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Programmable diffraction gratings are relevant in optical data processing. One of the adequate device candidates
is the in-plane switching liquid crystal cell. This technology, developed initially for liquid crystal screens, has also
been studied with two inter-digital electrodes as a diffraction grating. Recently, the apparition of programmable
zigzag wall lattices in an in-plane switching configuration has been reported. Here, we report a theoretical and
experimental study of programmable diffraction grating in an in-plane switching cell. © 2016 Optical Society of
America
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1. INTRODUCTION

In-plane-switching (IPS) technology was developed initially for
liquid crystal displays (LCD) to solve the twisted nematic (TN)
field limitations. Since its introduction in 1996 [1,2], this tech-
nology has allowed for the improvement of screen qualities,
especially color contrast and vision angles [3]. Moreover, IPS
technology was also used as inter-digital electrodes, combined
with liquid crystals, for switchable optical diffraction. A lot of
liquid crystal phase grating designs have been reported that use
this electrode configuration [4–7]. Their applications range
from optical data processing and beam steering [8] to optical
communication networking devices [9], which emphasize the
relevance to controlling and understanding the different mech-
anisms existing in this kind of diffraction grating. Some works
have studied the high voltage impact on the diffracted grating
[10] or tested a new configuration with carbon nanotubes [11].
Latterly, the apparition of zigzag lattice in an IPS cell filled with
nematic liquid crystal beyond a certain voltage threshold has
been reported [12]. Recently, we have studied in detail, theo-
retically and experimentally, the zigzag instability of a wall lat-
tice in a nematic liquid crystal with an IPS configuration [13].
We have also evidenced the importance of the liquid crystal
molecule anchoring on their own dynamics when they are sub-
mitted to an external electrical forcing [14,15].

The aim of this paper is to investigate the zigzag wall lattice
influence on the diffraction grating. We study an IPS cell used
without liquid crystal. We confirm the diffractive nature of the
empty cell, which works as diffraction grating with a low con-
trast. This property changes when we consider this cell filled
with a nematic liquid crystal subjected to a given voltage.

We propose an analytical model to reproduce a zigzag lattice,
which gives us the typical x signature of the diffraction image.
Numerical simulations of a more realistic/imperfect zigzag lat-
tice, taking into account the different experimental properties,
show quite good agreement with the experimental observa-
tions. This method allows us make evident a dispersion of
the amplitude and the wavelength of the zigzag lattice inside
the sample.

2. EXPERIMENTAL SETUP

The experimental setup is depicted in Fig. 1. We use two
identical cells, one empty (without liquid) and the second
one filled with a nematic liquid crystal. We consider IPS cells
with a homogeneous planar alignment [following the x-axis, cf.
Fig. 1(a)] and a parallel rubbing to the electric field (Instec,
IPS02A89uX90). The indium tin oxide (ITO) electrode width
and the gap width are the same; ϵ ! 15 μm. The height of the
electrodes is negligible (∼25 nm) compared to the cell thick-
ness (d ! 8.9" 0.2 μm). The active zone is a square of side
l ! 1 cm. Under these settings, we can consider the cell in a
good approximation as an infinite media. The liquid crystal cell
is composed of a layer of E7 nematic liquid crystal, which
is inserted between two glass plates (thickness g ! 1.1 mm).
The elastic constants of the liquid crystal are, respectively,
K 1 ! 11.2, K 2 ! 6.8, and K 3 ! 18.6#×10−12 N$. The par-
allel and the perpendicular dielectrical constants are ε∥ !
18.96 and ε⊥ ! 5.16 [16,17]. The cell electrodes are con-
nected to a function generator. The typical parameter range
for the frequency is ∼200 mHz − 2 MHz and for the ampli-
tude ∼10 Vpp − 20 Vpp (volt peak-to-peak). We illuminate
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the cell with a vertically polarized helium–neon laser beam at
632.8 nm, as shown in Fig. 1(b). The beam is previously colli-
mated, using a telescope, in order to consider the Fraunhofer
approximation valid. The beam waist is w ! 1.1 mm. The
laser power is sufficiently weak to prevent the molecular reor-
ientation, which is typically P0 ! 1 mW. A linear polarizer is
placed behind the cell. We generate, on a screen, the diffraction
figure placed in the focal plane of a convergent lens. We record
the diffusive light of the diffraction figure on the screen with a
CCD monochrome camera. By replacing the screen by a power
meter, we have the possibility of recording the power value of
every diffracted order until the sixth one.

