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Abstract: Macroscopic systems subjected to injection and dissipation of energy can exhibit
complex spatiotemporal behaviors as result of dissipative self-organization. Here, we report a one-
and two-dimensional pattern forming setup, which exhibits a transition from stationary patterns to
spatiotemporal chaotic textures, based on a nematic liquid crystal layer with spatially modulated
input beam and optical feedback. Using an adequate projection of spatiotemporal diagrams, we
determine the largest Lyapunov exponent. Jointly, this exponent and Fourier transform allow
us to distinguish between spatiotemporal chaos and amplitude turbulence concepts, which are
usually merged.
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1. Introduction

Optical systems maintained far from equilibrium, through the injection and dissipation of
energy, can present spatiotemporal structures, patterns [1–9]. These structures appear as a
way to optimize energy transport and momenta [10]. Patterns are the result of the interplay
between the linear gain and the nonlinear saturation mechanisms. In many physical systems,
these structures are stationary and emerge as a spatial instability of a uniform state when
a control parameter is changed and surpasses a critical value, which usually corresponds to
imbalances of forces. As the parameters of the system are changed, stationary patterns can become
unstable and bifurcate to more complex patterns, even into aperiodic dynamics states [11–14].
This behavior is characterized by complex spatiotemporal dynamics exhibited by the pattern
and a continuous coupling between spatial modes in time. Complex spatiotemporal dynamics
of patterns have been observed, for example, in fluids [15–19], chemical reaction-diffusion
systems [20], cardiac fibrillation [21], electroconvection [22], fluidized granular matter [23],
nonlinear optical cavities [1–4] and in a liquid crystal light valve [6, 24, 25]. In most of these
studies, complex behaviors are characterized by spatial and temporal Fourier transforms, wave
vector distribution, filtering spatiotemporal diagrams, power spectrum of spatial mode, length
distributions, Poincaré maps and number of defects as a function of the parameters. However,
in these experimental studies, spatiotemporal complexity has not been characterized using
rigorous tools of dynamical systems theory as Lyapunov exponents [26, 27]. These exponents
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Fig. 1. Schematic representation of the experimental setup. LCLV stands for the liquid
crystal light valve, L represents the achromatic lenses with a focal distance f = 25 cm, M
are the mirrors, FB is an optical fiber bundle, BS stands for the beam splitters, PC represents
a polarizing cube, SLM is a spatial light modulator and FP represents the Fourier plane. F
and B stand for the forward (incoming) and backward (reflected) beam respectively. d is the
equivalent optical length. In the bottom left part of the image, two examples of obtained
patterns and textures.

characterize the exponential sensitivity of the dynamical behaviors under study and in turn gives
a characteristic time scale on which one has the ability to predict the time evolution of the system.
When the largest Lyapunov exponent (LLE) is positive (negative) the system under study is
chaotic (stationary). Recently, we have computed the experimental LLE and characterized the
spatiotemporal chaos in two spatial dimensions in a liquid crystal light valve (LCLV) with optical
feedback [28]. The dynamics exhibited by the LCLV with optical feedback is characterized by
the changes that molecular orientation induces in the phase of the reflected light, which, in its
turn—optical feedback—produces a voltage that reorients the liquid crystal molecules.

One of the most important concepts in complex spatiotemporal dynamics is turbulence: the
power spectrum as a result of the transport of some physical quantity of different scales shows a
power law decay as its main signature [36]. The aim of this article is to investigate one and two
dimensional pattern forming system in a LCLV, shown in Fig. 1, which exhibits a transition from
stationary patterns to spatiotemporal chaotic textures and to quasiperiodicity. Using adequate
spatiotemporal diagrams, we obtain the LLE. Jointly, this exponent and Fourier transform allow
us to distinguish between spatiotemporal chaos and amplitude turbulence concepts, which are
usually merged.

2. Experimental details

The liquid crystal light valve with an optical feedback is a flexible optical experimental setup
that exhibits pattern formation [6] [see Fig. 1]. The LCLV is illuminated by an expanded and
collimated He-Ne laser beam, λ = 633 nm, with 3 cm transverse diameter and power Iin = 6.5
mW/cm2, linearly polarized along the vertical axis. Once shone into the LCLV, the beam is
reflected by the dielectric mirror deposed on the rear part of the cell and, thus, sent to the
polarizing cube. Due to the phase-change the light suffers in the reflection, the polarizing cube
will send the reflected light into the feedback loop. To close the feedback loop, a mirror and
an optical fiber bundle are used, these elements assure the light to reach the photoconductor
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placed in the back part of the LCLV. In the feedback loop, a 4-f array is placed in order to obtain
a self-imaging configuration and access to the Fourier plane, this array is constructed with 2
identical lenses with focal length f = 25 cm placed in such a way that both sides of the LCLV are
conjugated planes. We filter the Fourier plane in order to force the system to exhibit roll-patterns
in a given direction. Thanks to this configuration the free propagation length in the feedback loop
can be easily adjusted. For the performed experiments an optical equivalent length of d =−4 cm
was used. A spatial light modulator (SLM) was placed in the input beam optical path with a
1 : 1 imaging between the SLM and the frontal part of the LCLV. With the aid of a specialized
software, a square mask was produced and sent to the SLM. The SLM and the polarizing cube
combination allow to impose an arbitrary shape to the input beam. For a uniform mask of 160
gray-value, the typical input intensity would be Iw = 0.83 mW/cm2. To obtain the shape used in
the experiments, one and two-dimensional masks, I(x,y), were created and, by means of these
masks, one and two dimensional patterns can be obtained as can be seen in the bottom left part
of Fig. 1. The system dynamics is controlled by adjusting the external voltage V0 applied to the
LCLV.

