of order of ε. Using this
ansatz in Eq. (1), linearizing in w, and imposing solvability
conditions, we get

vNV ≡ ε
c
∫ +∞
−∞ (∂xuF )3dx + b

∫ +∞
−∞ uF ∂xuF ∂xxuF dx∫ +∞

−∞ (∂xuF )2dx
. (4)

Then, the front speed is proportional to the nonvariational
terms. Notice that a similar method to obtain the speed of
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FIG. 2. Nonvariational front propagation model Eq. (1) at
Maxwell’s point (η = 0, ε = 1, and μ = 1). (a) Potential V (u). Front
profiles at a given instant for (b) positive c = 3, (c) negative c = −3,
and b = 0. (d) and (e) represent the spatiotemporal evolutions of
front solutions with positive and negative parameters c respectively
and b = 0. (f) Dimensionless front speed as a function of parameter
c. Points account for the numerical front speed obtained from Eq. (5)
with b = 0, η = 0, and ε = 1, the solid straight line is obtained
from the analytical formula vNV ≈ (2c − b)εμ

√
2/5, and the curve

is obtained using formula (4) with a numerical front profile uF .

the propagative front was used to characterize the Ising-Bloch
transition [9].

From the above formula, we can conclude that the mech-
anism generating the spread of this front is only the front
shape. Namely, the front core shape [∂xuF ∼ O(1)] determines
the propagation speed and not the energy difference between
equilibria. The above expression can be approximated by
vNV ≈ (2c − b)εμ

√
2/5. Figure 2 illustrates the nonvaria-

tional front propagation observed from the model (1) for
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FIG. 3. Front propagation model Eq. (1) with η = 0.3 and μ = 1.
(a) Potential V (u). (b) Front profiles for zero (dashed line) and positive
(solid line) c and b = 0. (c) and (d) represent the spatiotemporal
evolutions of the front solution with zero and positive parameter c.
(e) Dimensionless front speed as a function of parameter c. Points
account for the numerical front speed and continuous curve v =
vV + vNV .

different values of parameter c. For small c, the system exhibits
quite good agreement with the above approximation. For large
c, we can use formula (4) with uF obtained numerically. This
semianalytical approach has quite fair agreement (cf. Fig. 2).
Notice that nonlinear convection and diffusion are opposite
effects for front speed. The front becomes motionless when
the system is variational (b = 2c).

When considering the general case of asymmetry between
equilibria (η �= 0) and the presence of nonvariational terms, the
front speed is determined by the two mechanisms discussed
above, i.e., the front speed is v = vV + vNV . Figure 3 depicts
the front propagation in the generic case. A comparison
between numerical simulations and theoretical results shows
quite good agreement (cf. Fig. 3). Note that there is always
a point in the parameter space where the front is motionless
(vV = −vNV ), but which does not correspond to equal energy
between states.

Liquid-crystal light valve with optical feedback. A simple
physical system that exhibits nonvariational behaviors and
multistability is a LCLV with optical feedback [10–13]. This
setup contains a LCLV inserted in an optical feedback loop (see
Fig. 4). The LCLV is composed of a nematic liquid-crystal film
sandwiched in between a glass and a photoconductive plate
over which a dielectric mirror is deposited (see Ref. [11] and
references therein). The feedback loop is closed by an optical
fiber bundle (FB) and is designed in such a way that diffraction
and polarization interferences are simultaneously present. The
optical free propagation length is given by L.

The liquid-crystal film under consideration is planarly
aligned (nematic director 
n parallel to the walls), with a
thickness d = 15 μm. The liquid crystal filling the LCLV is
a nematic LC-654, produced by NIOPIK. It is a mixture of
cyanobiphenyls, with a positive dielectric anisotropy �ε =
ε‖ − ε⊥ = 10.7 and a large optical birefringence �n = n‖ −
n⊥ = 0.2, where ε‖ and ε⊥ are the dielectric permittivities
‖ and ⊥ to 
n, respectively, and n‖ and are n⊥ are the
extraordinary (‖ to 
n) and ordinary (⊥ to 
n) refractive indices
[14]. Transparent electrodes over the glass plates allow for the
application of an electrical voltage V0 across the nematic layer.
The photoconductor behaves as a variable resistance, which
decreases for increasing illumination. The light which has
passed through the liquid-crystal layer and has been reflected
by the dielectric mirror experiences a phase shift which
depends on the liquid-crystal molecular orientation and, at its
turn, modulates the effective voltage that is locally applied to
the liquid-crystal sample. Over a critical voltage, the molecules
tend to orient along the direction of the applied electric field,
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FIG. 4. Nonvariational front propagation in a LCLV with optical feedback. (a) Schematic representation of the experimental setup. {L1,L2}
stands for two lenses with a focal distance f = 25 cm, M is a mirror, FB is an optical fiber bundle, PBS is a polarizing beam splitter cube, BS
represents a beam splitter, and SLM is a spatial light modulator driven by a computer. V0 external voltage applied across the LCLV. (b) Temporal
sequence of snapshots of front propagation from top to bottom. (c) Front speeds as a function of voltage V0 for different free propagation
lengths L.
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FIG. 5. Front propagation of the numerical simulation of the
phenomenological model of LCLV with optical feedback Eq. (5).
(a) Bifurcation diagram of molecular average orientations θ0 as a
function of voltage V0. V c