3. DIFFRACTION THEORY WITH AN EMPTY
CELL

In the literature, there are several reports about liquid crystal
phase grating based on IPS [9,10,18]. However, to the best
of our knowledge, no works study the transmission of the
empty cell. We propose a simple diffraction grating model,
which evidences the ITO electrodes as a diffraction grating.

A. One-dimensional Frauhofer Diffraction Theory
We consider the most simple model to reproduce the
Fraunhofer diffraction phenomenon with an empty IPS cell.
The cell is constituted by two parallel glass layers and two elec-
trode combs of ITO, which are stuck on one glass layer (inside
the cell), as represented in Fig. 2(a).

One can calculate the diffraction figure from the intensity
transmission function t#x$ (diffraction grating) [19,20]. This
one is a crenel function, following the x axis, as represented

in Fig. 2(b). To simplify, we evaluate tmax ! 1, which is
the light part that crosses only the two glass layers, and we con-
sider α as the transmission coefficient in amplitude of the light
which crosses the glass layers and the electrodes. ϵ is the elec-
trode width, and γ is the distance between two electrodes.
Hence,

t#x$ !
!

1; − ϵ
2 % nγ < x < ϵ

2 % nγ
1 − α ϵ

2 % nγ < x < 3ϵ
2 % nγ: (1)

The diffraction figure is given by

I#u$ ! jE j2 !
""""
Z

γ∕2

−γ∕2

XN

n!0

t#x − xn$e−2πiuxdx
""""
2

; (2)

where N is the electrode numbers illuminated by the light
source, t#x$ is the amplitude transmission function, and 2πu
is the wavenumber. After the straightforward calculations from
Eq. (2), we obtain the diffraction figure in the Fourier space.

I#u$ !
sin2#πuγN $
sin2#πuγ$

& αγ sin c#πuγ$ % #1 − α$ϵ sin c#πuϵ$' 2:

(3)
Considering the experimental electrode sizes, we have

γ ! 2ϵ. We calculate the zero diffraction order from the equa-
tion above:

I#0$ ! N 2ϵ2&1% α'2: (4)

The other diffraction orders are given by

I#2m∕γ$ ! 0; (5)

and

I##2m% 1$∕γ$ !
4N 2ϵ2

π2#2m% 1$2
&1 − α'2; (6)

where m is an integer number.
The experimental procedure to determine the coefficient α

is done by measuring the different diffraction orders. Indeed,
the theoretical α determination can be distorted by other phe-
nomena, such as glass layer interferences, anchoring treatment,
inhomogeneities, and imperfection, among others.
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Fig. 1. (a) Schematic representation of the liquid crystal IPS cell,
connected to a generator. Thickness between the two glass plates,
d ! 8.8" 0.2 μm. Thickness of a glass plate, g ! 1 mm. Active
zone, l × l ! 1 cm2. Gap between two electrodes, ϵ ! 15 μm.
(b) Sketch of the experimental setup: E⃗ , vertically polarized collimated
beam; P, vertical linear polarizer; f , focal distance of the imaging lens.
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Fig. 2. (a) Sketch of an empty IPS cell that is constituted by two
parallel glass layers and two electrode combs of ITO, and (b) the cell
intensity transmission function.
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B. Experimental Transmission Coefficient
Determination
The α value is determined experimentally by evaluating the dif-
fraction order ratio. We consider the six first diffraction orders.
The experimental values are reported in Table 1.