3. From stationary to disordered dynamics

The presented dynamics in the LCLV have been explored in two different configurations, the
first one using an intensity mask of zero-level intensity everywhere except for a central square
part with length a0 = 2.5 mm (2-D mask), and the second one with a zero-level intensity except
on a narrow channel of 150 µm width and 2.5 mm length (1-D mask). The injected intensity is
spatially modulated as Iin = I0(x,y), where I0 can be controlled by changing the mask created in
the SLM, and {x,y} are the transverse coordinates of the sample. I0 is measured when imposing
a given gray-value to the illuminated area, that is, for the 2-D mask

I0(x,y) =
{

I0 +b0 |x| ≤ a0, and |y| ≤ a0
b0 else

when b0 is constant throughout the sample and |x|> 0, |y|> 0. The same applies to 1-D mask
with the only difference that |y|= 150 µm, which is small enough, compared with the pattern
wavelength, to neglect its size and consider it as a 1-D mask. In the presented configurations
I0 = 0.9 mW/cm2 and b0 = 0.1 mW/cm2. The alternating voltage V0 has been varied between
3 and 7 Vrms, at a constant frequency f0 = 5 kHz, starting with the appearance of stationary
roll-patterns. For different V0 values, the dynamical behavior obtained in the system was recorded
with a CCD camera. Figure 2 shows the spatiotemporal evolution of the observed patterns in one
and two dimensions, respectively. This evolution is characterized by projected spatiotemporal
diagrams, which are constructed, in the 2-D experiments, by picking an arbitrary line—transversal
to the rolls direction—in the illuminated zone and superposing it as time evolves; in the 1-D
experiments this construction is simpler, is enough to superpose the pattern as the time evolves.
The system exhibits stationary stripe patterns [cf. Fig. 2(a)]. These patterns are induced by a
spatial filtering in the Fourier plane [cf. FP in Fig. 1]. Actually, through a slit, we can filter spatial
modes.

Increasing V0, the dynamics shown by the pattern becomes abruptly complex [cf. Figs. 2(b)
and 2(d)]. Clearly, in the projected spatiotemporal diagram, we detected an intermittent behavior.
That is, the pattern exhibits aperiodic oscillations invaded by large fluctuations, generating several
spatial and temporal dislocations. Likewise, the system exhibits a high spatiotemporal complexity.
This kind of disorder is usually associated to spatiotemporal chaotic textures [28, 32–34]. Figure
2(d) shows a 3-D spatiotemporal diagram, from this diagram it is clear that an arbitrarily chosen
line represents the dynamics.

Further increasing V0, the pattern begins to oscillate in a complex manner [see Fig. 2(c)]. We
observe in the projected spatiotemporal diagram local waves, oscillations and spatiotemporal
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Fig. 2. Spatial textures in LCLV with optical feedback at different voltage V0. Top pan-
els correspond to spatiotemporal diagrams of observed dynamics working with one-
dimensional patterns. Middle panels panels stand for projected spatiotemporal diagrams
of two-dimensional textures. a) Periodic regime, b) chaotic behavior, c) quasi-periodic dy-
namics, and d) a 3-D spatiotemporal diagram of a complex texture found in the intermittent
regime at V0 = 4.3V rms. All values were taken during 100 s and are normalized.

dislocations. Similar dynamics has been reported in one-dimensional inhomogeneous systems
[29–31]. In our experiments these inhomogeneities can be caused by the inherent imperfections
and inhomogeneities induced by the filter in the Fourier plane. Hence, this kind of dynamical
behavior could be expected. The complex dynamics exhibited by this pattern is constantly
repeated over time. Which leads us to infer that this kind of behavior could be quasiperiodicity.