0 accounts for a critical value of voltage for
which the system exhibits nascent bistability at θ0 = θc. (b) Front
speeds as functions of voltage V0 for different free propagation
lengths.

which changes local and dynamically following the spatial
distribution of illumination present in the photoconductor wall
of the cell. When liquid-crystal molecules reorient, due to
their birefringent nature, they induce a refractive index change.
Thus, the LCLV acts as a manageable Kerr medium, causing a
phase variation φ = β cos2 θ ≡ 2kd�n cos2 θ in the reflected
beam proportional to the intensity of the incoming beam Iw on
the photoconductive side, where θ is the longitudinal average
of the molecular reorientation. Here, k = 2π/λ is the optical
wave number. The LCLV is illuminated by an expanded He-Ne
laser beam, λ = 633 nm, with a 1 cm transverse diameter
and power Iin = 6.5 mW/cm2, linearly polarized along the
vertical y axis. A spatial light modulator (SLM, controlled
through an external computer) was placed in the input beam in
order to carry out one-dimensional experiments. The system
dynamics is controlled by adjusting the external voltage V0

and free propagation length L.
Theoretical description of the LCLV. The light intensity

Iw reaching the photoconductor is given by Iw(θ,L) =
Iin|e−i L

2k
∂xx (1 + e−iβ cos2 θ )|2/2 [11], where x is the transverse

direction of the liquid-crystal layer. As long as Iin is suf-
ficiently small (Iin ∼ 1 mW/cm2), the effective voltage Veff

applied to the liquid-crystal layer can be expressed as Veff =

V0 + αIw, where 0 < 
 < 1 is a transfer factor that depends
on the electrical impedances of the photoconductor, dielectric
mirror, and the liquid crystal, while α is a phenomenological
dimensional parameter that describes the linear response of
the photoconductor [11].

The dynamics of the average director tilt θ (x,t) is described
by a nonlocal relaxation equation of the form [10]

τ∂tθ = l2∂xxθ − θ + π

2

(
1 −

√

VFT


V0 + αIw(θ,L)

)
, (5)

with VFT ≈ 3.2 Vrms the threshold for the Fréedericksz tran-
sition, τ = 30 ms the liquid-crystal relaxation time, and
l = 30 μm the electric coherence length.

Let us consider the zero free propagation length, L = 0,
Iw(θ,L = 0) = Iin{1 + cos(β cos2 θ )}/2. In this limit, Eq. (5)
is a gradient model. To derive a simple description of
the above model, we study its dynamics around the emer-
gence of bistability, i.e., when the system becomes mul-
tivalued or exhibits nascent bistability [15]. Figure 5(a)

depicts nascent bistability. We express the expression for
equilibria θ (x,t) = θ0 as follows, V0(θ0) = VFT/
(1 −
2π−1θ0)2 − α Iin[1 + cos(β cos2 θ0)]/2
, and from this re-
lation we determine the values of the parameters for the
emergence of bistability. Indeed, in the parameter space,
the above expression generates a folded surface from
which one can geometrically infer the points of nascent
bistability [cf. Fig. 5(a)]. In fact, θ0 becomes multivalued
when the function V0(θ0,Iin) has a saddle point at θ0 = θc.
Around the saddle point V0(θc) creates two new extreme
points that determine the width of the bistability region.
To find the saddle points of V0(θc,Iin), we have to im-
pose the conditions dV0/dθc = 0, d2V0/d