From Eqs. (4) and (6), we calculate the three following dif-
fraction order ratios:

I#0$
I#1∕γ$theo

!
π2

4

#
1% α
1 − α

$
2

; (7)

I#1∕γ$
I#3∕γ$theo

! 9; (8)

I#1∕γ$
I#5∕γ$theo

! 25: (9)

Note that the odd diffraction orders do not depend on the
α value. The theoretical ratios from Eqs. (8) and (9) present a
good agreement with their experimental observations:

I#1∕γ$
I#3∕γ$exp

! 9.9; (10)

I#1∕γ$
I#5∕γ$exp

! 23.6: (11)

By rewriting Eq. (7), we find

α !
2

ffiffiffiffiffiffiffiffiffi
I#0$
I#1∕γ$

q
− π

2
ffiffiffiffiffiffiffiffiffi
I#0$
I#1∕γ$

q
% π

: (12)

The experimental ratio I#0$∕I#1∕γ$ gives us α ! 0.70.
Hence, the empty cell plays the role of a diffraction grating,
however, with a lower efficiency (low contrast). Indeed, the vis-
ibility, for the empty cell is V ! 0.09.

4. DIFFRACTION THEORY WITH A LIQUID
CRYSTAL CELL

A lot of studies have evaluated the diffraction efficiency of the
one-dimensional (1D) spot pattern [9,18,21,22]. In particular,
Han has presented the diffraction efficiency, with a sample
where the zigzag instability exists [12]. We complete this char-
acterization by adding a frequency study. Figure 3 shows the
diffraction efficiency of our sample depending on the voltage
amplitude, between T ! 0 Vpp and T ! 100 Vpp, and the

frequency, between f ! 10 Hz and f ! 1 MHz. The diffrac-
tion efficiency is defined as

De ! I∕I0; (13)

where I is the order of diffracted intensity, and I 0 is the total
transmitted light. Figure 3(a) qualitatively gives the same results
as the Han evaluation, given that the liquid crystal mixture is
the same, E7, and the liquid crystal cells have a small difference
around the electrode gaps. We observe in Fig. 3(a) a strong
diffraction order modification between T ! 8 Vpp and T !
30 Vpp for a fix frequency value of f ! 1 kHz. For a fixed
tension amplitude value T ! 20 Vpp, we also observe, in
Fig. 3(b), a strong modification of the diffraction orders
between f ! 10 Hz and f ! 1 kHz. This information helps
us evaluate the region of parameters, where the liquid crystal
dynamics change a lot and, consequently, its diffraction figure.

Recently, we have observed that below a voltage threshold
(amplitude or frequency), the cell filled with a liquid crystal
exhibits an Ising wall lattice which becomes a zigzag instability
[13]. To confirm these phenomena, we have used parallel po-
larizers and observe black bands (Ising wall lattice) and black
zigzags (zigzag instability). We use this configuration to gener-
ate a programmable diffraction grating.

Table 1. Experimental Intensity of the First Diffraction
Orders of an Empty In-plane Switching Cell

Diffraction Order Power Values (μW)

0 576
1 31.8
2 1.1
3 3.20
4 0.89
5 1.36
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Fig. 3. Diffraction efficiencies of the zeroth to fourth order.
(a) Voltage evolution for f ! 1 kHz, and (b) frequency evolution
for T ! 20 Vpp.
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A. Perfect Zigzag Lattice: Two-dimensional
Fraunhofer Diffraction Theory
In a first approximation, we assume to have a perfect two-
dimensional (2D) diffraction mask, with a periodic black zig-
zag, as represented in Fig. 4(a). The zigzag pattern presents a
constant amplitude and a constant wavelength. The lattice does
not present a phase shift between the different zigzag instabil-
ities. In this ideal case, we assume to have a visibility of V ! 1,
so α ! 0. θ is the angle between the y axis and the zigzag lines.
The diffraction mask, represented in Fig. 4(a), gives the follow-
ing diffraction figure in the Fourier space:

I#u;v$

!
""""
Z

b∕2

−b∕2

Z
a∕2−y tan α

−a∕2−y tan α

XN

n!0

XM

m!0

t#x − xn;y − ym$e−2πi#ux%vy$dxdy
""""
2

:

(14)

After straightforward calculations, we obtain

I#u;v$!
sin#πucN $
sin#πuc$

sin#2πvbM$
sin#2πvb$

ab sin c#πua$:

&sin c#πb#v−u tan#θ$$$%sin c#πb#v%u tan#θ$$$'; (15)

where c is the period of the grating following the x axis. Its value
is imposed by the distance between two electrodes in the cell
(c ! γ, cf. Fig. 2). a is the thickness of the white bands. We
have the condition a > ϵ. Physically, a represents the distance
where liquid crystal molecules are not subjected to electro-
reorientation [13]. 2b is the period of the zigzag instability.
θ is the zigzag angle. N is the number of electrodes illuminated
by the light, and cN is the transverse size of the illuminated cell
following the x axis. M is the number of zigzags illuminated
by the light, and bM is the transverse size of the illuminated
cell following the y axis. With a Gaussian beam, we have the
following equality: bM ! cN .