A mathematical tool for analyze the spatial modes interaction is the Fourier spectrum. Figure
3 shows the Fourier spectra of different dynamical regimes. Showing that the dynamics changes
between stripe patterns, quasi-periodicity and spatiotemporal chaotic textures. The stationary
pattern is characterized by a dominant wavelength f . The width of this peak is due to temperature
fluctuations and dynamics of defects such as dislocations and boundary grains. The quasi periodic
texture is characterized by the appearance of incommensurable wavelengths, { f ′, f ′′′}, with
respect to the main wavelength f ′′ and its harmonics. The spatiotemporal chaotic texture is
characterized by presenting an enlarged spectrum as a result of the interaction between the main
incommensurable modes [35]. Note that in this regime, the modes are coupled with exponential
decay [see the dashed line in Fig. 3]. Therefore, the system does not exhibit power spectrum
behavior which is the hallmark of turbulence dynamics [36].

4. Quantifying the dynamics

A characterization of complex dynamics like chaos and spatiotemporal chaos can be done by
means of Lyapunov exponents. There are as many exponents as the dimension of the system
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under study. The analytical study of Lyapunov exponents is a paramount endeavor and in practice
inaccessible, then the pragmatic strategy is a numerical derivation of the exponents. From
experimental data, in the case of low-dimensional dynamical systems, by means of recognition
of initial conditions one can determine the LLE [37]. This exponent accounts for the greatest
exponential growth and its defined by

λ0 = lim
t→∞

lim
∆0→0

1
t

ln
[
||u(x, t)−u′(x, t)||
||u(x, to)−u′(x, to)||

]
, (1)

where u(x, t) and u′(x, t) are given fields, ∆o ≡ ||u(x, t0) − u′(x, t0)|| and || f (x, t)||2 ≡∫
| f (x, t)|2dx is a norm. ∆(t) ≡ ||u(x, t)− u′(x, t)|| stands for the global evolution of the dif-

ference between the fields.
When λ0 is positive or negative, the perturbation of a given trajectory is characterized by an

exponential separation or approach, respectively. Dynamical behaviors with zero LLEs corre-
spond to equilibrium with invariant directions, such as periodic or quasi-periodic solutions and
non-chaotic attractors [38]. Hence, the LLE is an exceptional order parameter for characterizing
transitions from stationary to complex spatiotemporal dynamics.

Experimentally, to estimate the LLE, it is mandatory to have two close initial conditions
and observe if their evolution diverge at large times [28]. The implemented method needs,
as a first step, to find two close fields [see lines 1 and 2 in Figs. 4(a) and 4(b)] along the
projected spatiotemporal diagrams and compute their difference ∆0. The temporal evolution
of the difference should be given by ∆(t) ≈ ∆0eλ0t for large t [cf Figs. 4(c) and 4(d)]. Due to
the complexity of evolution of the difference between fields—clearly the number of positive
Lyapunov exponents is huge—we will consider at least two unstable growth directions, that is
∆(t)≈ aebt + cedt [cf. Fig. 4].

A bifurcation diagram was constructed with the obtained LLEs as can be seen in Fig. 5.
The system starts with stationary stripe patterns at V0 = 3.0Vrms and the dynamics remains
unchanged until the applied voltage reached V0 = 3.5Vrms. At this voltage, the LLE goes to zero,
meaning that the system exhibits a bifurcation. Experimentally, we observed that the steady
pattern changes to an aperiodic regime. The chaotic behavior remains until the mean intensity
in the LCLV destroys the chaotic attractor due to destructive interference at V0 = 3.9Vrms [see
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Fig. 5], causing a crisis. Once the light is recovered, the system enters in an intermittent regime
between chaos and quasi-periodicity. After this window the system becomes chaotic until the
attractor is annihilated by destructive interference at V0 = 5.35Vrms. Once the light is recovered
the system remains in a quasi-periodic regime until the next cycle of destructive interference
arrives. This dynamic regime is characterized by having an oscillatory pattern which LLE is
zero.

Given a temporal signal, the attractor of the system can be built by taking the signal at different
periodic times (arbitrary periodic separation τ) and constructing the vector {I(x, t), I(x, t +
τ,x), I(x, t + 2τ), · · ·} with x as a fixed position, phase space reconstruction [39]. The three
different attractors that can be reconstructed using this embedding method are a fixed point,
a torus and a strange attractor. For low voltage a fixed point can be seen (stationary pattern).
Increasing the tension V0, the phase space reconstruction exhibits a torus (quasi-periodic pattern)
and strange attractor (spatiotemporal texture) [28].

5. Conclusions

Our study provides clear evidence that the LCLV with optical feedback is spatiotemporally
chaotic in a certain range of parameters. The LLEs are experimentally accessible and allow us to
characterize the transitions from stationary to complex spatiotemporal dynamics. Certainly new
concepts in the theory of dynamical systems must be developed to achieve a better experimental
characterization of spatiotemporal complex behaviors. Notwithstanding, jointly the LLEs and
power spectrum allow us distinguishing well-established dynamical behaviors such as amplitude
turbulence and spatiotemporal chaos, which are often merged and confused.
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