2θc = 0, and, after
straightforward algebraic calculations, we obtain the relations
Iin = π2VFT/αβ(π/2 − θc)3 sin(2θc) sin (β cos2 θc), and (θc −
π/2)[2 csc 2θc + β sin 2θc cot(β cos2 θc)] = 3. The first ex-
pression gives the critical value of Iin for which V0 becomes
multivalued. The second expression is an algebraic equation
that depends only on the parameter β and determines all the
points of nascent bistability. Notice that only half of them
have physical significance because the other half correspond
to negative values of the intensity. By taking into account the
constraint that the intensity must be positive and considering
that the cotangent function is π periodic, we have that the
actual number of points of nascent bistability is equal to the
next smallest integer of β/2π . For the values considered in our
experiment, β is about 54, then one expects to find eight points
of nascent bistability in the entire (V0,Iin) parameter space, a
prediction that is confirmed by the experiment [10].

The dynamics around a nascent bistability point can be
described by a scalar field u(x,t) governed by a cubic
nonlinearity. Hence, close to this point, Iin ≡ I c

in, V0 ≡ V c
0 ,

and we can consider

θ (x,t) ≈ θc + u(x,t)/u0, (6)

where u2
0 ≡ 2β cos 2θc cot(β cos2 θc) + (4 + β2 sin 2θc)/3 −

2/(π/2 − θc)2 is a normalization constant.
Considering the above ansatz in Eq. (5) with a zero free

propagation length L = 0, and developing in a Taylor series
by keeping the cubic terms, after straightforward algebraic
calculations, we can reduce the full LCLV model to a simple
bistable model,

τ∂tu = η + μu − u3 + l2∂xxu, (7)

where η ≡ α[1− cos(β cos2 θc)](π/2−θc)3[Iin − Ic+α[1−
cos(β cos2 θc)(V0 − Vc)]/2]/π2VFT, and μ ≡ 12
{(π/2
− θc)2(V0 − Vc) + [π2 VFT/12 − (π/2 − θc)2](Iin − Ic)/Ic}/
π2VFT.

For a small free propagation length (L ∼ ε � 1), the
light intensity Iw reached in the photoconductor can be
approximated by a local model characterized by

Iw(θ,L) ≈ Iin{1 + cos(β cos2 θ )

+L[1 + cos(β cos2 θ )∂xx sin(β cos2 θ )]/k

−L sin(β cos2 θ )∂xx cos(β cos2 θ )/k}/2.

Introducing this expression in Eq. (5), using ansatz (6),
developing in a Taylor series by keeping the cubic terms in
u, considering that the order parameter is a slow variable
in space (∂xxu � ∂xu � 1), renormalizing space, and after
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straightforward calculations, we obtain Eq. (1), with

b = c ≡ −
παβ cos(2θc)Ic

(
VFT

2Vc+αIc[1+cos(β cos2 θc)]

)
3/2

√
2lu0VFT

.

Hence, close to nascent bistability, model Eq. (5) can be
approximated by a simple nonvariational model Eq. (1), which
describes the complex dynamics observed around this critical
point.

Numerical simulations of model (5) in the region of
bistability for a small free propagation length show that the
system exhibits front solutions. The front speed is affected
when the free propagation length is changed. Therefore, these
fronts present a propagation mechanism of a nonvariational
nature.

Experimental nonvariational front propagation. Using the
SLM, we have conducted quasi-one-dimensional experiments
in a LCLV with optical feedback. As voltage V0 is varied as a
control parameter, we identify the bistable region, where two
different molecular orientation states coexist. In this bistability
region, the SLM is not only used to create a one-dimensional
channel, but also to create localized perturbations, which
allow us to observe the emergence of fronts between two

different molecular orientations. Hence, the light observed in
the near field has different intensities, which are associated
with the molecular orientations. Figure 4(b) shows a temporal
sequence of snapshots of front propagation. By recording the
interface evolution over the channel with a CCD camera, we
have measured the front speed, which is plotted in Fig. 4(c)
as a function of V0 for different values of free propagation
length L. For small L, experimental imperfections are relevant.
We consider nonsmall L. Note that as the free propagation
length increases, the front speed increases, which is consistent
with the theoretical prediction. Therefore, the mechanism that
generates the spread of these fronts is the energy difference
and front core shape (nonvariational effect).

In summary, we have characterized a mechanism of
nonvariational front propagation in one-dimensional scalar
fields, where the process responsible for generating the spread
of this front is the front shape and not the energy difference
between equilibria. In higher dimensions we expect that the
propagation is only corrected by curvature effects, e.g., the
Gibbs-Thomson effect [3].
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