The diffraction figure, obtained from Eq. (15), is depicted in
Fig. 4(b). Notice the presence of two lines at θ degrees in the
Fourier plane. Indeed, these two lines are a signature of the
zigzag lattice.

However, the diffraction figure does not correspond exactly
to the experimental diffraction figure, presented in Fig. 4(c).
Indeed, the near field of the zigzag lattice presents some irregu-
larities that are not taken into account in this perfect zigzag
lattice. We will now consider a more realistic zigzag lattice.

B. Imperfect/Real Zigzag Lattice: 2D Fast Fourier
Transform
To have an adequate description of the experimental findings,
we consider an imperfect zigzag grating. We present a portion
of the zigzag grating in Fig. 5, used as near field. The matrix
used contains 8192 × 8192 pixels with a spatial resolution of
Δx ! Δy ! 0.1 μm and a distance between two electrodes
that is γ ! 30 μm. The wavelength, λ#x; y$, and the thickness,
D#x; y$, of the black zigzag lattice have a small variation
depending on the location in the cell. We define for every

x

y

0

0

a

c

b

-b

θ

1

0

1.0

0

-1.0

1

0

(a)

(b)

0

1.0

-1.0

-1
w

av
en

um
be

r 
k

 (µ
m

)
y

-1wavenumber k  (µm )x

2.52.00.5 1.0 1.5

(c)

near field

θ
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image obtained from a 2D perfect diffraction zigzag grating using
Eq. (15). (c) Experimental diffraction image obtained from an IPS cell
with a zigzag lattice. Inset accounts for a snapshot of the cell,
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period a wavelength λ#x; y$ ! λ0 " δλ#x; y$, where δλ#x; y$ !
λ0η#x; y$∕B1, and η#x; y$ is a random function giving a value
between zero and one with a uniform distribution. In the same
way, we define the thickness D#x; y$ ! d " δd#x; y$, where
δd #x; y$ ! dη#x; y$∕B2. The observation on the experimental
pictures of the sample by a microscope provides a more com-
plex intensity profile than the crenel function, as presented in
Fig. 2(b). Consequently, we had another grating on the zigzag
grating. The cell is illuminated by a delimited laser source. We
also take into account this effect in Fig. 5.

We calculate the diffraction image by using the 2D fast
Fourier transform. We evaluate the parameters B1 and
B2 by a quantitative comparison between the experimental
(top) and numerical diffraction (bottom) figure presented in
Fig. 6. Notice that we have chosen these parameters to obtain
numerically diffractive images similar to those observed exper-
imentally. Hence, experimental diffractive images can be repro-
duced qualitatively by the use of a simple model.

5. EXPERIMENTAL RESULTS
A. Low Frequency: f ! 10 Hz
At f ! 10 Hz and with a voltage tension of T ! 20 Vpp, the
liquid crystal cell exhibits a roll lattice in the near field, see the
inset in Fig. 6(a), which corresponds to a snapshot of the cell.
The experimental image in the Fourier space is a 1D pattern
with a wavenumber of k10Hz ! 0.104 μm−1. This wavenum-
ber corresponds to a diffraction image with a diffraction step
of λ10Hz ! 60.4 μm. We explain the factor of 2 difference
(λ10Hz ! 2γ, where γ is the diffraction grating step) by the fact

that at this low frequency the black bands appear and disappear
successively on the first electron comb and then on the second
one. However, this temporal oscillation is not recorded on the
near field image, which corresponds to a temporal average of
the roll lattice dynamics. Considering this effect, the diffraction
grating step is exactly 2γ, then we have a quite good agreement
between the experimental and the numerical far field figure in
Figs. 6(a) and 6(d).

B. Middle Frequency: f ! 100 Hz
At f ! 100 Hz with a voltage tension T ! 20 Vpp, the sys-
tem presents a zigzag lattice. The zigzag signature in the Fourier
space is the X structure with an angle"θ. We note the presence
of different bands. The band’s thickness is directly linked to the
λ dispersion. In this case, we evaluate B1 ! 5. The dispersion
of D erases the vertical black lines due to destructive interfer-
ences. We evaluate B2 ≃ 7. By taking into account these two
dispersion parameters, we have a fairly good agreement between
the experimental and the numerical diffraction figures, repre-
sented in Figs. 6(b) and 6(e).

C. High Frequency: f ! 1.3 MHz
At f ! 1.3 MHz with a voltage tension T ! 20 Vpp, we ob-
serve a sinusoidal lattice. We detect in the Fourier space two
opposite (following ky ! 0) and intense lines. They represent
the fundamental frequency of the sinusoidal functions. Some
harmonics can also be seen. To confirm this observation, we
modify the theoretical lattice with sinusoidal functions, and
we evaluate B1 ! 5 and B2 ≃ 14. We qualitatively obtain
the same diffraction image.
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Fig. 6. Diffractive and near field images observed for different frequencies, (a) f ! 10 Hz, (b) f ! 1.3 MHz, and (c) f ! 10 Hz, with a voltage
of 20 Vpp. The top and bottom panels correspond to experimental and numerical observations, respectively.
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D. Very Low Frequency: f ! 200 mHz
At a very low frequency of f ! 200 mHz with the same volt-
age, the system cannot be considered stationary. The liquid
crystal exhibits a conductive regime. The liquid crystal space
charges oscillate with the electrical field. This phenomenon
can be attributed to the gradient flexoelectric effects [23]. It
has temporal dynamics directly linked to the voltage frequency.
Figure 7 shows four pictures during the half period of the sinus-
oidal voltage. At t ! 0 s, the central electrode in the near field
presents a zigzag instability with a not well defined wavelength.
Consequently, the diffraction image presents a X with large
arms. We evaluate for our model B1 ! 0.5 and B2 ≃ 7, which
has a good agreement with the experimental observations.

E. Application
We have highlighted the results of programmable lattice that
shows that one can generate more complex diffraction figures
than those presented in the literature. First, these diffraction
images give us some information about the molecular reorien-
tation inside the cell, as well as the dispersion of the wavelength
and the amplitude of the zigzag lattice. Second, the formation
of a 2D diffraction image extends the possibility of beam steer-
ing and optical communication networking devices and the
characterization of atomic spectra. Finally, this type of diffrac-
tion may allow for information about spatial structures of com-
plex light sources.

6. CONCLUSION

Programmable diffraction gratings open the possibility of new
optical data processing, characterization of atomic spectra with
applications in astronomical observations, space flight instru-
ments, and synchrotron spectrometers, among others. In this
work, we have established the possibility of creating this kind

of programmable grating. We have characterized an empty IPS
cell and seen that it is like a bad diffraction grating. In contrast,
an IPS cell filled with a nematic liquid crystal subjected to
a given voltage exhibits a rich complex diffraction pattern.
Applying a small voltage into a wide range of frequencies,
the sample exhibits a stripe diffraction grating. Increasing
the voltage, this diffractive pattern presents a spatial instability
generating an undulating diffraction grating, and at higher volt-
ages it becomes a zigzag type. We have analytically given a first
approximation of the diffraction image obtained with a perfect
zigzag lattice. Then, we have studied, experimentally and
numerically, the diffractive image and observed a complex
structure in the perpendicular direction to the “traditional
1D pattern” in the diffraction image. We have evidenced with
this structure a variation/dispersion of the amplitude and the
wavelength of the zigzag instability.

One of the limitations of our programmable diffraction gra-
tings is that the time response of liquid crystals is slow on the
order of milliseconds. However, this allows us to establish the
proof of concept of manipulable diffraction grating. The pos-
sibility of faster programmable diffraction gratings using soft or
solid materials is a still open question.
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